Accepted Manuscript

Design, synthesis and biological evaluation of substituted (+)-SG-1 derivatives as novel anti-HIV agents

Xiaoyu Liu, Panpan Chen, Xiaoyu Li, Mingyu Ba, Xiaozhen Jiao, Ying Guo, Ping Xie

PII:	S0960-894X(18)30361-5
DOI:	https://doi.org/10.1016/j.bmcl.2018.04.049
Reference:	BMCL 25796
To appear in:	Bioorganic & Medicinal Chemistry Letters
Received Date:	28 February 2018
Revised Date:	13 April 2018
Accepted Date:	18 April 2018

Please cite this article as: Liu, X., Chen, P., Li, X., Ba, M., Jiao, X., Guo, Y., Xie, P., Design, synthesis and biological evaluation of substituted (+)-SG-1 derivatives as novel anti-HIV agents, *Bioorganic & Medicinal Chemistry Letters* (2018), doi: https://doi.org/10.1016/j.bmcl.2018.04.049

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Bioorganic & Medicinal Chemistry Letters journal homepage: www.elsevier.com

Design, synthesis and biological evaluation of substituted (+)-SG-1 derivatives as novel anti-HIV agents

Xiaoyu Liu^{a,1}, Panpan Chen^{b,1}, Xiaoyu Li^a, Mingyu Ba^b, Xiaozhen Jiao^{a,*}, Ying Guo^{b,*}, and Ping Xie^a

^a State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, People's Republic of China

^b State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China

ARTICLE INFO

Article history: Received Revised Accepted Available online

Keywords: HIV NNRTIS SG-1 Structure-activity relationship NNRTI-resistant ABSTRACT

SG-1 was previously identified as a potent Non-nucleoside reverse transcriptase inhibitors (NNRTI) which works through inhibition of reverse transcriptase (RT) RNA-dependent DNA polymerase activity via a direct binding event. To further investigate the relationship between its structure and activity, four series of novel analogues were designed and synthesized with 12 of them inhibiting HIV-1 replication with IC₅₀s in the range 0.09 to 6.71 μ M. Compound **4b**, **4c**, **4f**, **2** and **6b** were further tested on two NNRTI-resistant HIV-1 strains and one NNRTI-resistant superbug. The result showed that RT- E138K/M184V mutant virus conferred 4.7 to 9.1-fold resistance to **4c**, **4f**, **2** and **6b**, but only showed slight resistance to **4b** (2-fold) which was better than SG-1.

2009 Elsevier Ltd. All rights reserved.

CCE

^{*} Corresponding author. Xiaozhen Jiao, Tel.: +86 10 63165241; fax: +86 10 63017757; e-mail: jiaoxz@imm.ac.cn

Ying Guo, Tel/Fax: +86 10 6316 1716; e-mail: yingguo6@imm.ac.cn,

¹Authors Xiaoyu Liu, Panpan Chen contributed equally.

Human immunodeficiency virus type 1 (HIV-1) is the etiologic agent of acquired immunodeficiency syndrome (AIDS) currently more than 35 and there are million individuals worldwide living with HIV-1.¹ Reverse transcriptase (RT) of HIV-1 is an important target for anti-HIV drug discovery. Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are non-competitive inhibitors of RT's and serve as pivotal components of highly active antiviral therapies (HAART).² The first-generation of NNRTIs, nevirapine (NVP) and efavirenz (EFV) were approved in the late 20th century. After more than 20 years of continuous clinical use, the incidence of NNRTI-resistant mutations observed from clinical isolates obtained from patients suffering with HIV-1.3 Moreover, some major NNRTI-resistant viruses, such as RT-K103N and RT-Y188L, showed strong cross-resistance between NVP and EFV.⁴ To combat these NVP/EFV-resistant viruses, second generation NNRTIs such as Etravirine (ETR) and Rilpivirine (RPV) were developed. These diarylpyrimidine containing (DAPY) NNRTIs are not only potent to wild type RT, but also show higher genetic barrier to the first-generation-NNRTI-resistance mutations since both are able to bind RT in multiple conformations.⁵ However, it was later found that RT-E138K and M184V mutations emerged in patients when treated with Tenofovir (TDF)/Emtricitabine (FTC)/ Rilpivirine. HIV-1 carrying RT-E138K/M184V mutations are known to be resistant to both NNRTIs (RPV and ETR) and NRTIs (FTC and 3TC). Furthermore, it was reported that when HIV RT contained E138K/M184V/I, the virus exhibited a higher replication capacity compared to the wild type virus.⁶ Since this 'super' mutant HIV-1 occurred in patients treated with the second generation of NNRTIs, the discovery and evaluation of novel NNRTIs discovery is still of critical importance.

