SUPPORTING INFORMATION

Designer Dendrimers: Branched Oligosulfonimides with Controllable Molecular Architectures

Oleg Lukin,*^[a] Volker Gramlich,^[a] Ramchandra Kandre,^[a] Igor Zhun,^[a] Thorsten Felder,^[b,c] Christoph A. Schalley^[c] and Grigory Dolgonos ^[d]

 ^[a] Institute of Polymers, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland; E-mail: oleg.lukin@mat.ethz.ch; Fax: +41 44 633 13 97
^[b] Kekulé-Institut für Organische Chemie und Biochemie der Universität, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
^[c] Institut für Chemie und Biochemie - Organische Chemie, Freie Universität, Takustr. 3, 14195 Berlin, Germany
^[d] Centre for Research in Molecular Modeling, Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada, H3G 1M8

Experimental Section

Instruments and methods: Melting points were determined on a Büchi microscope heating unit and are uncorrected. NMR spectra were measured on Bruker AMX 300 or DRX 500 spectrometers. All chemical shifts are given in ppm with the solvent signals taken as internal standards; coupling constants are in hertz. EI mass spectra were obtained with Micromass Autospec Q spectrometer and MALDI mass spectra were recorded on a Micromass MALDI-Tof Spec E mass spectrometer equipped with an N₂ laser (337 nm). ESI mass spectra and MS/MS spectra were recorded on a Bruker APEX IV Fourier-transform ion-cyclotron-resonance (FT-ICR) mass spectrometer with an Apollo electrospray ion source equipped with an off-axis 70° spray needle.

Comment on dendrimer solubilities.

Oligosulfonimide dendrimers and dendrons of all generations bearing peripheral tosyland 2-naphthylsulfonyl groups exhibit very high solubilities in both polar aprotic and apolar aprotic (except for hexane) solvents. Their solubilities in DMF, THF, chloroform and benzene are in the range of 150-250 mg/mL. Nosyl-decorated branched sulfonimides show poor solubility in the above mentioned solvents at r.t. with the exception of 1st generation species as well as Janus-type dendrimers. The compounds with peripheral nitro-groups can be dissolved in hot THF and hot chloroform. All the above mentioned compounds have low or no solubility in methanol and ethanol. Oligosulfonimides bearing peripheral amino-groups are soluble in alcohols or mixtures of alcohols with either chlorinated solvents or benzene.

General synthetic procedures:

Persulfonylation of amines and sulfonamides with arylsulfonyl chlorides (preparation of compounds **2a**, **3a**, **4**, **6a**, **7**, **9c**, **10a**, **11**, **12a**, **13a**, **b**, **15a**, **b**, **17a**, **b**): A mixture of a corresponding amine or sulfonamide, triethylamine (ca. fourfold molar excess per amino or sulfonamide group) and arylsulfonyl chloride (ca. threefold molar excess per amino or sulfonamide group) was stirred in dichloromethane at reflux for 2 to 24 hrs, dependently on the number of amino groups in a compound. Then the solvent was removed under reduced pressure and the residue was triturated with methanol. The solid precipitate was filtered through a glass filter and thoroughly washed with methanol. The resulting solid powders were dried in vacuum and then, if necessary, purified by chromatography on silica gel.

Persulfonylation of aromatic amines with arylsulfonyl chlorides (preparation of compounds **8a**, **9a**): The procedure is fully analogous to the previous one with the exception of strict stoichiometric amount of the arylsulfonyl chloride added (two equivalents per amino group).

Reduction of nitro-derivatives with tin (II) chloride dihydrate (preparation of compounds **5b, 12b, 14**): A mixture of a nitro-compound and SnCl₂ 2H₂O (four equivalents per nitro group) was boiled in a mixture of ethanol and concentrated hydrochloric acid (5 mL per gram of nitro-compound) for 5 hrs, cooled, and then poured onto ice. The pH was adjusted to 10 with 2 M aqueous NaOH, and the released amine was extracted with dichloromethane, dried over MgSO₄, and then evaporated to give corresponding amines as colorless solids.

Catalytic reduction of nitro-derivatives with H₂ (preparation of compounds **2b**, **3b**, **6b**, **8b**, **9d**, **10b**): A nitro-compound was dissolved in a 2:1 mixture of benzene/ethanol. To this solution was added a catalytic amount of commercial 10% Pd/C that had been previously washed with ethanol. The resulting suspension was evacuated and the reaction flask was filled with H₂. This operation was repeated three times and the mixture was stirred for 24 hrs at room temperature under hydrogen pressure of 3 bar. Then the palladium catalyst was filtered off in a vacuum through a pad of Celite and rinsed with a 2:1 mixture of benzene/ethanol. The filtrates were combined and evaporated in vacuum to give a colorless solid. The yields of the catalytic hydrogenation are assumed quantitative.

General procedure for the Suzuki-Miyaura cross-coupling (preparation of compounds 18-20): Aryl bromide (0.34 mmol, compounds 13b, 15b and 17b) and benzene-1,4-bis(boronic acid)propane-1,3-diol diester (0.17 mmol) were dissolved in 10 mL of dry THF. A concentrated solution of NaHCO₃ in water (5 mL) was added to the reaction mixture and the system was degassed. Freshly prepared $Pd[P(p-tolyl)_3]_3$ (10-14 mg) was added and the reaction mixture was allowed to stir at 80°C for 24 hrs under nitrogen atmosphere. Then 20 mL of water were added and the emulsion was taken up with 100 mL of dichloromethane. The organic layer was separated, washed with water and brine, dried over Mg₂SO₄ and evaporated. The brown viscous residue was chromatographed on silica gel column with hexane/ethylacetate (2:1) eluant.

N-*n***-octyl-4-nitrobenzenesulfonimide 2a**: 1.0 g of octylamine **1** was used in the reaction. Recrystallized from methanol; yield 3.68 g (95%); m.p. 131-132 °C; ¹H NMR (300 MHz, CDCl₃): $\delta = 0.91$ (t, ³ $J_{\rm H, H} = 6.9$ Hz, 3 H, CH₃), 1.27 (s, 10 H, CH₂), 1.71 (br. 2H, CH₂), 3.78 (m, 2 H, CH₂), 8.30 (d, ³ $J_{\rm H, H} = 9.0$ Hz, 4 H, ArH), 8.46 (d, ³ $J_{\rm H, H} = 9.0$ Hz, 4 H, ArH) ppm; ¹³C NMR (75.47 MHz, CDCl₃): $\delta = 14.05$, 22.58, 26.45, 28.87, 29.07, 29.95, 31.66, 50.37, 124.45, 129.69, 145.05, 150.82 ppm; MS (EI, 80 eV): *m*/*z* = 499.11 [*M*]⁺, 399.99 [*M* - C₇H₁₅]⁺, 313.12 [*M* - *p*-NO₂C₆H₄SO₂]⁺, 185.99 [*M* - *p*-NO₂C₆H₄SO₂NC₈H₁₇]⁺; elemental analysis calcd (%) for C₂₀H₂₅N₃O₈S₂ (499.56): C 48.09, H 5.04, N 8.41, S 12.84; found C 48.26, H 5.08, N 8.27, S 13.02.

N-*n***-octyl-4-aminobenzenesulfonimide 2b**: M.p. 149-150 °C; ¹H NMR (300 MHz, CD₃OD): $\delta = 0.93$ (t, ³ $J_{\rm H, H} = 7.0$ Hz, 3 H, CH₃), 1.27 (s, 10 H, CH₂), 1.61 (br. 2H, CH₂), 3.54 (m, 2 H, CH₂), 6.68 (d, ³ $J_{\rm H, H} = 8.4$ Hz, 4 H, ArH), 7.52 (d, ³ $J_{\rm H, H} = 8.4$ Hz, 4 H, ArH) ppm; MS (ESI pos., CH₃OH): $m/z = 440.20 \ [M+H]^+$ calcd monoisotopic peak (¹²C₂₀¹H₃₀¹⁴N₃¹⁶O₄³²S₂) 440.16; 462.10 $\ [M+Na]^+$ (¹²C₂₀¹H₂₉¹⁴N₃¹⁶O₄³²S₂Na) calcd monoisotopic peak 462.16.

N-*n***-octyl-4-(4-nitrobenzenesulfonimido)benzenesulfonimide 3a**: 2.7 g of diamine **2b** were used in the reaction; yield 5.20 g (71%), m.p. 209-211 °C. ¹H NMR (300 MHz, (CD₃)₂SO): $\delta = 0.83$ (t, ³*J*_{H, H} = 7.0 Hz, 3 H, CH₃), 1.23 (s, 10 H, CH₂), 1.58 (br. 2H, CH₂), 3.81 (br, 2 H, CH₂), 7.50 (d, ³*J*_{H, H} = 8.7 Hz, 4 H, ArH), 8.02 (d, ³*J*_{H, H} = 8.7 Hz, 4 H, ArH), 8.14 (d, ³*J*_{H, H} = 9.0 Hz, 8 H, ArH), 8.51 (d, ³*J*_{H, H} = 9.0 Hz, 8 H, ArH) ppm; ¹³C NMR (75.47 MHz, (CD₃)₂SO): $\delta = 13.90$, 22.01, 25.83, 28.33, 28.54, 31.14, 49.39, 125.14, 129.52, 130.04, 132.72, 137.55, 140.97, 142.47, 151.09 ppm; elemental analysis calcd (%) for C₄₄H₄₁N₇O₂₀S₆ (1180.22): C 44.78, H 3.50, N 8.31, S 16.30; found C 44.56, H 3.48, N 8.07, S 16.12.

N-*n***-octyl-4-(4-aminobenzenesulfonimido)benzenesulfonimide 3b**: M.p. 145-147 °C; ¹H NMR (300 MHz, (CD₃)₂SO): $\delta = 0.85$ (t, ³*J*_{H, H} = 7.0 Hz, 3 H, CH₃), 1.23 (s, 10 H, CH₂), 1.53 (br. 2H, CH₂), 3.75 (br, 2 H, CH₂), 6.41 (br. 8 H, NH₂), 6.62 (d, ³*J*_{H, H} = 8.8 Hz, 8 H, ArH), 7.27 (d, ³*J*_{H, H} = 8.7 Hz, 4 H, ArH), 7.34 (d, ³*J*_{H, H} = 8.8 Hz, 8 H, ArH), 7.93 (d, ³*J*_{H, H} = 8.7 Hz, 4 H, ArH) ppm. MS (ESI pos., CH₃OH/CH₂Cl₂): *m*/*z* = 1082.16 [*M*+Na]⁺ calcd monoisotopic peak (¹²C₄₄¹H₄₉¹⁴N₇¹⁶O₁₂³²S₆Na) 1082.17; 1098.14 [*M*+K]⁺ calcd monoisotopic peak (¹²C₄₄¹H₄₉¹⁴N₇¹⁶O₁₂³²S₆K) 1098.14.

