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ABSTRACT: New heterometallic In−Fe alkoxides [InFe-
(OtBu)4(PyTFP)2] (1), [InFe2(O

neoPen)9(Py)] (2), and [In-
Fe3(O

neoPen)12] (3) were synthesized and structurally charac-
terized. The arrangement of metal centers in mixed-metal
framework was governed by the In:Fe ratio and the coordination
preferences of Fe(III) and In(III) centers to be in tetrahedral and
octahedral environments, respectively. 3 displayed a star-shaped so-
called “Mitsubishi” motif with the central In atom coordinated with
three tetrahedral {Fe(OneoPen)4}

− anionic units. The deterministic
structural influence of the larger In atom was evident in 1 and 2
which displayed the coordination of neutral coligands to achieve
the desired coordination number. Thermal decomposition studies
of compounds 1−3 under inert conditions with subsequent powder diffraction studies revealed the formation of Fe2O3 and In2O3 in
the case of 3 and 2, whereas 1 intriguingly produced elemental In and Fe. In contrary, the thermal decomposition of 1−3 under
ambient conditions produced a ternary oxide, InFeO3, with additional Fe2O3 present as a secondary phase in a different
stoichiometric ratio predetermined through the In:Fe ratio in 2 and 3. The intimate mixing of different phases in InFeO3/Fe2O3
nanocomposites was confirmed by transmission electron microscopy of solid residues obtained after the decomposition of 1 and 2.
The pure InFeO3 particles demonstrated ferromagnetic anomalies around 170 K as determined by temperature-dependent field-
cooled and zero-field-cooled magnetization experiments. A first-order magnetic transition with an increase in the ZFC measurements
was explained by temperature-induced reduction of the Fe−Fe distance and the corresponding increase in superexchange.

■ INTRODUCTION

Heterometallic alkoxides are intrinsically efficient precursors to
mixed-metal oxides due to preformed heterometallic bridges
connected through the alkoxide oxygen (−M−(O)R−M′−)
which generally allows their conversion to desired oxide
ceramics without lengthy heat treatments since the formation
of solid-state phases is not only driven by Fickian diffusion. The
selective conversion of a large number of metal alkoxides to
ternary ceramics and composites has been demonstrated to
verify the role precursor chemistry plays in the synthesis of phase
pure material.1,2,11−20,3,21−24,4−10 The formation of nanoscaled
composites from molecular sources allows to tailor the material
properties not possible by conventional synthesis methods,
which generally lead to elemental segregation and phase
separation. The sol−gel processing and gas phase depositions
of monometallic metal alkoxides as single-source precursors are
comprehensively studied; however, mixed-metal compositions
are relatively less investigated.4,7−9,11,12,15,25−45 Despite the
potential advantages of chemical processing, the major
constraint in the application of heterometallic alkoxides is
related to their limited synthetic access and dearth of structural
data on metal alkoxide frameworks.

Among binary oxides, ternary ferrites of general formula
MFeO3 (M = In, Y, Eu−Lu) are of fundamental interest because
of their physical and structural properties.46,47 Recently, thin
films of InFeO3 (Eg = 2.5 eV), prepared via pulsed laser
deposition, were considered as photoelectrodes for water-
splitting reactions by visible and ultraviolet light.48 In addition,
the LiNbO3 type of InFeO3 is a room-temperature polar magnet
that shows the functional properties of small tolerance-factor
perovskites and is of fundamental interest because of the canted
G-type antiferromagnetic ordering of Fe3+ moments.49−51 In the
realm of mixed-metal iron−indium oxides, the antiferromagnet
InFe2O4 is isostructural to LuFe2O4, which shows electrical
polarization52 and charge as well as magnetic ordering
phenomena between 230 and 250 K, whereas (In1−xFex)2O3
phases show ferromagnetism at room temperature.53,54 We
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report here the synthesis and characterization of a new series of
mixed metal alkoxide precursors [InFe(OtBu)4(PyTFP)2] (1),
[InFe2(O

neoPen)9(Py)] (2), and [InFe3(O
neoPen)12] (3) as well

as their transformation into InFeO3 for 1 and InFeO3/Fe2O3
composites for 2 and 3.