Traditionally natural products (NP) have played an important role in drug discovery and have proven to be vital source of numerous drug leads. Many classes of natural products have been shown to exhibit anti-HIV activity such as alkaloids, chromans, flavonoids, lignins, triterpenes and coumarins.^{7,8} Recently, we reported on the discovery of SG-1, a cyclolignan semisynthesized from a lignin isolated from *Machilus robusta*, as a potent NNRTI with submicromolar concentration inhibitory activity against RT polymerase.⁹

Fig.1. The structures of SG-1, (+)-isogalbulin (2) and (+)-galbulin (3)

In our previous report, we synthesized the natural products (+)-isogalbulin (2) and (+)-galbulin (3) (Fig. 1).¹⁰ Considering the structure similarity of the (+)-isogalbulin (2), (+)-galbulin (3) and SG-1, we initially tested their activity against HIV-1. The results showed that (+)-isogalbulin (2) had good inhibitory activities against HIV-1 with an IC₅₀ value (using VSV-G/HIV-1 infection assay) of 1.07 μ M, while (+)-galbulin (3) showed no anti-HIV activity at 10 μ M, and this data illuminated some clear SAR trends. The 5'-OMe group in aromatic ring B and the absolute configuration at C7' and C8' may be important for the activity. Based on this hypothesis result, we designed and synthesized four series of novel analogues (4, 5, 6, 7) to further explore this interested and potentially useful structure-activity relationship (SAR) (Fig. 2).

Fig.2. The structures of compound 1, 4, 5, 6 and 7

The synthetic strategies to access analogues **4** are described in Scheme 1-4. The target compound **4a** was synthesized using 4-(3, 4-dimethoxyphenyl) butanoic acid **8** as the starting material (Scheme 2). **8** was converted to the Weinreb amide **9** using EDCI as coupling agent in excellent yield.¹¹ Nucleophilic addition of the Weinreb amide **9** followed by reduction gave the alcohol **12**. Cyclization of **12** with HF-pyridine produced **4a**.

Scheme 1. Synthesis of compound **4a.** Reagents and conditions: (a) EDCI, HOBT, N, O-Dimethylhydroxylamine hydrochloride, 4-Methylmorpholine, CH₂Cl₂, 74%; (b) *n*-BuLi, THF, -78°C, 55%; (c) NaBH₄, MeOH, rt, 87%; (d) HF-pyridine, CH₃CN, rt, 60%.

The target compounds **4b** and **4c** were prepared through a different synthetic strategy (Scheme 2). Compound **4b** was prepared from 4-(3,4-dimethoxyphenyl) butanoic acid **8** which could be easily transformed to **13a** (Scheme 2). An asymmetric alkylation reaction of compound **13a** produced compound **14a**. Removal of the chiral auxiliary under hydrolysis condition followed by coupling and nucleophilic addition afforded compound **17a** which can subsequently be converted to **4b** by reduction and cyclization. The steric hindrance effect of the adjacent methyl group probably resulted in the high anti stereoselectivity of **4b**.¹² Following the same procedure as for the synthesis of **4b**, compound **4c** was synthesized using (R)-4-benzyl-2-oxazolidinone as auxiliary.