Compound 4: 1 g of tetraaminoderivative **3b** was used for the reaction. The crude product was purified by column chromatography and then recrystallized from CH₂Cl₂/CH₃OH. $R_f = 0.24$ (silica gel, CH₂Cl₂); yield 1.22 g (57%); m.p. 151-155 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 0.88$ (t, ³ $J_{H, H} = 7.0$ Hz, 3 H, CH₃), 1.27 (s, 10 H, CH₂), 1.69 (br. 2 H, CH₂), 2.47 (s, 24 H, CH₃), 3.71 (t, ³ $J_{H, H} = 7.5$ Hz, 2 H, CH₂), 7.19 (d, ³ $J_{H, H} = 8.7$ Hz, 4 H, ArH), 7.24 (d, ³ $J_{H, H} = 8.7$ Hz, 8 H, ArH), 7.37 (d, ³ $J_{H, H} = 8.0$ Hz, 16 H, ArH), 7.81-7.84 (m, 24 H, ArH), 8.04 (d, ³ $J_{H, H} = 8.7$ Hz, 4 H, ArH) ppm; ¹³C NMR (75.47 MHz, CDCl₃): $\delta = 14.15$, 21.83, 22.64, 26.59, 28.96, 29.15, 31.72, 50.29, 128.65, 129.46, 129.62, 129.99, 132.42, 132.63, 136.00, 138.61, 139.57, 140.24, 141.67, 145.83 ppm. MS (ESI pos., CH₃OH/CH₂Cl₂): $m/z = 2330.21 [M+K]^+$ calcd monoisotopic peak (¹²C₁₀₀¹H₉₇¹⁴N₇¹⁶O₂₈³²S₁₄K) 2330.21; 2314.23 [M+Na]⁺ calcd monoisotopic peak

 $({}^{12}C_{100}{}^{1}H_{97}{}^{14}N_{7}{}^{16}O_{28}{}^{32}S_{14}N_{8})$ 2314.24; elemental analysis calcd (%) for $C_{100}H_{97}N_{7}O_{28}S_{14}$ (2293.78): C 52.36, H 4.26, N 4.27, S 19.57; found C 52.32, H 4.60, N 4.13, S 18.95.

N-n-octyl-4-nitrobenzenesulfonamide 5a: *n*-octylamine (5 g, 39 mmol) and triethylamine (7 mL, 22 mmol) were dissolved in dry dichloromethane (200 mL). To the stirred mixture a solution of 4-nitrobenzenesulfonyl chloride (8.6 g, 39 mmol) in 60 mL of dry dichloromethane was added over a period of 10 min. The reaction mixture was allowed to stir for 20 min at room temperature and then the solvent was removed under reduced pressure. The viscous residue was triturated with 200 mL of methanol/water (5:1) and allowed to stand for 1 hr. Precipitated white flakes were filtered through a glass filter and thoroughly washed with 5% solution of hydrochloric acid and then with large amount of deionized water. The colorless crystalline solid was dried in vacuum resulting in 10.6 g (89%); m.p. 71-73 °C; ¹H NMR (300 MHz, CDCl₃): $\delta = 0.88$ (t, ³J_{H, H} = 7.0 Hz, 3 H, CH₃), 1.24 (s, 10 H, CH₂), 1.50 (br. 2 H, CH₂), 3.02 (m, 2 H, CH₂), 4.79 (t, ${}^{3}J_{H, H} =$ 6.0 Hz, 1 H, NH), 8.08 (d, ${}^{3}J_{H, H} = 9.0$ Hz, 2 H, ArH), 8.39 (d, ${}^{3}J_{H, H} = 9.0$ Hz, 2 H, ArH) ppm; 13 C NMR (75.47 MHz, CDCl₃): δ = 14.04, 22.58, 26.45, 28.97, 29.07, 29.63, 31.68, 43.42, 124.41, 128.31, 146.03, 150.04 ppm. MS (EI, 80 eV): $m/z = 314.12 [M]^+$; elemental analysis calcd (%) for C₁₄H₂₂N₂O₄S (314.40): C 53.48, H 7.05, N 8.91, S 10.20; found C 53.39, H 6.89, N 8.99, S 10.33.

N-*n***-octyl-4-aminobenzenesulfonamide 5b**: 5 g of **5a** were used in the reaction. Yield 4.45 g (98%); m.p. 71-73 °C. ¹H NMR (300 MHz, CD₃OD): $\delta = 0.84$ (t, ³ $J_{\text{H, H}} = 7.0$ Hz, 3 H, CH₃), 1.98 (s, 10 H, CH₂), 1.41 (br. 2 H, CH₂), 2.81 (m, 2 H, CH₂), 6.78 (d, ³ $J_{\text{H, H}} = 8.7$ Hz, 2 H, ArH), 7.59 (d, ³ $J_{\text{H, H}} = 8.7$ Hz, 2 H, ArH) ppm; ¹³C NMR (75.47 MHz, CD₃OD): $\delta = 13.03$, 22.29, 26.29, 28.82, 28.88, 29.28, 31.55, 42.70, 121.52, 128.60, 138.22, 138.45 ppm; MS (EI, 80 eV): $m/z = 284.14 [M]^+$.

Compound 6a: 2 g of **5b** were used for the reaction. Yield 3.84 g (66%); m.p. 178-181 °C; ¹H NMR (300 MHz, CDCl₃): $\delta = 0.90$ (t, ³ $J_{\text{H, H}} = 6.9$ Hz, 3 H, CH₃), 1.28 (s, 10 H, CH₂), 1.73 (br. 2H, CH₂), 3.79 (t, ³ $J_{\text{H, H}} = 7.5$ Hz, 2 H, CH₂), 7.30 (d, ³ $J_{\text{H, H}} = 8.7$ Hz, 2 H, ArH), 8.16 (d, ³ $J_{\text{H, H}} = 9.0$ Hz, 2 H, ArH), 8.18 (d, ³ $J_{\text{H, H}} = 9.0$ Hz, 4 H, ArH), 8.29 (d, ³ $J_{\text{H, H}} = 8.7$ Hz, 2 H, ArH) ppm; NMR ¹³C (75.47 MHz, (CD₃)₂SO): $\delta = 13.87$, 22.01, 25.77, 28.28, 28.51, 29.44, 31.11, 49.87, 124.85, 125.14, 129.46, 129.51, 130.04, 132.80, 137.59, 140.96, 142.54, 143.96, 150.68, 151.11 ppm; MS (EI, 80 eV): $m/z = 839.09 [M]^+$, 653.13 [M - p-NO₂C₆H₄SO₂]⁺, 525.99 [M - p-NO₂C₆H₄SO₂NC₈H₁₇]⁺, 469.15 [M - 2 p-NO₂C₆H₄SO₂]⁺; elemental analysis calcd (%) for C₃₂H₃₃N₅O₁₄S₄ (839.89): C 45.76, H 3.96, N 8.34, S 15.27; found C 46.03, H 4.17, N 8.47, S 15.40.

Compound 6b: M.p. 125-128 °C; ¹H NMR (300 MHz, CD₃OD): $\delta = 0.90$ (t, ³ $J_{\text{H, H}} = 6.9$ Hz, 3 H, CH₃), 1.26 (br. 10 H, CH₂), 1.62 (br. 2H, CH₂), 3.62 (t, ³ $J_{\text{H, H}} = 6.9$ Hz, 2 H, CH₂), 6.66 (d, ³ $J_{\text{H, H}} = 7.2$ Hz, 6 H, ArH), 7.19 (d, ³ $J_{\text{H, H}} = 8.1$ Hz, 2 H, ArH), 7.43 (d, ³ $J_{\text{H, H}} = 7.2$ Hz, 4 H, ArH), 7.83 (d, ³ $J_{\text{H, H}} = 8.1$ Hz, 2 H, ArH) ppm; MS (EI, 80 eV): $m/z = 749.20 [M]^+$, 594.16 $[M - p\text{-NH}_2\text{C}_6\text{H}_4\text{SO}_2]^+$, 439.16 $[M - 2 p\text{-NH}_2\text{C}_6\text{H}_4\text{SO}_2]^+$.

Compound 7: 0.93 g of the triamine **6b** were used for the reaction. The product was purified by column chromatography. ($R_f = 0.31$, silica gel, CH₂Cl₂); Yield 1.41 g (70%). M.p. 135-137 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 0.88$ (t, ³ $J_{\rm H, H} = 7.0$ Hz, 3 H, CH₃), 1.27 (s, 10 H, CH₂), 1.69 (br. 2 H, CH₂), 2.47 (s, 18 H, CH₃), 3.71 (t, ${}^{3}J_{H, H} = 7.5$ Hz, 2 H, CH₂), 7.19 (d, ${}^{3}J_{H,H} = 8.7$ Hz, 2 H, ArH), 7.25 (d, ${}^{3}J_{H,H} = 8.7$ Hz, 6 H, ArH), 7.37 (d, ${}^{3}J_{H}$. $_{\rm H}$ = 8.0 Hz, 4 H, ArH), 7.39 (d, $^{3}J_{\rm H, H}$ = 8.0 Hz, 8 H, ArH), 7.81-7.85 (m, 16 H, ArH), 7.96 (d, ${}^{3}J_{H, H} = 8.7$ Hz, 2 H, ArH), 8.04 (d, ${}^{3}J_{H, H} = 8.7$ Hz, 2 H, ArH) ppm; ${}^{13}C$ NMR $(75.47 \text{ MHz}, \text{CDCl}_3)$: $\delta = 14.17, 21.84, 22.67, 26.64, 29.00, 29.20, 30.12, 31.77, 50.18,$ 128.15, 128.67, 129.11, 129.55, 129.63, 129.94, 130.01, 132.39, 132.53, 132.65, 136.04, 136.09, 138.51, 139.58, 139.61, 140.26, 140.86, 141.86, 145.74, 145.85 ppm; MS (ESI pos. CH₃OH/CH₂Cl₂): $m/z = 1712.18 [M+K]^+$ calcd monoisotopic peak $({}^{12}C_{74}{}^{1}H_{75}{}^{14}N_{5}{}^{16}O_{20}{}^{32}S_{10}K)$ 1712.18; 1696.194 $[M+Na]^{+}$ calcd monoisotopic peak $({}^{12}C_{74}{}^{1}H_{75}{}^{14}N_{5}{}^{16}O_{20}{}^{32}S_{10}Na)$ 1696.21; elemental analysis calcd (%) for $C_{74}H_{75}N_{5}O_{20}S_{10}$ (1675.06): C 53.06, H 4.51, N 4.18, S 19.14; found C 52.87, H 4.60, N 3.83, S 19.28.

