
Stereoselective Total Synthesis of (±)-Alstoscholarisine E
Michael D. Wood, Daniel W. Klosowski, and Stephen F. Martin*

Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States

*S Supporting Information

ABSTRACT: The shortest synthesis to date of (±)-alstoscho-
larisine E was accomplished in seven linear steps from
commercially available reagents and 15.2% overall yield. The
approach features a tandem vinylogous Mannich reaction and
hetero-Diels−Alder reaction to access the core. A novel tactic to
induce diastereoselective reduction of the cyclic vinyl ether was
discovered, and a mild procedure to form the bridged aminal
ring by partial reduction of the lactam ring via iridium-catalyzed
hydrosilylation was developed.

Progressive neuronal decline is a salient feature of
Alzheimer’s disease and other neurodegenerative disor-

ders that lead to severe cognitive impairments and create
significant healthcare challenges.1 Despite extensive efforts,
there are no effective treatments that prevent or reverse the
neuronal deficits associated with these debilitating diseases.2

One approach that has recently attracted significant attention
as a potential disease-altering option is neural stem cell (NSC)
therapy.3 Because small molecules can be exploited to effect
chemical control over stem cell proliferation, they have
emerged as useful tools to develop new therapies to treat
neurodegenerative processes.4 It is therefore notable that the
indole alkaloids alstoscholarisines A−E (1−5), which were
isolated in 2014, promote NSC proliferation (Figure 1).5

Alstoscholarisine A (1) and E (5), respectively, are among the
most potent members of the family, and 1 was found to
promote neuronal fate commitment. Although they differ in
substitution at C-16 and stereochemistry at C-19, 1−5
comprise a similar pentacyclic framework containing a cis-
fused oxahydroisoquinolone ring bearing five contiguous
stereocenters. The tetrahydropyran ring is bridged by an
indole moiety that forms a cyclic aminal with the piperidine
ring to create the novel caged structure.
The structural complexity of the alstoscholarisines coupled

with their interesting biological activity quickly captured the
attention of the synthetic community.6 Two racemic and two

enantioselective syntheses of alstoscholarisine A,7 as well as the
synthesis of racemic B−D,7c,8 have been achieved; the racemic
and enantioselective syntheses of alstoscholarisine E were only
recently disclosed.7c,d Despite these successes, the reported
syntheses of 1−5 require 12−17 chemical steps9 in their
longest linear sequence (LLS) and proceed with modest
overall yields that range from 1.0 to 4.6%. We now report a
concise and high-yielding synthesis of (±)-alstoscholarisine E
(5).
Our convergent approach to (±)-alstoscholarisine E (5) is

outlined in retrosynthetic format in Scheme 1. We envisaged
that the advanced intermediate 6 would be transformed into 5
via stereoselective reduction of the enol ether group in 6,
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Figure 1. Structures of alstoscholarisines A−E.

Scheme 1. Retrosynthetic Analysis of Alstoscholarisine E
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followed by partial reduction of the lactam moiety and
spontaneous transannular cyclization to form the bridging
aminal moiety in 5. Access to 6 would be achieved by cross-
coupling of a suitable 3-methylindole derivative 7 with the cis-
oxahydroisoquinolone 8 (X = Br, I) using a Negishi, Suzuki, or
Stille reaction. The synthesis of cis-oxahydroisoquinolones
similar to 8 via intramolecular hetero-Diels−Alder reactions of
heterodienes related to 9 is well precedented in our
laboratories,10 and we have implemented this cycloaddition
in the syntheses of several natural products.11 The vinylogous
Mannich reaction,12 a construction we pioneered and
showcased in the syntheses of numerous alkaloids,13 might
be exploited to generate 9 in a single step via reaction of
trimethylsilyloxydiene 10 with the N-acyliminium ion
generated from N-acylation of hexahydrotriazine 11 with
crotonyl chloride (12) and subsequent fragmentation.
The synthesis of alstoscholarisine E commenced with

converting the hexahydrotriazine 11 directly to 9 (Scheme
2). The N-acylation of triazines such as 11 is known to

generate transient N-acyliminium ions that can be captured by
a variety of nucleophiles, including enol ethers,14 but we are
not aware of any application of such a process to a vinylogous
Mannich reaction using π-nucleophiles such as 10. Gratify-
ingly, we discovered that stirring a solution of hexahydro-
triazine 11 and crotonyl chloride in MeCN at 80 °C, followed
by reaction with diene 10 (ca. 9:1 E/Z) at 0 °C in the presence
of TMS-OTf provided the desired ene−aldehyde 9 in 62%
yield together with 10% of the regioisomer 13. Consistent with
our earlier studies,10,11b,c heating 9 in mesitylene under reflux
afforded a readily separable mixture (5.4:1) of the cis- and
trans-fused cycloadducts 14 and 15 in 77% combined
yield.11a,15 Treating 14 with N-iodosuccinimide (NIS) in the
presence of a catalytic amount of AgNO3 (10 mol %),
according to a slight modification of a protocol reported by
Vankar16 furnished the vinyl iodide 16 in 83% yield.
The stage was then set for the cross-coupling of 16 with a

suitable derivative of 3-methylindole to give 18. After
numerous attempted Negishi couplings failed, we turned to a
Suzuki reaction using the known indole boronic acid 17.17 A
variety of catalysts were screened to couple 16 and 17, but

competitive protodeborylation, a well-known side reaction of
2-heterocyclic boronic acids in Suzuki reactions, resulted in
low yields.18 We turned to the SPhos Pd G2 precataylst,19

which is reported to promote Suzuki couplings of challenging
substrates and was contemporaneously shown to induce the
cross-coupling of 17 with a similar oxahydroisoquinolone.7d