Scheme 2. Synthesis of compounds 4b and 4c. Reagents and conditions: (a) Pivaloyl chloride, Et₃N, LiCl, THF, -78 °C to rt, for 13a: 83%, for 13b: 77%; (b) NaHMDS, MeI, THF, -78 °C, 1h, for 14a: 90%, for 14b: 71%; (c) LiOH·H₂O, H₂O₂, THF, 0 °C to rt, for 15a: 63%, for 15b: 79%; (d) DIPEA, HATU, HOBT, N,O-Dimethylhydroxylamine hydrochloride, DMF, for 16a: 82%, for 16b: 72%; (e) *n*-BuLi, THF, -78 °C, for 17a: 73%, for 17b: 73%; (f) NaBH₄, MeOH, rt, for 18a: 73%, for 18b: 74%; (g) HF-pyridine, CH₃CN, rt, for 4b:71%, d.r. > 19:1, for 4c: 78%, d.r. > 19:1, diastereomeric ratio of 4b and 4c were evaluated by ¹H NMR analysis.

Compounds 4d and 4e were obtained using the same method as reported for the synthesis of (+)-galbulin 3 (Scheme 3) and target compound 4f was synthesized following the synthetic route for (+)-Isogalbuline 2 (Scheme 4).

Scheme 3, Synthesis of compounds 4d and 4e. Reagents and conditions: (a) *n*-BuLi, THF, -78° C, for 22a: 75%, for 22b: 72%; (b) HF-pyridine, CH₃CN, rt, for 4d: 75%, d.r. > 19:1, for 4e: 80%, d.r. > 19:1, diastereometic ratio of 4d and 4e were evaluated by ¹H NMR analysis.

Scheme 4. Synthesis of compound 4f.

With analogues **4** in hand, we next turned our attention onto the preparation of analogues **5**. The target compounds **5a** and **5b** were synthesized from known compound **24**.¹⁰ Nucleophilic addition reaction of **24** with substituted bromobenzene, followed by cyclization gave the compounds **5a** and **5b** (Scheme 5).

Scheme 5. Synthesis of compound 5a and 5b. Reagents and conditions: (a) *n*-BuLi, THF, 53%; 71%; (b) HF-pyridine, CH₃CN, rt, for 5a: 72%, d.r. > 19:1, for 5b: 75%, d.r. > 19:1, diastereomeric ratio of 5a and 5b were evaluated by ¹H NMR analysis.

Next, we embarked on the synthesis of analogues 6. The synthetic strategies to access analogues 6 are described in Scheme 6-7. The target compound 6a was prepared from the starting material 27 (Scheme 6). After the preparation of corresponding acyl chloride 28, and subsequent condensation reaction, amide 29 was produced in high yield. An Ullmann reaction¹³ of 29 with CuI produced compound 30. Finally, reduction of 30 furnished compound 6a.

Scheme 6. Synthesis of compound 6a. Reagents and conditions: (a) SOCl₂, reflux, 6 h, 90%; (b) 3,4,5-trimethoxyaniline, Et₃N, CH₂Cl₂, 0°C to rt, 81%; (c) CuI, K₂CO₃, DMF, reflux, 4h, 64%; (d) BF₃·Et₂O, BH₃·Me₂S, THF, 65%.

Compounds **6b-6d** were also prepared from **27** using a new synthetic strategy (Scheme 7). Grignard reaction of **31** with methyl, ethyl, or propylmagnesium bromide gave compounds **32b**, **32c**, and **32d**. A reductive amination, followed by a Buchwald-Hartwig cross-coupling reaction produced **6b**, **6c** and **6d** in moderate yield.^{14,15}

Scheme 7. Synthesis of compounds **6b-6d**. Reagents and conditions: (a) DIPEA, HATU, HOBT, N, O-Dimethylhydroxylamine hydrochloride, DMF, 90%; (b) R_3MgBr , THF, 0°C, for **32b**: 60%; for **32c**: 55%; for **32d**: 55%; (c)

3,4,5-trimethoxyaniline, sodium triacetoxyborohydride, acetic acid, CH_2Cl_2 , for **33b**: 50%; for **33c**: 40%; for **33d**: 35%; (d) $Pd(PPh_3)_4$, K_2CO_3 , toluene, for **6b**: 82%; for **6c**: 78%; for **6d**: 82%.