Compound 8a: 2 g of **5b** were used for the reaction. Recrystallized from dichloromethane/methanol; yield 1.92 g (42%); m.p. 242-244 °C; ¹H NMR (300 MHz, CDCl₃): $\delta = 0.90$ (t, ${}^{3}J_{\text{H, H}} = 6.9$ Hz, 3 H, CH₃), 1.28 (s, 10 H, CH₂), 1.57 (br. 2H, CH₂), 3.09 (m, 2 H, CH₂), 4.74 (t, ${}^{3}J_{\text{H, H}} = 6.0$ Hz, 1 H, NH), 7.23 (d, ${}^{3}J_{\text{H, H}} = 8.4$ Hz, 2 H, ArH), 7.95 (d, ${}^{3}J_{\text{H, H}} = 8.4$ Hz, 2 H, ArH), 8.18 (d, ${}^{3}J_{\text{H, H}} = 9.0$ Hz, 4 H, ArH), 8.48 (d, ${}^{3}J_{\text{H, H}} = 9.0$ Hz, 4 H, ArH) ppm; ¹³C NMR (75.47 MHz, (CD₃)₂SO): $\delta = 13.91$, 22.04, 26.00, 28.50, 29.06, 29.89, 31.18, 42.59, 125.12, 128.04, 129.96, 132.33, 135.58, 142.72, 143.20, 151.05 ppm. MS (EI, 80 eV): $m/z = 654.10 [M]^{+}$, 463.97 $[M - C_8H_{17}NH]^{+}$, 284.27 $[M - 2 \ p$ -NO₂C₆H₄SO₂]⁺; elemental analysis calcd (%) for C₂₆H₃₀N₄O₁₀S₃ (654.73): C 47.70, H 4.62, N 8.56, S 14.69; found C 47.48, H 4.68, N 8.41, S 14.87.

Compound 8b: M.p. 142-144 °C; ¹H NMR (300 MHz, (CD₃)₂SO): $\delta = 0.84$ (t, ³*J*_{H, H} = 6.9 Hz, 3 H, CH₃), 1.20 (s, 10 H, CH₂), 1.33 (br. 2H, CH₂), 2.77 (m, 2 H, CH₂), 6.38 (s, 4 H, NH₂), 6.60 (d, ³*J*_{H, H} = 7.2 Hz, 4 H, ArH), 7.15 (d, ³*J*_{H, H} = 8.4 Hz, 2 H, ArH), 7.32 (d, ³*J*_{H, H} = 7.2 Hz, 4 H, ArH), 7.72 (s, 1 H, NH), 7.78 (d, ³*J*_{H, H} = 8.4 Hz, 2 H, ArH) pm; ¹³C NMR (75.47 MHz, (CD₃)₂SO): $\delta = 13.95$, 22.06, 26.01, 28.50, 28.56, 29.00, 31.20, 42.59, 112.40, 122.41, 127.28, 130.33, 132.17, 138.01, 141.71, 154.35 ppm; MS (EI, 80 eV): *m*/*z* = 594.16 [*M*]⁺, 439.16 [*M* – *p*-NH₂C₆H₄SO₂]⁺, 284.27 [*M* – 2 *p*-NO₂C₆H₄SO₂]⁺.

Compound 9a: 2.5 g of diamine **8b** were used in the reaction. Purified by column chromatography ($R_f = 0.32$, silica gel, CH₂Cl₂); yield 2.70 g (48%); m.p. 157-159 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 0.83$ (t, ³ $J_{H, H} = 6.9$ Hz, 3 H, CH₃), 1.20 (s, 10 H, CH₂), 1.45 (br. 2H, CH₂), 2.95 (m, 2 H, CH₂), 4.39 (t, ³ $J_{H, H} = 6.0$ Hz, 1 H, NH), 7.08 (d, ³ $J_{H, H} = 8.7$ Hz, 2 H, ArH), 7.23 (d, ³ $J_{H, H} = 8.7$ Hz, 4 H, ArH), 7.63-7.70 (m, 8 H, ArH), 7.74 (d, ³ $J_{H, H} = 8.7$ Hz, 4 H, ArH), 7.81 (d, ³ $J_{H, H} = 8.7$ Hz, 2 H, ArH), 7.86-8.01 (m, 16 H, ArH), 8.43 (d, ³ $J_{H, H} = 1.5$ Hz, 4 H, ArH) ppm; ¹³C NMR (75.47 MHz, CDCl₃): $\delta = 14.17$, 22.69, 26.58, 29.13, 29.17, 29.87, 31.79, 43.59, 122.82, 128.13, 128.15, 128.25, 129.70, 129.84, 129.86, 130.02, 130.91, 131.94, 132.33, 132.75, 135.60, 135.62, 137.27, 139.94, 140.05, 142.69 ppm; MS (ESI pos., CH₃OH/CH₂Cl₂): m/z = 1377.18 [M+Na]⁺ calcd monoisotopic peak (${}^{12}C_{66}{}^{1}H_{58}{}^{14}N_{4}{}^{16}O_{14}{}^{32}S_7Na$) 1377.19; 1393.11 [M+K]⁺ calcd monoisotopic peak (${}^{12}C_{66}{}^{1}H_{58}{}^{14}N_{4}{}^{16}O_{14}{}^{32}S_7Na$) 1377.19; of the second secon

C₆₆H₅₈N₄O₁₄S₇ (1355.64): C 58.47, H 4.31, N 4.13, S 16.56; found C 58.73, H 4.22, N 4.01, S 16.82.

Compound 9b: ($R_f = 0.78$, silica gel, CH₂Cl₂); yield 1.0 g (16%); m.p. 132-135 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 0.81$ (t, ³ $J_{H, H} = 6.9$ Hz, 3 H, CH₃), 1.19 (m, 10 H, CH₂), 1.67 (m, 2H, CH₂), 3.69 (m, 2 H, CH₂), 7.11 (d, ³ $J_{H, H} = 8.7$ Hz, 2 H, ArH), 7.24 (d, ³ $J_{H, H} = 8.7$ Hz, 4 H, ArH), 7.57-7.69 (m, 10 H, ArH), 7.75 (d, ³ $J_{H, H} = 8.7$ Hz, 4 H, ArH), 7.86-8.07 (m, 22 H, ArH), 8.44 (d, ³ $J_{H, H} = 1.5$ Hz, 4 H, ArH), 8.56 (d, ³ $J_{H, H} = 1.5$ Hz, 1 H, ArH) ppm; ¹³C NMR (75.47 MHz, CDCl₃): $\delta = 14.16$, 22.65, 26.63, 28.99, 29.13, 30.03, 31.73, 50.06, 122.64, 122.81, 127.94, 128.01, 128.12, 128.46, 129.51, 129.75, 129.83, 129.97, 130.38, 130.90, 131.91, 131.96, 132.27, 132.79, 135.46, 135.58, 136.44, 138.27, 139.86, 140.07, 142.33 ppm; MS (ESI pos., CH₃OH): $m/z = 1583.05 [M+K]^+$ calcd monoisotopic peak (${}^{12}C_{76}{}^{1}H_{64}{}^{14}N_{4}{}^{16}O_{16}{}^{32}S_8Na$) 1567.20; elemental analysis calcd (%) for C₇₆H₆₄N₄O₁₆S₈ (1545.86): C 59.05, H 4.17, N 3.62, S 16.59; found C 59.26, H 4.21, N 3.68, S 16.56.

Compound 9c: 2 g of **9a** were used in the reaction. Purified by column chromatography ($R_f = 0.73$, silica gel, CH₂Cl₂); yield 1.52 g (68%); m.p. 149-151 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 0.83$ (t, ³ $J_{H, H} = 6.9$ Hz, 3 H, CH₃), 1.19 (m, 10 H, CH₂), 1.67 (br. 2H, CH₂), 3.71 (m, 2 H, CH₂), 7.15 (d, ³ $J_{H, H} = 8.7$ Hz, 2 H, ArH), 7.26 (d, ³ $J_{H, H} = 8.7$ Hz, 4 H, ArH), 7.60-7.70 (m, 8 H, ArH), 7.77 (d, ³ $J_{H, H} = 8.7$ Hz, 4 H, ArH), 7.87-8.04 (m, 18 H, ArH), 8.17 (d, ³ $J_{H, H} = 9.0$ Hz, 2 H, ArH), 8.36 (d, ³ $J_{H, H} = 9.0$ Hz, 2 H, ArH), 8.44 (d, ³ $J_{H, H} = 1.5$ Hz, 4 H, ArH) ppm; MS (ESI pos., CH₃OH): m/z = 1578.16 [M+K]⁺ calcd monoisotopic peak (${}^{12}C_{72}{}^{1}H_{61}{}^{14}N_{5}{}^{16}O_{18}{}^{32}S_8K$) 1578.14; 1562.16 [M+Na]⁺ calcd monoisotopic peak (${}^{12}C_{72}{}^{1}H_{61}{}^{14}N_{5}{}^{16}O_{18}{}^{32}S_8Na$) 1562.17; elemental analysis calcd (%) for C₇₂H₆₁N₅O₁₈S₈ (1540.80): C 56.12, H 3.99, N 4.55, S 16.65; found C 55.98, H 4.20, N 4.41, S 16.62.

Compound 9d: M.p. 137-139 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 0.85$ (t, ³ $J_{H, H} = 6.9$ Hz, 3 H, CH₃), 1.21 (m, 10 H, CH₂), 1.69 (br. 2H, CH₂), 3.63 (m, 2 H, CH₂), 6.75 (br. 2 H, NH₂), 7.12 (d, ³ $J_{H, H} = 8.7$ Hz, 2 H, ArH), 7.27 (d, ³ $J_{H, H} = 8.7$ Hz, 4 H, ArH), 7.61-7.70 (m, 8 H, ArH), 7.77 (d, ³ $J_{H, H} = 8.7$ Hz, 4 H, ArH), 7.88-8.01 (m, 18 H, ArH), 8.46 (d, ³ $J_{H, H} = 1.5$ Hz, 4 H, ArH) ppm; MS (ESI pos., CH₃OH/CH₂Cl₂): m/z = 1532.19 [M+Na]⁺ calcd monoisotopic peak (¹²C₇₂¹H₆₃¹⁴N₅¹⁶O₁₈³²S₈Na) 1532.19; 1548.22 [M+K]⁺ calcd monoisotopic peak (¹²C₇₂¹H₆₃¹⁴N₅¹⁶O₁₈³²S₈K) 1548.17.