■ RESULTS AND DISCUSSION

The new series of mixed-metal alkoxides 1−3 were obtained by
in situ alcoholysis of [In{N(SiMe3)2}3] in the presence of
iron(III) tert-butoxide ([Fe(OtBu)3]2) and pyridine for 2 as well
as the chelating anionic ligand HPyTFP in the case of 1 (Figure
1). The molecular structures of 1−3 were confirmed by single-
crystal X-ray diffraction analysis (Figure 2).
The molecular structures of 1−3 show iron in a 4-fold

coordination of oxygen atoms formed by two terminal and two
μ2-bridging alkoxo ligands. Irrespective of the metal ratio (1:1,
1:2, and 1:3), {Fe(OR)4}

− units (R = neoPen (2, 3), tBu (1))
coordinate to the indium center in a bidentate fashion in all three
compounds. [InFe3(O

neoPen)12] (3) with an In:Fe stoichiom-
etry of 1:3 was found to consistently produce the “Mitsubishi”
motif with the central indium atom, coordinated by three
bidentate {Fe(OneoPen)4}

− units. The compounds based on an
In:Fe ratio of 1:1 and 1:2 displayed in 1 and 2, respectively,
highlighted the necessity of the coordination of both neutral or
anionic coligands to form stable frameworks. [In-
Fe2(O

neoPen)9(Py)] 2 displayed a linear arrangement of indium

and iron centers with Fe present in characteristic tetrahedral
coordination. The octahedral coordination preferred by indium
atoms is achieved by a neutral pyridine ligand in [In-
Fe2(O

neoPen)9(Py)] (2) to ensure the preferred octahedral
environment by the larger In(III) (r(Fe3+, high spin) = 65 pm
and r(In3+) = 80 pm).55 Attempts directed to obtain “donor-
free” indium−iron complexes with 1:1 ratio were not successful,
possibly due to the structural preferences observed in 2 and 3.
The incorporation of the anionic ligand HPyTFP, which has
been used for stabilizing a large number of metals through its
bidentate chelation, was found to increase the stability of the
heterometallic framework based on the 1:1 ratio between In and
Fe which resulted in the formation of 1.32,56−63 The chelating
ligand is coordinated to the indium metal center due to the
larger ionic radius of indium.55 However, the use of chelating
ligands in the construction of heterometallic alkoxides
represents a delicate interplay between the driving force for
the formation of mixed metal assemblies and the stabilization of
monometallic species. For example, an increased amount of
HPyTFP supports the formation of homometallic [Fe(OtBu)-
(PyTFP)2], which was not observed in this study.
The suitability of 1−3 in the formation of In−Fe−O ceramics

was evaluated by thermogravimetric studies (Figure 3) for which
the samples were gradually heated to 600 °C under a dry
nitrogen atmosphere. Thermogravimetric measurements of 2
and 3 revealed multistep decomposition in each case that can be

Figure 1. Schematic synthesis of heterometallic alkoxides [InFe(OtBu)4(PyTFP)2] (1), [InFe2(O
neoPen)9(Py)] (2), and [InFe3(O

neoPen)12] (3).

Inorganic Chemistry pubs.acs.org/IC Article

https://dx.doi.org/10.1021/acs.inorgchem.0c03425
Inorg. Chem. 2021, 60, 3719−3728

3720

https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c03425?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c03425?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c03425?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c03425?fig=fig1&ref=pdf
pubs.acs.org/IC?ref=pdf
https://dx.doi.org/10.1021/acs.inorgchem.0c03425?ref=pdf


ascribed to the sequential decomposition of ligands of different

chemical strengths (alkoxide vs alkenolate) present on different

metal centers (In and Fe) to finally produce In2O3/Fe2O3

composites, which were analyzed by powder XRD studies

(Figure 3). The deviation of observed (2: Δm(exp) = 70%; 3:

Δm(exp) = 69%) and calculated mass loss (2:Δm(calc) = 60%;

3: Δm(calc) = 67%) regarding the formation of In2O3/Fe2O3

composite can be attributed to partial hydrolysis of the

Figure 2. Molecular structures of [InFe(OtBu)4(PyTFP)2] (1), [InFe2(O
neoPen)9(Py)] (2), and [InFe3(O

neoPen)12] (3) with different indium iron
ratios as well as the coordination polyhedral of indium and iron; hydrogen atoms are omitted for clarity.

Figure 3.Thermogravimetrymeasurements of 1−3 up to 600 °Cunder a N2 atmosphere (left) and powder XRDof the residue after themeasurements
with literature data for Fe2O3 [33-0664], Fe [06-0696] in blue and In2O3 [74-1990], In [05-0642] in red (right).
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heterometallic alkoxides during the transfer of the samples from
the flasks to the alumina crucibles used in TG/DTA analyses. In
contrast, thermogravimetric decomposition of the heterometal-
lic alkoxide with a 1:1 metal ratio (1) led to the formation of
In(0) and Fe(0) with a mass loss of 58%, which might be due to
the reduction of metal centers by the ligands. The redox activity
of the heteroarylalkenolate ligands was observed for several
metals before, e.g., cobalt and tin.61,64 With regard to
monometallic cobalt precursors [CoII(PyTFP)2(DMAP)]
(DMAP = 4-(dimethylamino)pyridine) and [CoIII(PyTFP)3],
the HPyTFP ligand caused not only the oxidation of the metal
center (CoII to CoIII) but also the reduction of CoIII to CoII

during gas phase deposition to synthesize Co3O4.
In contrast to the chemical composition of the residual solids

obtained upon performing the thermal decomposition under
inert conditions, heating 1−3 in air at 1000 °C for 16 h with a

heating rate of 300 °C/h produced ternary InFeO3 (1), which
was proven by XRDmeasurements (Figure 4). The additional α-
Fe2O3 phase was formed in 2 and 3 due to an excess amount of
iron present in [InFe2(O

neoPen)9(Py)] (2) and [In-
Fe3(O

neoPen)12] (3). In the case of 1, low-intensity peaks were
observed around 23.2°, 23.5°, 16.4°, and 16.5°, which could not
be assigned to any expected phase of iron or indium oxides or
their mixtures. Also, the formation of metal carbides can be ruled
out based on the differential peak analysis with the powder
diffraction files available in the databank.
The existence of crystalline phase as observed in the TEM

data (Figure 5) and the identification of InFeO3 as the crystalline
phase (XRD analysis) suggested the preferential crystallization
of InFeO3 formed upon the decomposition of molecular
precursor. Hence, it can be assumed that because of chemically
preorganized arrangement of the metal centers in 1, its

Figure 4. XRD plots of 1−3 after thermal decomposition at 1000 °C for 16 h with a heating rate of 300 °C/h.

Figure 5.TEM images of 1 after thermal decomposition at 1000 °Cwith EDXmapping regarding indium (cyan), iron (magenta), and oxygen (yellow)
as well as SAED pattern and circular averaged pattern with indexed InFeO3 reflexes (blue for [85-2306]). The intensity profile (yellow) highlights all
diffraction intensity of the circular averaged data.
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decomposition by heat treatment did not lead to segregation
into iron and indium regions that ultimately would lead to the
formation of iron and indium oxide phases. In contrast, only
hexagonal InFeO3 was observed in XRD (Figure 4), EDX, and
SAED measurements (Figure 5), which is a validation of the
hypothesis that the initial chemical configuration present in the
precursor molecule is maintained during the thermal treatment.
TEM characterization of InFeO3/Fe2O3 composites, synthe-

sized by thermal decomposition of 2 and 3 at 1000 °C, showed
agglomerated nanoparticles consisting of both InFeO3 and
Fe2O3 (Figures 6 and 7). A similar phase separation was
observed in the decomposition of [NdAl3(OR)12] which
produced NdAlO3 as the crystalline phase embedded in an
amorphous alumina matrix.5,65 The decomposition product of
precursor 2 revealed a homogeneous distribution of In, Fe, and
O (EDX, Figure 6), indicating the homogeneous formation of
ternary InFeO3 and Fe2O3 phases that was also observed in TEM
images. In addition, the existence of both InFeO3 and Fe2O3 was
verified by the SAED study, represented in Figure 6.