Although initial efforts gave 18 in only 18% yield because of
persistent protodeborylation of 17, we eventually discovered
that increasing the catalyst loading from 5 to 10 mol % and
using 4 equiv of 17 afforded 18 in 79% yield on a gram scale.
Our original plan to induce the stereoselective reduction of

18 in one step to provide 21 anticipated an ionic reduction
initiated by diastereoselective, axial protonation of the enol
ether moiety in 18 from the less hindered face followed by
hydride reduction of the intermediate carbocation (Scheme 3).

Somewhat surprisingly, treatment of 18 with Et3SiH in the
presence of CF3CO2H furnished a mixture (1:1, 60% yield) of
the bicyclic acetal 19 and a diastereomer that has been
tentatively identified as 20; none of the desired product 21 was
obtained. Armed with this unexpected result, we queried
whether we might optimize this cyclization to selectively
furnish 19. After some experimentation, we discovered that
treating 18 with 0.4 M HCl in dioxane delivered 19 as a single
diastereomer in 77% yield. The structure of 19 was confirmed
by X-ray crystallography.
The bicyclic acetal moiety in 19 proved to be remarkably

resistant toward reductive opening under acidic conditions.
Hydride reduction in the presence of a variety of Lewis acids
that were known to promote reductive opening of bicyclic
lactone acetals returned only starting material.20 Eventually, we
discovered that use of EtAlCl2 in the presence of Et3SiH led to
smooth reductive opening and decarboxylation to deliver 21 in
97% yield. The diastereoselectivity achieved in this two-step
reduction sequence is notable given that catalytic hydro-
genation of an indolyl oxahydroisoquinolone similar to 18 in
Liao’s synthesis of (−)-alstoscholarisine E gave a mixture
(2.2:1) of diastereomers.7d

All that remained to complete the synthesis of (±)-al-
stoscholarisine E was partial reduction of the lactam moiety of
21 followed by cyclization to form the bridging aminal ring in
accord with similar cyclizations in the prior art.7c,d,8 However,

Scheme 2. Synthesis of the Indolyl Oxahydroisoquinolone

Scheme 3. Stereoselective Reduction of Enol Ether Moiety
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only trace quantities of 5 were observed in early attempts using
known conditions to achieve this transformation (Table 1,

entries 1−3). We then turned to hydrosilylation of the amide
as an alternative tactic.21 In the event, attempted reduction of
21 using Ph2SiH2 under conditions developed by Buchwald
produced a mixture containing only small quantities of 5
(entry 4).22 Alternatively, reaction of 21 with 1,1,3,3-
tetramethyldisiloxane (TMDS) and Ti(Oi-Pr)4 at 50 °C
according to a modification of a protocol reported by Lemaire
produced 5 in 56% yield (entry 5).23 When 21 was treated
with TMDS in the presence of a catalytic amount of Vaska’s
complex (2 mol %) in PhMe following conditions reported by
Nagashima,24 5 was isolated in similar yields, but some
overreduction to the amine was observed (entry 6). However,
simply switching the solvent for the reduction to CH2Cl2
delivered (±)-alstoscholarisine E (5), which exhibited spectral
properties consistent with those previously reported,5,7c,d in
77% yield (entry 7). Although partial reduction of amides
using Vaska’s complex and TMDS followed by nucleophilic
trapping of the intermediate iminium ion is known,25 to our
knowledge this represents the first example in which the
intermediate is captured by a nitrogen nucleophile to generate
an aminal. Hence, it is a useful extension of existing
methodology for reductive refunctionalization of tertiary
lactams and amides.
In summary, we completed a concise and efficient synthesis

of (±)-alstoscholarisine E (5) that requires only seven
chemical steps (LLS) from commercially available reagents
and proceeds in 15.2% overall yield. The synthesis features a
novel variant of the vinylogous Mannich reaction and an
intramolecular hetero-Diels−Alder reaction to quickly access
the cis-oxahydroisoquinolone core, a subunit common to a
large number of indole alkaloids. Another key step in the
synthesis is the unprecedented and highly diastereoselective
reduction of the vinyl ether moiety in 18 by a stereoselective
acid-catalyzed cyclization and Lewis acid promoted hydride
reduction sequence. A new and mild procedure to form cyclic
aminals was also developed and applied to complete the
synthesis of (±)-alstoscholarisine E (5) by a route that is

considerably shorter and more efficient than previous
syntheses of members of the alstoscholarisine family of natural
products.
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