Compound 10a: 850 mg of **9d** were used in the reaction. Purified by column chromatography ($R_f = 0.25$, silica gel, CH₂Cl₂); yield 750 mg (72%); m.p. 189-191 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 0.84$ (t, ³ $J_{\text{H, H}} = 6.9$ Hz, 3 H, CH₃), 1.24 (m, 10 H, CH₂), 1.73 (br. 2H, CH₂), 3.73 (m, 2 H, CH₂), 7.17 (d, ³ $J_{\text{H, H}} = 8.7$ Hz, 2 H, ArH), 7.22 (d, ³ $J_{\text{H, H}} = 8.7$ Hz, 2 H, ArH), 7.28 (d, ³ $J_{\text{H, H}} = 8.7$ Hz, 4 H, ArH), 7.62-7.71 (m, 8 H, ArH), 7.77 (d, ³ $J_{\text{H, H}} = 8.7$ Hz, 4 H, ArH), 7.88-8.01 (m, 18 H, ArH), 8.13 (d, ³ $J_{\text{H, H}} = 9.0$ Hz, 4 H, ArH), 8.39 (d, ³ $J_{\text{H, H}} = 9.0$ Hz, 4 H, ArH), 8.46 (d, ³ $J_{\text{H, H}} = 1.5$ Hz, 4 H, ArH) ppm; MS (ESI pos., CH₃OH/CH₂Cl₂): m/z = 1902.16 [M+Na]⁺ calcd monoisotopic peak (¹²C₈₄¹H₆₉¹⁴N₇¹⁶O₂₄³²S₁₀Na) 1902.15; 1918.04 [M+K]⁺ calcd monoisotopic peak

 $({}^{12}C_{84}{}^{1}H_{69}{}^{14}N_{7}{}^{16}O_{24}{}^{32}S_{10}K)$ 1918.12; elemental analysis calcd (%) for $C_{84}H_{69}N_7O_{24}S_{10}$ (1881.13): C 53.63, H 3.70, N 5.21, S 17.05; found C 53.78, H 3.80, N 5.33, S 16.90.

Compound 10b: M.p. 140-142 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 0.85$ (t, ³ $J_{\text{H, H}} = 6.9$ Hz, 3 H, CH₃), 1.23 (m, 10 H, CH₂), 1.71 (br. 2H, CH₂), 3.65 (m, 2 H, CH₂), 6.64 (br. 4 H, NH₂), 7.14 (d, ³ $J_{\text{H, H}} = 8.7$ Hz, 2 H, ArH), 7.22 (d, ³ $J_{\text{H, H}} = 8.7$ Hz, 2 H, ArH), 7.27 (d, ³ $J_{\text{H, H}} = 8.7$ Hz, 4 H, ArH), 7.61-7.71 (m, 8 H, ArH), 7.77 (d, ³ $J_{\text{H, H}} = 8.7$ Hz, 4 H, ArH), 7.87-8.01 (m, 20 H, ArH), 8.46 (d, ³ $J_{\text{H, H}} = 1.5$ Hz, 4 H, ArH) ppm; MS (ESI pos., CH₃OH/CH₂Cl₂): $m/z = 1842.19 [M+Na]^+$ calcd monoisotopic peak (¹²C₈₄¹H₇₃¹⁴N₇¹⁶O₂₀³²S₁₀Na) 1842.20; 1858.19 [M+K]^+ calcd monoisotopic peak (¹²C₈₄¹H₇₃¹⁴N₇¹⁶O₂₀³²S₁₀K) 1858.18.

Compound 11: 430 mg of **13b** were used in the reaction. Purified by column chromatography ($R_f = 0.19$, silica gel, CH₂Cl₂); yield 312 mg (54%); m.p. 214-215 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 0.84$ (t, ³ $J_{H, H} = 6.9$ Hz, 3 H, CH₃), 1.22 (m, 10 H, CH₂), 1.78 (br. 2H, CH₂), 3.73 (m, 2 H, CH₂), 7.15 (d, ³ $J_{H, H} = 8.7$ Hz, 2 H, ArH), 7.17 (d, ³ $J_{H, H} = 8.7$ Hz, 2 H, ArH), 7.20 (d, ³ $J_{H, H} = 8.7$ Hz, 4 H, ArH), 7.23 (d, ³ $J_{H, H} = 8.7$ Hz, 4 H, ArH), 7.58-7.68 (m, 8 H, ArH), 7.73 (d, ³ $J_{H, H} = 8.7$ Hz, 4 H, ArH), 7.80-7.95 (m, 24 H, ArH), 8.08 (d, ³ $J_{H, H} = 9.0$ Hz, 8 H, ArH), 8.37 (d, ³ $J_{H, H} = 9.0$ Hz, 8 H, ArH), 8.41 (d, ³ $J_{H, H} = 1.5$ Hz, 4 H, ArH) ppm; MS (ESI pos., CH₃OH/CH₂Cl₂): *m*/*z* = 2598.20 [*M*+K]⁺ calcd monoisotopic peak (¹²C₁₀₈¹H₈₅¹⁴N₁₁¹⁶O₃₆³²S₁₄Na) 2582.11; elemental analysis calcd (%) for C₁₀₈H₈₅N₁₁O₃₆S₁₄ (2561.79): C 50.63, H 3.34, N 6.01, S 17.52; found C 50.38, H 3.16, N 5.93, S 17.38.

Compound 12a: 3 g of **5a** were used in the reaction. Recrystallized from methanol; yield 4.2 g (84%); m.p. 74-78 °C; ¹H NMR (300 MHz, CDCl₃): $\delta = 0.91$ (t, ³ $J_{\text{H, H}} = 6.9$ Hz, 3 H, CH₃), 1.26 (s, 10 H, CH₂), 1.69 (br. 2 H, CH₂), 3.74 (t, ³ $J_{\text{H, H}} = 7.5$ Hz, 2 H, CH₂), 7.76 (d, ³ $J_{\text{H, H}} = 8.4$ Hz, 2 H, ArH), 7.96 (d, ³ $J_{\text{H, H}} = 8.4$ Hz, 2 H, ArH), 8.27 (d, ³ $J_{\text{H, H}} = 9.0$ Hz, 2 H, ArH), 8.44 (d, ³ $J_{\text{H, H}} = 9.0$ Hz, 2 H, ArH) ppm; ¹³C NMR (75.47 MHz, CDCl₃): $\delta = 14.08$, 22.60, 26.48, 28.90, 29.08, 29.89, 31.68, 50.10, 124.34, 129.55, 129.67, 129.77, 132.60, 138.48, 145.55, 150.64 ppm; MS (EI, 80 eV): $m/z = 534.03 [M]^+$, 434.92 [$M - C_7H_{15}$]⁺, 348.05 [M - p-NO₂C₆H₄SO₂]⁺, 313.12 [M - p-BrC₆H₄SO₂]⁺; elemental analysis calcd (%) for C₂₀H₂₅BrN₂O₆S₂ (533.46): C 45.03, H 4.72, Br 14.98, N 5.25, S 12.02; found C 44.93, H 4.65, Br 15.11, N 5.24, S 12.23.

Compound 12b: Yield 2.7 g (96%); m.p. 73-77 °C; ¹H NMR (300 MHz, (CD₃)₂CO): $\delta = 0.89$ (t, ³*J*_{H, H} = 6.9 Hz, 3 H, CH₃), 1.25 (s, 10 H, CH₂), 1.66 (br. 2 H, CH₂), 3.67 (t, ³*J*_{H, H} = 7.5 Hz, 2 H, CH₂), 5.81 (s, 2 H, NH₂), 6.76 (d, ³*J*_{H, H} = 8.7 Hz, 2 H, ArH), 7.64 (d, ³*J*_{H, H} = 8.7 Hz, 2 H, ArH), 7.81 (d, ³*J*_{H, H} = 8.4 Hz, 2 H, ArH), 7.87 (d, ³*J*_{H, H} = 8.4 Hz, 2 H, ArH) ppm; ¹³C NMR (75.47 MHz, (CD₃)₂CO): $\delta = 14.45$, 23.36, 27.26, 27.31, 29.17, 29.89, 32.55, 50.05, 125.85, 128.89, 129.74, 130.71, 131.42, 133.16, 141.10, 155.07 ppm; MS (EI, 80 eV): *m*/*z* = 504.06 [*M*]⁺, 346.05 [*M* – *p*-NH₂C₆H₄SO₂NC₈H₁₇]⁺, 283.15 [*M* – *p*-BrC₆H₄SO₂NC₈H₁₇]⁺, 220.91 [*M* – *p*-NH₂C₆H₄SO₂NC₈H₁₇]⁺, 156.01 [*M* – *p*-BrC₆H₄SO₂NC₈H₁₇]⁺.

Compound **13a**: 2.9 g of 12b were used. Recrystallized from dichloromethane/methanol; yield 3.4 g (68%); m.p. 173-174 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.91$ (t, ${}^{3}J_{\text{H, H}} = 6.9$ Hz, 3 H, CH₃), 1.27 (s, 10 H, CH₂), 1.70 (br. 2H, CH₂), 3.73 (t, ${}^{3}J_{H, H} = 7.6$ Hz, 2 H, CH₂), 7.28 (d, ${}^{3}J_{H, H} = 8.7$ Hz, 2 H, ArH), 7.76 (d, ${}^{3}J_{H, H} = 8.4$ Hz, 2 H, ArH), 7.94 (d, ${}^{3}J_{H, H} = 8.4$ Hz, 2 H, ArH), 8.14 (d, ${}^{3}J_{H, H} = 8.7$ Hz, 2 H, ArH), 8.19 (d, ${}^{3}J_{H, H} = 9.0$ Hz, 4 H, ArH), 8.48 (d, ${}^{3}J_{H, H} = 9.0$ Hz, 4 H, ArH) ppm; ${}^{13}C$ NMR $(75.47 \text{ MHz}, (CD_3)_2 \text{SO}): \delta = 13.90, 22.02, 25.75, 28.30, 28.48, 29.32, 31.11, 49.60,$ 125.15, 128.88, 129.42, 129.66, 130.04, 132.69, 132.75, 137.40, 138.10, 141.38, 142.54, 151.10 ppm; MS (EI, 80 eV): $m/z = 874.02 [M]^+$, 774.90 $[M - C_7H_{15}]^+$, 689.05 [M - p - p - 100] $NO_2C_6H_4SO_2^{\dagger}$, 653.13 $[M - p-BrC_6H_4SO_2^{\dagger}]^+$, 525.99 $[M - p-BrC_6H_4SO_2NC_8H_{17}^{\dagger}]^+$; elemental analysis calcd (%) for C₃₂H₃₃BrN₄O₁₂S₄ (873.79): C 43.99, H 3.81, Br 9.14, N 6.41, S 14.68; found C 43.79, H 4.00, Br 8.89, N 6.30, S 14.74.