TEM images of the solid material obtained upon the
decomposition of precursor 3 demonstrated different particle
morphologies when compared to the decomposition product of
2 (Figure 7). In some areas (e.g., spot 1) a lower concentration
of indium, but a higher concentration of iron, is present,
representing the cocrystallization of InFeO3 and α-Fe2O3
particles, which was also observed in SAED measurement
(Figure 7, right). Whereas in other spots (e.g., spot 2), a
homogeneous distribution of In, Fe, and O exists, which
indicates no formation of hematite in that area.
Further magnetic and spectroscopic analysis was done for the

decomposition product of 1, which did not show any hematite
impurities in the XRD. The Mössbauer spectrum (Figure 8)
showed characteristic absorption features of InFeO3 with a
strong doublet and additional weak sextet splitting that was
confirmed by fitting parameters (Figure 8, table) that are in line
with values reported for InFeO3.

47,66

X-ray absorption spectroscopy performed at room temper-
ature revealed the electronic structure of the material (Figure 9).

Figure 6.TEM images of 2 after thermal decomposition at 1000 °Cwith EDXmapping regarding indium (cyan), iron (magenta), and oxygen (yellow)
as well as the SAED pattern and circular averaged pattern with indexed InFeO3 (blue for [85-2306]) and Fe2O3 (orange for [33-0664]) reflexes. The
intensity profile (yellow) highlights all diffraction intensity of the circular averaged data.

Figure 7.TEM images of 3 after thermal decomposition at 1000 °Cwith EDXmapping regarding indium (cyan), iron (magenta), and oxygen (yellow)
as well as the SAED pattern and circular averaged pattern with indexed InFeO3 (blue for [85-2306]) and Fe2O3 (orange for [33-0664]) reflexes. The
intensity profile (yellow) highlights all diffraction intensity of the circular averaged data.
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The Fe-L3,2 edge showed the distinct pre-edge feature at 707.1
eV of approximately half the intensity of the white line found for
iron in the trivalent oxidation state in iron oxide (Figure 9,
left).68,69 Besides hematite, which was already excluded by XRD

measurement, the existence of the spinel phase could not be
observed in the O−K edge, which showed no characteristic
absorption features for hematite or magnetite in the pre-edge
region compared to the reference spectrum (Figure 9, right). In

Figure 8.Mössbauer spectroscopy of decomposed 1 (black: sample; red: fit; green: doublet; blue: sextet) with values for the isomer shift, quadrupole
splitting, and width for the sample as well as literature references.47,67

Figure 9. X-ray absorption spectrum of 1 (left: Fe-L2/3 edge; right: O−K edge) with hematite and magnetite reference spectra.

Figure 10. Field-cooled (FC, blue and red line) and zero-field-cooled (ZFC) measurements (a) and magnetic hysteresis curves (b) at different
temperatures of the InFeO3 powder, obtained from 1.
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contrast, the sample revealed absorptionmaxima at 530.8, 531.1,
534.6, and 538.1 eV, which are also known for hexagonal
manganates (RMnO3, with R = Y, Ln). These findings are in line
with Mössbauer spectroscopy and XRD. However, the signals
are broadened in contrast to spectra from a single-crystalline
hexagonal manganate.70,71