Compound **13b**: 2.2 of 12b were used. Recrystallized from g dichloromethane/methanol; yield 3.0 g (84%); m.p. 142-144 °C; ¹H NMR (300 MHz, CDCl₃): $\delta = 0.91$ (t, ${}^{3}J_{H, H} = 6.9$ Hz, 3 H, CH₃), 1.28 (s, 10 H, CH₂), 1.69 (br. 2H, CH₂), 2.52 (s, 6 H, CH₃), 3.70 (t, ${}^{3}J_{H, H} = 7.5$ Hz, 2 H, CH₂), 7.25 (d, ${}^{3}J_{H, H} = 8.7$ Hz, 2 H, ArH), 7.39 (d, ${}^{3}J_{H, H} = 7.5$ Hz, 4 H, ArH), 7.75 (d, ${}^{3}J_{H, H} = 8.4$ Hz, 2 H, ArH), 7.84 (d, ${}^{3}J_{H, H} =$ 7.5 Hz, 4 H, ArH), 7.88 (d, ${}^{3}J_{H, H} = 8.4$ Hz, 2 H, ArH), 8.04 (d, ${}^{3}J_{H, H} = 8.7$ Hz, 2 H, ArH) ppm; 13 C NMR (75.47 MHz, CDCl₃): δ = 14.19, 21.86, 22.70, 26.63, 29.02, 29.20, 29.99, 31.80, 50.03, 128.70, 129.19, 129.35, 129.43, 129.76, 129.94, 132.46, 132.60, 136.15, 138.93, 139.44, 141.22 ppm; MS (EI, 80 eV): $m/z = 810.08 [M]^+$, 658.06 [M - p- $CH_{3}C_{6}H_{4}SO_{2}^{\dagger}$, 591.16 $[M - p-BrC_{6}H_{4}SO_{2}]^{\dagger}$, 464.03 $[M - p-BrC_{6}H_{4}SO_{2}NC_{8}H_{17}]^{\dagger}$; elemental analysis calcd (%) for C₃₄H₃₉BrN₂O₈S₄ (811.85): C 50.30, H 4.84, Br 9.84, N 3.45, S 15.80; found C 50.34, H 4.86, Br 9.93, N 3.43, S 15.96.

Compound 14: Yield 1.1 g (91%); m.p. 79-83 °C; ¹H NMR (300 MHz, CD₃OD): $\delta = 0.93$ (t, ${}^{3}J_{\text{H, H}} = 7.0$ Hz, 3 H, CH₃), 1.27 (s, 10 H, CH₂), 1.62 (br. 2H, CH₂), 3.54 (m, 2 H, CH₂), 6.68 (d, ${}^{3}J_{\text{H, H}} = 8.7$ Hz, 2 H, ArH), 7.28 (d, ${}^{3}J_{\text{H, H}} = 8.4$ Hz, 2 H, ArH), 7.60 (d, ${}^{3}J_{\text{H}}$, H = 8.4 Hz, 2 H, ArH), 7.75 (m, 6 H, ArH) ppm; MS (EI, 80 eV): $m/z = 659.06 [M]^{+}$, 439.16 [M - p-BrC₆H₄SO₂]⁺, 311.01 [M - p- NO₂C₆H₄SO₂NC₈H₁₇]⁺.

Compound 15a: 1 g of **14** was used in the reaction. Recrystallized from dichloromethane/methanol; yield 1.29 g (70%), m.p. 202-204 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 0.90$ (t, ³ $J_{\rm H, H} = 6.9$ Hz, 3 H, CH₃), 1.26 (s, 10 H, CH₂), 1.70 (br. 2H, CH₂), 3.73 (m, 2 H, CH₂), 7.28 (d, ³ $J_{\rm H, H} = 8.7$ Hz, 2 H, ArH), 7.30 (d, ³ $J_{\rm H, H} = 8.7$ Hz, 2 H, ArH), 7.77 (d, ³ $J_{\rm H, H} = 8.4$ Hz, 2 H, ArH), 7.94 (d, ³ $J_{\rm H, H} = 8.4$ Hz, 2 H, ArH), 8.02 (d, ³ $J_{\rm H}$, H = 8.7 Hz, 2 H, ArH), 8.20, (d, ³ $J_{\rm H, H} = 9.0$ Hz, 2 H, ArH), 8.21 (d, ³ $J_{\rm H, H} = 9.0$ Hz, 4 H, ArH), 8.49 (d, ³ $J_{\rm H, H} = 9.0$ Hz, 2 H, ArH), 8.51 (d, ³ $J_{\rm H}$, H = 9.0 Hz, 4 H, ArH) ppm; MS (ESI pos., CH₃OH/CH₂Cl₂): *m*/*z* = 1250.96 [*M*+K]⁺ calcd monoisotopic peak ($^{12}C_{44}^{-1}H_{41}^{-79}Br^{14}N_{6}^{-16}O_{18}^{-32}S_{6}K$) 1250.96; 1234.98 [*M*+Na]⁺ calcd monoisotopic peak ($^{12}C_{44}^{-1}H_{41}^{-79}Br^{14}N_{6}^{-16}O_{18}^{-32}S_{6}K$) 1250.96; 1234.98 [*M*+Na]⁺ calcd monoisotopic peak ($^{12}C_{44}^{-1}H_{41}^{-79}Br^{14}N_{6}^{-16}O_{18}^{-32}S_{6}K$) 1250.96; 1234.98 [*M*+Na]⁺ calcd monoisotopic peak ($^{12}C_{44}^{-1}H_{41}^{-79}Br^{14}N_{6}^{-16}O_{18}^{-32}S_{6}K$) 1250.96; 1234.98 [*M*+Na]⁺ calcd monoisotopic peak ($^{12}C_{44}^{-1}H_{41}^{-79}Br^{14}N_{6}^{-16}O_{18}^{-32}S_{6}K$) 1250.96; 1234.98 [*M*+Na]⁺ calcd monoisotopic peak ($^{12}C_{44}^{-1}H_{41}^{-79}Br^{14}N_{6}^{-16}O_{18}^{-32}S_{6}K$) 1250.96; 1234.98 [*M*+Na]⁺ calcd monoisotopic peak ($^{12}C_{44}^{-1}H_{41}^{-79}Br^{14}N_{6}^{-16}O_{18}^{-32}S_{6}K$) 1250.96; 1234.98 [*M*+Na]⁺ calcd monoisotopic peak ($^{12}C_{44}^{-1}H_{41}^{-79}Br^{14}N_{6}^{-16}O_{18}^{-32}S_{6}K$) 1250.96; 1234.98 [*M*+Na]⁺ calcd monoisotopic peak ($^{12}C_{44}^{-1}H_{41}^{-79}Br^{14}N_{6}^{-16}O_{18}^{-32}S_{6}K$) 1250.96; 1234.98 [*M*+Na]⁺ calcd monoisotopic peak ($^{12}C_{44}^{-1}H_{41}^{-79}Br^{14}N_{6}^{-16}O_{18}^{-32}S_{6}K$) 1234.99; elemental analysis calcd (%) for C₄₄H₄₁BrN₆O₁₈S₆ (1214.12): C 43.

Compound 15b: 0.9 g of 14 was used in the reaction. Recrystallized from dichloromethane/methanol; yield 1.14 g (77%); m.p. 208-211 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 0.90$ (t, ${}^{3}J_{\text{H, H}} = 6.9$ Hz, 3 H, CH₃), 1.27 (s, 10 H, CH₂), 1.70 (br. 2H, CH₂), 2.52 (s, 9 H, CH₃), 3.71 (m, 2 H, CH₂), 7.20 (d, ${}^{3}J_{H, H} = 8.7$ Hz, 2 H, ArH), 7.22 (d, ${}^{3}J_{H, H}$ = 8.7 Hz, 2 H, ArH), 7.37 (d, ${}^{3}J_{H, H}$ = 8.0 Hz, 6 H, ArH), 7.71 (d, ${}^{3}J_{H, H}$ = 8.0 Hz, 2 H, ArH), 7.75 (d, ${}^{3}J_{H, H} = 8.4$ Hz, 2 H, ArH), 7.82 (d, ${}^{3}J_{H, H} = 8.0$ Hz, 4 H, ArH), 7.86 (d, {}^{3}J_{H, H} = 8.0 $_{\rm H} = 8.4$ Hz, 2 H, ArH), 7.91 (d, ${}^{3}J_{\rm H, H} = 8.7$ Hz, 2 H, ArH), 8.03 (d, ${}^{3}J_{\rm H, H} = 8.7$ Hz, 2 H, ArH) ppm; ¹³C NMR (75.47 MHz, CDCl₃): $\delta = 14.20, 21.89, 21.92, 22.72, 26.65, 29.04,$ 29.22, 31.81, 50.08, 128.75, 129.36, 129.53, 129.61, 129.80, 130.01, 130.10, 132.42, 132.58, 132.65, 135.72, 136.15, 138.89, 138.98, 139.88, 140.37, 141.64, 144.38, 145.81, 146.12 ppm. MS (ESI pos., CH₃OH/CH₂Cl₂): $m/z = 1158.05 [M+K]^+$ calcd monoisotopic peak $({}^{12}C_{47}{}^{1}H_{50}{}^{79}Br^{14}N_3{}^{16}O_{12}{}^{32}S_6K)$ 1158.05; 1142.07 $[M+Na]^+$ calcd monoisotopic peak $({}^{12}C_{47}{}^{1}H_{50}{}^{79}Br^{14}N_3{}^{16}O_{12}{}^{32}S_6Na)$ elemental analysis 1142.08; calcd (%)for C₄₇H₅₀BrN₃O₁₂S₆ (1121.21): C 50.35, H 4.49, Br 7.13, N 3.75, S 17.16; found C 50.06, H 4.53, Br 7.30, N 3.69, S 17.30.

Compound 16: M.p. 142-144 °C; ¹H NMR (300 MHz, CD₃OD): $\delta = 0.93$ (t, ³ $J_{\text{H, H}} = 7.0$ Hz, 3 H, CH₃), 1.29 (s, 10 H, CH₂), 1.66 (br. 2H, CH₂), 3.78 (m, 2 H, CH₂), 7.08 (d, ³ $J_{\text{H, H}} = 8.8$ Hz, 4 H, ArH), 7.31 (d, ³ $J_{\text{H, H}} = 8.7$ Hz, 2 H, ArH), 7.67 (d, ³ $J_{\text{H, H}} = 8.4$ Hz, 2 H, ArH), 7.74 (d, ³ $J_{\text{H, H}} = 8.8$ Hz, 4 H, ArH), 7.95 (d, ³ $J_{\text{H, H}} = 8.4$ Hz, 2 H, ArH), 8.01 (d, ³ $J_{\text{H, H}} = 8.7$ Hz, 2 H, ArH) ppm; MS (EI, 80 eV): $m/z = 814.07 [M]^+$.

Compound 17a: 1 g of **16** was used. Recrystallized from dichloromethane/methanol; yield 1.4 g (74%); m.p. 267-269 °C; ¹H NMR (500 MHz, (CD₃)₂SO): $\delta = 0.83$ (t, ³*J*_{H, H} = 7.0 Hz, 3 H, CH₃), 1.17 (s, 10 H, CH₂), 1.62 (br. 2H, CH₂), 3.77 (t, ³*J*_{H, H} = 7.6 Hz, 2 H, CH₂), 7.44 (d, ³*J*_{H, H} = 8.7 Hz, 2 H, ArH), 7.50 (d, ³*J*_{H, H} = 8.7 Hz, 4 H, ArH), 7.70 (d, ³*J*_{H, H} = 8.4 Hz, 2 H, ArH), 7.92 (m, 6 H, ArH), 8.09 (d, ³*J*_{H, H} = 8.7 Hz, 2 H, ArH), 8.17 (d, ³*J*_{H, H} = 9.0 Hz, 8 H, ArH), 8.53 (d, ³*J*_{H, H} = 9.0 Hz, 8 H, ArH) ppm; elemental analysis calcd (%) for C₅₆H₄₉BrN₈O₂₄S₈ (1554.45): C 43.27, H 3.18, Br 5.14, N 7.21, S 16.50; found C 43.10, H 3.35, Br 5.19, N 7.52, S 16.74.

Compound 17b: 0.7 g of **16** was used. Purified by column chromatography ($R_f = 0.39$, silica gel, CH₂Cl₂); yield 0.9 g (72%), m.p. 127-129 °C; ¹H NMR (500 MHz, CDCl₃): $\delta =$ 0.90 (t, ${}^{3}J_{H, H} = 7.0 \text{ Hz}$, 3 H, CH₃), 1.26 (s, 10 H, CH₂), 1.72 (br. 2 H, CH₂), 2.50 (s, 12 H, CH₃), 3.72 (m, 2 H, CH₂), 7.15 (d, ${}^{3}J_{H, H} = 8.8$ Hz, 2 H, ArH), 7.20 (d, ${}^{3}J_{H, H} = 8.8$ Hz, 4 H, ArH), 7.33 (d, ${}^{3}J_{\text{H, H}} = 8.0$ Hz, 8 H, ArH), 7.70 (d, ${}^{3}J_{\text{H, H}} = 8.4$ Hz, 2 H, ArH), 7.77 (d, ${}^{3}J_{\text{H, H}} = 8.7 \text{ Hz}, 4 \text{ H}, \text{ ArH}$), 7.78 (d, ${}^{3}J_{\text{H, H}} = 8.0 \text{ Hz}, 8 \text{ H}, \text{ ArH}$), 7.82 (d, ${}^{3}J_{\text{H, H}} = 8.4 \text{ Hz}, 2 \text{ Hz}$ H, ArH), 8.02 (d, ${}^{3}J_{\text{H, H}} = 8.7$ Hz, 2 H, ArH) ppm; 13 C NMR (75.47 MHz, CDCl₃): $\delta =$ 14.22, 21.91, 22.74, 26.66, 29.05, 29.23, 30.11, 31.81, 50.16, 128.75, 129.49, 129.55, 129.62, 129.68, 129.85, 130.07, 132.40, 132.70, 136.12, 138.53, 139.72, 140.30, 142.05, 145.89 ppm; MS (ESI pos., CH₃OH): $m/z = 1467.18 [M+K]^+$ calcd monoisotopic peak $({}^{12}C_{60}{}^{1}H_{61}{}^{79}Br^{14}N_{4}{}^{16}O_{16}{}^{32}S_{8}K)$ 1467.07; 1451.21 [*M*+Na]⁺ calcd monoisotopic peak $({}^{12}C_{60}{}^{1}H_{61}{}^{79}Br^{14}N_{4}{}^{16}O_{16}{}^{32}S_{8}Na)$ 1451.09; elemental analysis calcd (%)for C₆₀H₆₁BrN₄O₁₆S₈ (1430.57): C 50.37, H 4.30, Br 5.59, N 3.92, S 17.93; found C 50.26, H 4.42, Br 5.60, N 3.86, S 17.83.

Compound 18: 1 g of 13b was used in the reaction. Recrystallized from chloroform/methanol; yield 820 mg (86%), m.p. 173-175 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 0.85$ (t, ${}^{3}J_{H, H} = 7.0$ Hz, 6 H, CH₃), 1.24 (s, 20 H, CH₂), 1.71 (br. 4 H, CH₂), 2.47 (s, 12 H, CH₃), 3.70 (t, ${}^{3}J_{H, H} = 7.5$ Hz, 4 H, CH₂), 7.21 (d, ${}^{3}J_{H, H} = 8.7$ Hz, 4 H, ArH), 7.34 (d, ${}^{3}J_{H, H} = 8.0$ Hz, 8 H, ArH), 7.74 (s, 4 H, ArH), 7.79 (d, ${}^{3}J_{H, H} = 8.0$ Hz, 8 H, ArH), 7.81 (d, ${}^{3}J_{H, H} = 8.7$ Hz, 4 H, ArH), 8.03 (d, ${}^{3}J_{H, H} = 8.5$ Hz, 4 H, ArH), 8.05 (d, ${}^{3}J_{H, H} = 8.5$ _H = 8.5 Hz, 4 H, ArH) ppm; ¹³C NMR (75.47 MHz, CDCl₃): δ = 14.22, 21.91, 22.75, 26.74, 29.13, 29.27, 29.85, 30.20, 31.86, 50.06, 127.82, 128.27, 128.76, 128.97, 129.25, 129.98, 132.49, 136.23, 138.86, 139.39, 139.45, 139.66, 141.45, 145.72 ppm; MS (ESI CH₃OH): m/z1577.30 $[M+K]^{+}$ calcd monoisotopic pos., = peak $({}^{12}C_{74}{}^{1}H_{82}{}^{14}N_{4}{}^{16}O_{16}{}^{32}S_{8}K)$ 1577.31; 1561.33 $[M+Na]^{+}$ calcd monoisotopic peak $({}^{12}C_{74}{}^{1}H_{82}{}^{14}N_{4}{}^{16}O_{16}{}^{32}S_{8}Na)$ 1561.34; elemental analysis calcd (%) for $C_{74}H_{82}N_{4}O_{16}S_{8}$ (1539.98): C 57.71, H 5.37, N 3.64, S 16.66; found C 57.64, H 5.09, N 3.62, S 16.89.

Compound 19: 1 g of **15b** was used in the reaction. Recrystallized from chloroform/methanol; yield 730 mg (76%), m.p. 147-149 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 0.87$ (t, ³ $J_{\text{H, H}} = 7.0$ Hz, 6 H, CH₃), 1.26 (s, 20 H, CH₂), 1.71 (br. 4 H, CH₂), 2.47 (s, 18 H, CH₃), 3.71 (t, ³ $J_{\text{H, H}} = 7.5$ Hz, 4 H, CH₂), 7.20 (d, ³ $J_{\text{H, H}} = 8.7$ Hz, 4 H, ArH), 7.21 (d, ³ $J_{\text{H, H}} = 8.7$ Hz, 4 H, ArH), 7.36 (d, ³ $J_{\text{H, H}} = 8.0$ Hz, 12 H, ArH), 7.73 (d, ³ $J_{\text{H, H}} = 8.7$ Hz, 4 H, ArH), 7.74 (s, 4 H, ArH), 7.80 (d, ³ $J_{\text{H, H}} = 8.0$ Hz, 12 H, ArH), 7.90 (d, ³ $J_{\text{H, H}} = 8.7$ Hz, 4 H, ArH), 8.04 (d, ³ $J_{\text{H, H}} = 8.5$ Hz, 4 H, ArH), 8.06 (d, ³ $J_{\text{H, H}} = 8.5$ Hz, 4 H, ArH) pm; ¹³C NMR (75.47 MHz, CDCl₃): $\delta = 14.21$, 21.90, 22.73, 26.72, 29.09, 29.25, 29.60, 30.14, 31.84, 50.06, 127.83, 128.27, 128.76, 128.99, 129.40, 129.62, 130.02, 130.11, 132.41, 135.75, 136.15, 138.75, 138.90, 139.42, 139.88, 140.39, 141.83, 145.82, 146.03, 146.11 ppm; MS (ESI pos., CH₃OH/CH₂Cl₂): *m*/*z* = 2195.31 [*M*+K]⁺ calcd monoisotopic peak (¹²C₁₀₀¹H₁₀₄¹⁴N₆¹⁶O₂₄³²S₁₂K) 2195.34; 2179.36 [*M*+Na]⁺ calcd monoisotopic peak (¹²C₁₀₀¹H₁₀₄¹⁴N₆¹⁶O₂₄³²S₁₂Na) 2179.36; elemental analysis calcd (%) for C₁₀₀H₁₀₄N₆O₂₄S₁₂ (2158.70): C 55.64, H 4.86, N 3.89, S 17.82; found C 55.78, H 4.85, N 3.87, S 17.95.