Temperature- (Figure 10a) and field-dependent (Figure 10b)
magnetization measurements at lower temperatures of phase
pure InFeO3 powders revealed Curie-like paramagnetism and a
signal around 160 K (Figure 10, left, red box) in the zero-field-
cooled (ZFC) curve with a drop-in magnetization during field-
cooled (FC)measurements, that indicates a first-order magnetic
phase transition. During cooling, the decrease in magnetization
was seen at 175 K, while the very same phase transition was
observed at 200 K during heating.
Field-dependent magnetization measurements at temper-

atures ranging from 300 to 2 K revealed a paramagnetic behavior
at room temperature and the appearance of a hysteresis below
150 K, which was also described for epitaxially grown InFeO3 on
ZnO(001) via pulsed laser deposition.72 Even though the
magnetic anomaly in ZFC measurements was not observed for
those films, the trend of spontaneous magnetization in ZFC
measurements was reported for polycrystalline hexagonal
ferrites and manganates with the same symmetry.73 In these
reports, an increased exchange interaction between the Fe3+

atoms in the hexagonal is stated to cause the observed signal in
the ZFC curve.74

■ CONCLUSION

Successful synthesis of heterometallic alkoxides ([InFe-
(OtBu)4(PyTFP)2] (1), [InFe2(O

neoPen)9(Py)] (2), and
[InFe3(O

neoPen)12] (3)) allowed a molecular access to single-
phase InFeO3 (1) and InFeO3/Fe2O3 nanocomposites (2 and
3). The cation stoichiometry in the precursors was deterministic
for the formation of a ternary single-phase material and oxide−
oxide nanocomposite originating from single molecule sources.
Thermal gravimetric studies in conjunction with powder X-ray
diffractometry and electron microscopy provided insight into
the formation of chemically homogeneous precursors through
the preorganized atomic arrangements and the thermodynami-

cally induced phase formation (or separation) observed upon
heat treatment. The preferred crystallization of the perovskite
phase in the case of InFeO3/Fe2O3 nanocomposites is probably
due to the miscibility limits and favorable enthalpy of formation.
Magnetic measurements of the material revealed a first-order
magnetic transition with an increase of the magnetization in the
ZFC measurements that was explained by temperature-induced
reduction of the Fe−Fe distance and the corresponding increase
in superexchange. Recently, band gap calculations (Eg = 2.5 eV)
and photoelectrochemical characterizations of InFeO3 empha-
sized its water splitting potential by visible and ultraviolet light.48

■ EXPERIMENTAL SECTION
General Procedure. All syntheses were performed under an inert

nitrogen gas atmosphere by using a Stock glass vacuum line. If not
mentioned, all reagents were used without further purification. Used
solvents were freshly distilled and dried over sodium. Suitable crystals
for X-ray diffraction analysis were obtained by recrystallization in
toluene at−18 °C for compounds 1−3. The crystallographic data for all
compounds are summarized in Table 1. The data collection for X-ray
structure elucidation was performed on a STOE IPDS II diffractometer
(Mo Kα = 0.71073 Å, 50 kV, 30 mA), and the used programs for
structure solution as well as the refinement are SIR-92,75 SHELXS,76

SHELXL,76 and WinGX.77,78 Elemental analysis was performed by
using a HEKAtech CHNS Euro EA 3000 analyzer. TG analysis was
performed by a TG/DSC1 (Mettler Toledo GmbH, Germany)
apparatus using nitrogen gas and a heating rate of 10 °C/min. Powder
X-ray diffraction was measured on a STOE diffractometer with STADI
MP system and eitherMo Kα (λ = 0.71 Å) or Cu Kα radiation (λ = 1.54
Å). TEM characterizations with selected-area electron diffraction
(SAED) as well as energy-dispersive X-ray (EDX) studies of particle
dispersions (toluene/isopropyl alcohol 1:1) were performed on a JEOL
JEM-2200FS transmission electron microscope operated at an
acceleration voltage of 200 kV. SAED analyses were performed using
the software CrysTBox 1.10.79 Mössbauer spectroscopy was measured
on a Wissel spectrometer at ambient temperature. XAS measurements
were performed at the soft X-ray undulator beamline UE56/1-SGM at
the synchrotron facility BESSY II in Berlin.