Compound 20: 800 mg of 17b were used in the reaction. Purified by column chromatography ($R_f = 0.33$, silica gel, CH₂Cl₂); yield 600 mg (78%), m.p. 177-179 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = 0.87$ (t, ³ $J_{H, H} = 7.0$ Hz, 6 H, CH₃), 1.26 (s, 20 H, CH₂), 1.72 (br. 4 H, CH₂), 2.48 (s, 24 H, CH₃), 3.72 (t, ³ $J_{H, H} = 7.5$ Hz, 4 H, CH₂), 7.19 (d, ³ $J_{H, H} = 8.7$ Hz, 4 H, ArH), 7.22 (d, ³ $J_{H, H} = 8.7$ Hz, 8 H, ArH), 7.36 (d, ³ $J_{H, H} = 8.0$ Hz, 16 H, ArH), 7.77 (s, 4 H, ArH), 7.79 (d, ³ $J_{H, H} = 8.7$ Hz, 8 H, ArH), 7.80 (d, ³ $J_{H, H} = 8.0$ Hz, 16 H, ArH), 7.81 (d, ³ $J_{H, H} = 8.7$ Hz, 4 H, ArH), 8.07 (m, 8 H, ArH) ppm; ¹³C NMR (75.47 MHz, CDCl₃): $\delta = 14.22$, 21.91, 22.74, 26.73, 29.10, 29.26, 29.85, 30.18, 31.85, 127.86, 128.30, 128.76, 129.04, 129.59, 129.70, 132.39, 132.71, 136.13, 138.44, 139.37, 139.47, 139.74, 140.30, 142.25, 145.89 ppm. MS (ESI pos., CH₃OH/CH₂Cl₂): m/z = 2813.93 [M+K]⁺ calcd monoisotopic peak (${}^{12}C_{126}{}^{1}H_{126}{}^{14}N_8{}^{16}O_{32}{}^{32}S_{16}K$) 2813.36; 2797.95 [M+Na]⁺ calcd monoisotopic peak (${}^{12}C_{126}{}^{1}H_{126}{}^{14}N_8{}^{16}O_{32}{}^{32}S_{16}Na$) 2797.39; elemental analysis calcd (%) for C₁₂₆H₁₂₆N₈O₃₂S₁₆ (2777.42): C 54.49, H 4.57, N 4.03, S 18.47; found C 54.61, H 4.70, N 3.81, S 18.27.

Compound 21a: To a stirred solution of 4-methoxybenzylamine (1.05 g, 7.6 mmol) and triethylamine (2mL) in dry dichloromethane (30 mL) a solution of benzene-1,3-disulfonyl

chloride (1 g, 3.6 mml) in dichloromethane (10 mL) was added. The reaction mixture was stirred at room temperature for 2 hs. Then the solvent was removed under reduced pressure and the solid residue was recrystallized from dichloromethane/methanol affording 1.60 g (93%) of colorless crystalline solid. M.p. 158-160 °C; ¹H NMR (300

MHz, CDCl₃): $\delta = 3.77$ (s, 6 H, OCH₃), 4.12 (d, ${}^{3}J_{\text{H, H}} = 6.0$ Hz, 4 H, NCH₂Ar), 5.19 (t, ${}^{3}J_{\text{H, H}} = 6.0$ Hz, 2 H, NH), 6.78 (d, ${}^{3}J_{\text{H, H}} = 8.7$ Hz, 4 H, ArH), 7.11 (d, ${}^{3}J_{\text{H, H}} = 8.7$ Hz, 4 H, ArH), 7.58 (t, ${}^{3}J_{\text{H, H}} = 9.0$ Hz, 1 H, ArH), 7.97 (d, ${}^{3}J_{\text{H, H}} = 9.0$ Hz, 2 H, ArH), 8.28 (d, ${}^{3}J_{\text{H, H}} = 9.0$ Hz, 2 H, ArH) ppm. EI-MS: m/z = 476.11 [M]⁺. C₂₂H₂₄N₂O₆S₂ (476.57): calcd. C 55.45, H 5.08, N 5.88, S 13.46; found C 55.46, H 4.98, N 5.69, S 13.40.

Compound 21: To a vigorously stirred suspension of **21a** (1 g, 2.1 mmol) and Cs_2CO_3 (2 g) in acetonitrile (30 mL) a solution of tosyl chloride (1 g, 5.2 mmol) in acetonitrile (5

mL) was added. The reaction mixture was stirred at room temperature for 2 hs. Then cesium salts were filtered through a paper filter and the solvent was removed under reduced pressure. The viscous residue was triturated with methanol resulting in white powder, which was recrystallized from

methanol/dichloromethane. Yield 1.45 g (88%); m.p. 172-173 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 2.45$ (s, 3 H, CH₃), 3.81 (s, 6 H, OCH₃), 4.89 (s, 4 H, NCH₂Ar), 6.80 (d, ³*J*_H, H = 8.0 Hz, 4 H, ArH), 7.30 (m, 8 H, ArH), 7.49 (t, ³*J*_{H, H} = 8.4 Hz, 1 H, ArH), 7.71 (d, ³*J*_{H, H} = 8.0 Hz, 4 H, ArH), 7.98 (d, ³*J*_{H, H} = 8.4 Hz, 2 H, ArH), 8.14 (s, 1 H, ArH) ppm. C₃₆H₃₆N₂O₁₀S₄ (784.94): calcd. C 55.09, H 4.62, N 3.57, S 16.34; found C 55.06, H 4.54, N 3.66, S 16.16.

Compound 22a: To a vigorously stirred suspension of **21a** (2 g, 4.2 mmol) and Cs_2CO_3 (1.4 g, 4.2 mmol) in acetonitrile (30 mL) a solution of tosyl chloride (0.8 g, 4.2 mmol) in

acetonitrile (5 mL) was added dropwise. The reaction mixture was stirred at room temperature for 2 hs. Then cesium salts were filtered through a paper filter and the solvent was removed under reduced pressure. The viscous residue was subjected to a column chromatography (silica

gel, CH₂Cl₂, $R_f = 0.18$); yield 1.13 g (43%), m.p. 118-120 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 2.45$ (s, 3 H, CH₃), 3.80 (s, 3 H, OCH₃), 3.81 (s, 3 H, OCH₃), 4.11 (d, ³ $J_{H, H} = 6.0$ Hz, 2 H, NCH₂Ar), 4.82 (t, ³ $J_{H, H} = 6.0$ Hz, 1 H, NH), 4.89 (s, 2 H, NCH₂Ar), 6.78 (d, ³ $J_{H, H} = 8.0$ Hz, 2 H, ArH), 6.84 (d, ³ $J_{H, H} = 8.7$ Hz, 2 H, ArH), 7.11 (d, ³ $J_{H, H} = 8.7$ Hz, 2 H, ArH), 7.34 (d, ³ $J_{H, H} = 8.7$ Hz, 2 H, ArH), 7.39 (d, ³ $J_{H, H} = 8.7$ Hz, 2 H, ArH), 7.53 (m, 1 H, ArH), 7.80 (s, 1 H, ArH), 7.85 (d, ³ $J_{H, H} = 8.0$ Hz, 2 H, ArH), 7.94 (d, ³ $J_{H, H} = 9.0$ Hz, 1 H, ArH) ppm. EI-MS: m/z = 630.12 [M]⁺. C₂₉H₃₀N₂O₈S₃ (630.75): calcd. C 55.22, H 4.79, N 4.44, S 15.25; found C 55.16, H 4.54, N 4.65, S 15.17.

Compound 22: To a vigorously stirred suspension of **22a** (1 g, 1.6 mmol) and Cs_2CO_3 (2 g) in acetonitrile (30 mL) a solution of dansyl chloride (1 g, 3.7 mmol) in acetonitrile (5

mL) was added. The reaction mixture was stirred at room temperature for 2 hs. Then cesium salts were filtered through a paper filter and the solvent was removed under reduced pressure. The solid residue was triturated with methanol resulting in a yellow powder, which was recrystallized from methanol/dichloromethane. Yield 1.17 g (85%), m.p. 165-166 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 2.45$ (s, 3 H, CH₃),

2.99 (s, 6 H, N(CH₃)₂), 3.78 (s, 6 H, OCH₃), 4.89 (s, 2 H, NCH₂Ar), 5.11 (s, 2 H, NCH₂Ar), 6.70 (d, ${}^{3}J_{H, H} = 6.0$ Hz, 2 H, ArH), 6.78 (d, ${}^{3}J_{H, H} = 6.0$ Hz, 2 H, ArH), 7.29-8.38 (m, 18 H) ppm. MS (ESI pos., CH₃OH/CH₂Cl₂): m/z = 902.175 [M+K]⁺, 886.201 [M+Na]⁺. C₄₁H₄₁N₃O₁₀S₄ (864.04): calcd. C 56.99, H 4.78, N 4.86, S 14.84; found C 56.74, H 4.86, N 4.84, S 15.06.

Cartesian coordinates of the B3LYP/6-31G(d) optimized structures

Format: ${Atom} {X} {Y} {Z}$

_____ Molecule A _____ ---Begin of file----2.2176454 0.1560670 -3.2647516 Ν -2.6144012 -0.9110180 -3.7288878 0 0 -2.3332476 1.2496946 -3.8143147 0.1492876 С 3.1058199 1.3694177 Η 3.3285020 0.8819805 2.1551951 Η 2.8038185 0.7088376 0.4776946 S 0.4963691 0.0086687 2.1073049 0 -0.2134642 -0.9602238 2.9465817 0 0.6818705 1.4017380 2.5279105 -0.7219429 Ν 1.9752502 1.7462726 Η 2.1869220 -1.3613381 2.5121683 -1.1070830 С -1.4080929 -1.3014963 Η -1.7919852 -2.0057018 -1.7679547 С -1.5496258 0.1208295 -1.9485346 С -1.0896901 1.3143698 -1.3998260 Η -1.2323850 2.2428192 -1.9384825 С -0.4570708 1.2780588 -0.1576507 2.1860457 0.0532846 Η -0.0978975 0.3136843 С -0.3010299 0.4917307 С -0.7759709 -1.1386468 -0.0632019 Η -0.6586825 -2.0736971 0.4734811 С 4.3287541 -0.7087532 1.0582631 Η 5.1660139 -0.0712096 0.7562924 4.6479865 -1.2799499 1.9385790 Η

0.2492877

Molecule B

---End of file---

Η

Begir	n of file			
Ν	-2.4221881	0.1827011	-3.7756156	
Н	-2.9638988	-0.6290409	-4.0416349	
Н	-2.8628398	1.0513546	-4.0484292	
С	2.7342276	0.1305809	0.8325504	
Н	2.9642345	0.9296809	1.5497188	
Н	2.4025044	0.6111145	-0.0943236	
S	0.1403892	0.0397236	1.6124699	
0	-0.5764196	-0.9117646	2.4701384	
0	0.3404511	1.4319587	2.0414672	
N	1.6271220	-0.7214897	1.3018293	
Н	1.8587546	-1.2517310	2.1423768	
С	-1.6075745	-1.0760877	-1.8655646	
Н	-1.9034987	-2.0032290	-2.3505283	
С	-1.8545764	0.1539861	-2.5103832	
С	-1.4676392	1.3453810	-1.8690738	
Н	-1.6541779	2.3006941	-2.3536767	
С	-0.8507641	1.3100724	-0.6240500	

4.1179470 -1.4149631

H	-0.5624409	2.2272875	-0.1218763
С	-0.6094819	0.0828675	-0.0026940
С	-0.9934994	-1.1115093	-0.6231651
H	-0.8154388	-2.0605776	-0.1282234
С	3.9655055	-0.7297902	0.5607806
H	4.7853923	-0.1074802	0.1865388
H	4.3154267	-1.2236637	1.4757367
H	3.7457810	-1.5030245	-0.1819391
End	of file		

Anion C''

_____ ---Begin of file---С 0.4854319 2.8786409 -1.9926354 1.5361750 2.9935220 -1.7428734 Η С -0.3255146 4.0024636 -2.1643280 Η 0.0984874 4.9970897 -2.0523830 Н -2.3059146 4.7314948 -2.6186333 С -1.6788996 3.8547123 -2.4795655 Η -3.2769273 2.4390518 -2.8626504 С -2.2301080 2.5808668 -2.6157466 С -1.4073492 1.4674567 -2.4408311 Η 0.5663717 0.7155313 -2.0162680 С -0.0511279 1.5986178 -2.1369184 S -2.6185694 -2.1120234 -0.1728262 0 -3.3921989 -0.0794324 -3.3376319 0 -1.0494073 -1.0461081 -3.1351211 Ν -2.5500851 -0.5430583 -1.0166807 -3.2951191 -1.2367448 -1.0802953 Η С 3.3280623 0.3488573 2.2805356 Η 3.2146223 0.8222647 3.2705073 Η 2.6011986 0.8663688 1.6167818 S 1.8271301 -1.5841840 3.0674080 -3.0560900 0 1.8633714 3.2324754 0 -0.7796272 1.4111463 4.2545540 3.1219388 -1.0905087 2.3204168 Ν -2.0426709 С -0.7982958 -0.0606929 -2.7779440 Η -1.0002392 -0.8350778 -0.0465632 С -1.5171903 -0.8380259 С -1.2597074 0.1155026 0.9425145 Η -1.8397116 1.0344918 0.9487833 С -0.1289296 -0.2862991 1.9119002 0.5848671 2.7074523 Η -0.0987440 С 0.4416524 -1.3232474 1.8962281 -2.2779007 С 0.1755071 0.9056430 Η -3.2062427 0.7378234 0.9179350 С 4.7358619 0.6298785 1.7481067 Η 1.7095370 4.9335225 1.6819832 0.1762007 Η 5.4865026 2.4056833 0.1903729 Η 4.8618348 0.7513911

---End of file---

Anion C'

---Begin of file---C -2.2886954 3.8279279 -2.3768634 H -1.9076670 4.8405221 -2.2629118

С	-3.6548868	3.5767313	-2.2482137
Н	-4.3416946	4.3920919	-2.0318273
Н	-5.2052784	2.0744453	-2.2974343
С	-4.1402765	2.2727621	-2.3965033
Н	-3.6248299	0.2089091	-2.7871435
С	-3.2628720	1.2255134	-2.6703439
С	-1.8937977	1.4826959	-2.7950818
Н	-0.3392453	2.9519762	-2.7640141
С	-1.4045833	2.7803911	-2.6513015
S	-0.7587360	0.1052334	-3.1491534
0	-1.3144130	-0.5529579	-4.3461573
0	0.5824419	0.7334417	-3.2835301
Ν	-0.9498073	-0.9095860	-1.9082622
С	3.6892410	-1.9136763	2.9191228
Н	4.3213462	-1.1364893	3.3729826
Н	3.4887012	-1.6049941	1.8876223
S	1.3919973	-0.6323283	3.5613177
0	0.3772047	-0.9337983	4.5858465
0	2.2253629	0.5771689	3.7088619
Ν	2.3884230	-2.0310105	3.5927880
Н	2.4822322	-2.2797674	4.5785833
С	-0.7199311	-1.6974071	0.3042466
Н	-1.4355336	-2.4608606	0.0133989
С	-0.3510182	-0.7409419	-0.6946141
С	0.5860499	0.2601113	-0.2953404
Н	0.9177583	0.9899919	-1.0225797
С	1.1003793	0.2923635	0.9914266
Н	1.8075893	1.0650128	1.2776375
С	0.7158492	-0.6651307	1.9418062
С	-0.2058968	-1.6673317	1.5828146
Н	-0.5119511	-2.4066119	2.3173763
С	4.4014000	-3.2648185	2.9262917
Н	5.3611439	-3.1942486	2.4014333
Н	4.6062625	-3.6017819	3.9510057
Н	3.7881348	-4.0264777	2.4347159
End	of file		

Molecule C

Begin	of file		
С	-1.6537999	4.0093995	-2.7856483
Н	-1.0574963	4.9170459	-2.7915008
С	-3.0439595	4.0827891	-2.6912504
Н	-3.5310048	5.0511417	-2.6191598
Н	-4.8970261	2.9769795	-2.6237291
С	-3.8148998	2.9159148	-2.6923657
Н	-3.7859232	0.7585995	-2.7945031
C	-3.1982771	1.6706102	-2.7850379
С	-1.8044022	1.6121416	-2.8662422
Н	0.0562128	2.6860367	-2.9591706
С	-1.0222364	2.7672567	-2.8766078
S	-1.0017692	0.0180965	-3.0374414
0	-1.6890061	-0.7548061	-4.0741903
0	0.4423706	0.2464410	-3.0681587
Ν	-1.4451957	-0.8060340	-1.6076617
Н	-1.8592067	-1.6952987	-1.8723237
С	3.9305476	-1.4414019	2.7908370

H	4.3585635	-0.6506035	3.4206121
H	3.6681213	-0.9861349	1.8297734
S	1.4153541	-0.9009287	3.6464349
0	0.5585706	-1.5822425	4.6232756
0	1.9206020	0.4553280	3.9004580
Ν	2.6886110	-1.9858971	3.3707631
H	2.8383626	-2.4859430	4.2475071
С	-0.7494952	-1.9674295	0.3926240
H	-1.2876524	-2.8447816	0.0423412
С	-0.7190631	-0.8060224	-0.4000995
С	-0.0293122	0.3253963	0.0571621
H	-0.0062816	1.2322080	-0.5342415
С	0.6302457	0.2876674	1.2826831
H	1.1604178	1.1593949	1.6502786
С	0.5958012	-0.8709384	2.0578837
С	-0.1023252	-1.9995027	1.6197148
H	-0.1358164	-2.8930829	2.2339248
С	4.9338680	-2.5709840	2.5748017
H	5.8495770	-2.1785968	2.1201733
H	5.2115970	-3.0434396	3.5250746
H	4.5198420	-3.3418372	1.9175329
End	of file		

Molecule D

Be	egin of file			
С	4.1661008	-3.5624217	0.8932358	
Н	5.1443432	-3.6253329	1.3605757	
С	3.2809332	-4.6406242	0.9689880	
Н	3.5734864	-5.5435654	1.4976974	
Н	1.3416676	-5.4100583	0.4159350	
С	2.0241179	-4.5667194	0.3640548	
Н	0.6805025	-3.3411301	-0.8126790	
С	1.6429441	-3.4116745	-0.3182459	
С	2.5388199	-2.3410322	-0.3765656	
Н	4.4705242	-1.5492871	0.1551463	
С	3.8017215	-2.3988375	0.2167024	
S	2.0451727	-0.8668361	-1.2658161	
0	3.2355718	-0.1762410	-1.7533076	
0	0.9492213	-1.2260906	-2.1634124	
S	2.2300797	1.2038309	0.9706237	
0	1.4060610	1.3905699	2.1624023	
0	3.5681818	0.6258361	1.0480155	
Ν	1.3012496	0.1583152	-0.0645724	
С	-6.3359456	-1.8933993	0.3584856	
Н	-7.2168958	-1.3082947	0.0588013	
Н	-6.2694566	-1.8541317	1.4474854	
S	-4.6836911	0.2471612	0.3794092	
0	-5.1737862	1.2693060	-0.5560062	
0	-5.0489961	0.2849687	1.7980845	
Ν	-5.0825932	-1.3099094	-0.1716451	
Н	-5.0753830	-1.2927414	-1.1921096	
С	-0.8890196	0.8538219	-0.9227185	
Н	-0.3876581	1.3510274	-1.7453813	
С	-0.1315428	0.1792689	0.0402930	
С	-0.7586543	-0.4681383	1.1134151	
Η	-0.1528660	-0.9647193	1.8626941	

С	-2.1455014	-0.4469043	1.2197128
Η	-2.6459345	-0.9283601	2.0528457
С	-2.8921843	0.2152719	0.2422232
С	-2.2792036	0.8722013	-0.8242998
Η	-2.8843167	1.3998544	-1.5532545
С	1.4825946	5.0024765	-0.2022923
Η	0.8015289	5.8022306	0.0734885
С	1.4176627	3.7800431	0.4672469
Η	0.7066126	3.6129164	1.2685328
С	2.3063400	2.7670926	0.0996520
С	3.2567385	2.9443887	-0.9094840
Η	3.9280203	2.1356982	-1.1733421
С	3.3062613	4.1722884	-1.5674283
Η	4.0385927	4.3288256	-2.3539669
С	2.4224385	5.1967145	-1.2164875
Η	2.4693410	6.1510497	-1.7336741
С	-6.4643377	-3.3353247	-0.1248308
Η	-7.3738673	-3.7871696	0.2853827
Η	-6.5322368	-3.3889754	-1.2183695
Η	-5.6033112	-3.9309153	0.1940972
	 C C'7		

---End of file---