Precursor Synthesis. [In{N(SiMe3)2}3]. Bis(trimethylsilyl)amine
(15.51 mL, 75 mmol) was cooled in liquid nitrogen and covered with a
layer of n-BuLi (2.5M heptane, 30.00 mL, 75mmol). After thawing, the
mixture was slowly added to a solution of InCl3 (5.50 g, 25mmol) in dry
THF (50 mL). The suspension was stirred for 3 h. Afterward, the

Table 1. Summary of Crystallographic and Refinement Data for Compounds 1−3

1 2 3

formula InFeC32H46O6N2F6 InFe2C50H104O9N InFe3C60H132O12

M [g mol−1] 839.4 1089.9 1328.1
crystal system triclinic monoclinic monoclinic
space group P1̅ P21/c P2/n
a [Å] 8.90(8) 11.89(2) 11.35(7)
b [Å] 13.82(1) 42.86(6) 17.33(8)
c [Å] 16.44(1) 38.10(7) 19.96(1)
α [deg] 88.1(6) 90 90
β [deg] 81.6(6) 95.70(2) 102.18(5)
γ [deg] 77.0(6) 90 90
V [Å3] 1949.0(3) 19315.2(6) 3838.2(4)
Z 2 12 2
reflections collected 18866 32388 43190
independent reflections 8213 19944 6776
observed reflections 3771 1783 3495
goodness of fit 0.979 1.004 0.879
R(int) 0.111 0.093 0.200
R1, wR2 [I > 2σ(I)] 0.089, 0.245 0.086, 0.231 0.061, 0.132
R1, wR2 (all data) 0.172, 0.285 0.121, 0.258 0.132, 0.163
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solvent was removed under reduced pressure, and [Li{N(SiMe3)}] was
sublimated at 90 °C in vacuo (10−2 mbar) followed by sublimation of
the crude product at 110 °C in vacuo (10−2 mbar). The resulting
colorless solid was used for the next syntheses without further analysis;
yield 12.24 g (22 mmol, 88%). Molar mass: 563.89 g mol−1.
[Fe(OtBu)3]2. FeCl3 (6.23 g, 38 mmol) in toluene (50 mL) was

cooled in liquid nitrogen, and THF (150 mL) was slowly added. The
mixture was stirring while thawing. Afterward, a solution of KOtBu
(12.8 g, 114 mmol) in THF (150 mL) was added. The mixture was
stirred for 24 h at 80 °C and after that cooled to room temperature. The
solvent was removed under reduced pressure, and the crude product
was sublimated at 90 °C in vacuo (10−2 mbar), resulting in a green
solid; yield 14.22 g (26 mmol, 68%). The product was used for the next
step without further analysis. Molar mass: 550.38 g mol−1; calcd: C
52.4, H 9.8; found: C 51.2, H 9.9.
[InFe(OtBu)4(PyTFP)2] (1). [Fe(O

tBu)3]2 (0.35 g, 0.63 mmol) was
solved in toluene (6 mL), and 1 equiv of PyTFP (0.12 g, 0.63 mmol)
was added. Afterward, a solution of [In{N(SiMe3)2}3] (0.71 g, 1.27
mmol) in toluene (6 mL) was added to the reaction mixture. The
solution was stirred at 100 °C overnight, and yellow crystals were
obtained at −18 °C, which revealed the formation of 1; yield 0.32 g
(0.38 mmol, 61%). C32H46FeInN2O6 (839.4 g mol−1): calcd: C 45.8, H
5.5, N 3.3; found: C 46.9, H 6.4, N 3.5.
[InFe2(O

neoPen)9(Py)] (2). For the preparation of [In-
Fe2(O

neoPen)9(Py)], [In{N(SiMe3)2}3] (0.38 g, 0.64 mmol) in toluene
(4 mL) was added to a solution of [Fe(OtBu)3]2 (0.33 g, 0.60 mmol) in
toluene (6 mL). Afterward, pyridine (4 mL) and neopentanol (10 mL)
were added. The orange solution was stirred overnight at 60 °C, and
yellow crystals were obtained at−18 °C; yield 0.55 g (0.51mmol, 79%).
C50H104Fe2InNO9 (1089.9 gmol−1): calcd: C 55.1, H 9.6, N 1.3; found:
C 53.7, H 9.9, N 1.0.
[InFe3(O

neoPen)12] (3). [InFe3(O
neoPen)12] was synthesized by

adding [In{N(SiMe3)2}3] (0.12 g, 0.21 mmol) in toluene (4 mL) to
a solution of [Fe(OtBu)3]2 (0.17 g, 0.31 mmol) in toluene (6 mL),
followed by the addition of neopentanol (10 mL). The mixture was
stirred for 24 h at 60 °C, and yellow crystals were obtained at −18 °C;
yield 0.23 g (0.17 mmol, 83%). InFe3C60H120O12 (1328.1 g mol−1):
calcd: C 54.3, H 10.0; found: C 55.6, H 10.2.
Material Synthesis. For material synthesis 100 mg of hetero-

metallic indium iron precursors 1−3 was prepared under inert
conditions and transferred in sealed flasks. The thermal decompositions
of the green (1) and yellow (2 and 3) solids were performed in air at
1000 °C (16 h) with a heating rate of 300 °C/h.
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Ferroelectricity from Iron Valence Ordering in the Charge-Frustrated
System LuFe2O4. Nature 2005, 436, 1136−1138.
(53) Oka, K.; Azuma, M.; Hayashi, N.; Muranaka, S.; Narumi, Y.;
Kindo, K.; Ayukawa, S.; Kato,M.; Koike, Y.; Shimakawa, Y.; Takano,M.
Charge and Magnetic Orderings in the Triangular-Lattice Antiferro-
magnet InFe2O4. J. Phys. Soc. Jpn. 2008, 77, 064803.
(54) Akaiwa, K.; Kaneko, K.; Fujita, S.; Chikoidze, E.; Dumont, Y.
Room Temperature Ferromagnetism in Conducting α-(In1‑XFex)2O3

Alloy Films. Appl. Phys. Lett. 2015, 106, 1−5.
(55) Shannon, R. D.; Vincent, H.; Kjekshus, A.; Rakke, T.; Allen, G.
C.; Warren, K. D. Chemical Bonding in Solids; Springer-Verlag: Berlin,
1974.
(56) Appel, L.; Fiz, R.; Tyrra, W.; Mathur, S. New Iso-Propoxides,
Tert-Butoxides and Neo-Pentoxides of Niobium(v): Synthesis,
Structure, Characterization and Stabilization by Trifluoroheteroar-
ylalkenolates and Pyridine Ligands. Dalt. Trans. 2012, 41, 1981−1990.
(57) Leduc, J.; Ravithas, R.; Rathgeber, L.; Mathur, S. New Air-Stable
Uranium(IV) Complexes with Enhanced Volatility.New J. Chem. 2015,
39, 7571−7574.
(58) Brückmann, L.; Tyrra, W.; Stucky, S.; Mathur, S. Novel Air-
Stable and Volatile Bis(Pyridylalkenolato)Palladium(II) and
-Platinum(II) Derivatives. Inorg. Chem. 2012, 51, 536−542.
(59) Heidemann, T.; Mathur, S. Air-Stable and Volatile Bis-
(Pyridylalkenolato)Germanium(II), -Tin(II), and -Lead(II) Com-
plexes. Eur. J. Inorg. Chem. 2014, 2014, 506−510.
(60) Fornalczyk, G.; Valldor, M.; Mathur, S. Monomeric Iron
Heteroarylalkenolates: Structural Design Concepts and Investigations
on Their Application in Chemical Vapor Deposition.Cryst. Growth Des.
2014, 14, 1811−1818.
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