Compounds **7a** and **7b** were synthesized from Gallic acid trimethyl ether **34** (Scheme 8). Acyl chloride **35**, obtained from compound **34**, was converted to compound **36** through a Friedel–Craft reaction. Treatment of **36** with hydroxylamine hydrochloride or methoxyamine hydrochloride gave the compounds (Z, E)-**7a** and (Z, E)-**7b**.

Scheme 8. Synthesis of compounds 7a and 7b. Reagents and conditions: (a) SOCl₂, reflux, 6h, 92%; (b) AlCl₃, CH₂Cl₂, 41%; (c) RONH₂.HCl, AcONa, MeOH, for 7a: 60%; for 7b: 58%.

To evaluate the anti-HIV activity of the SG-1 derivatives, all the synthesized compounds, including the two described natural products and compound **37** (an intermediate of Gantacurium

Chloride, commercially known as (\pm) -Cryptostyline III), were tested using vesicular stomatitis virus glycoprotein (VSV-G)/HIV-1 infection assay with Nevirapine as a positive control. As indicated in Table 1, 4b showed the most potent inhibitory activity against HIV-1 (IC₅₀ 0.09μ M) with compounds **2**, **4f**, **6b**, **6c** and **5b** also showing impressive submicromolar IC_{50} values against HIV-1. Compounds 4a, 4c, 6a, 6d, and 5a however showed much less inhibitory activity, with IC₅₀ values in the micromolar range. All other analogues tested exhibited no obvious activities when tested up to a 10 µM concentration. This data illustrates some clear SAR trends: (i) the methyl group at C-8 is not necessary for activity (1 versus 4b); (ii) The S configurations at C8' and C7' are essential for inhibition of HIVactivity (2 versus 3; 4b versus 4c); (iii) The 5'-OMe group in aromatic ring B improved HIV inhibitory activity (2, 3 versus 1; 5a versus 5b), however, the 3-OMe group in ring A decreases the observed activity against HIV (4f versus 1); (iv) The "C" cycle can tolerate major change, with inhibition maintained when either a C atom at 7'-position was substituted by N atom or reducing the size of the ring itself, (4 (Series I) versus 5 (Series II); 5 (Series II) versus 6 (Series III)). Finally, we observed a concurrent reduction in activity when the C ring is completely removed (4 (Series I), 5 (Series II), 6 (Series III) versus 7 (Series IV)).

Table 1.	
Antiviral activities of $(+)$ -SG-1(1) and its derivative	tives against wild-type HIV-1. ^a

Comp.	R ¹	$\frac{R^2}{R^2}$	R ³	R ⁴	R ⁵	R ⁶	R	Configuration of 7'	IC ₅₀ (µM)	95% confidence intervals (µM)
1	Н	(S)-CH ₃	(S)-CH ₃	OMe	OMe	OMe		S	0.16	0.11-0.24
2	Н	(S)-CH ₃	(S)-CH ₃	OMe	OMe	Н		S	0.86	0.47-1.53
3	Н	(S)-CH ₃	(R)-CH ₃	OMe	OMe	Н		R	>10	-
4a	Н	Н	н	OMe	OMe	OMe		(±)	6.71	Wide
4b	Н	Н	(S)-CH ₃	OMe	OMe	OMe		S	0.09	0.04-0.18
4c	н	Н	(R)-CH ₃	OMe	OMe	OMe		R	1.02	0.58-1.82
4d	н	(S)-CH ₃	(R)-CH ₃	OMe	OMe	OMe		R	>10	-
4e	Н	(S)-CH ₃	(R)-CH ₃	-OCH ₂ -	-OCH ₂ -	Н		R	>10	-
4f	OMe	(S)-CH ₃	(S)-CH ₃	OMe	OMe	OMe		S	0.69	0.50-0.92
5a						Н		S	4.42	Wide
5b						OMe		S	0.34	Wide
6a			Н					(±)	4.96	Wide
6b			Me					(±)	0.94	0.56-1.55
6с			Et					(±)	0.72	Wide
6d			Pr					(±)	1.28	Wide
30			=0						>10	-
7a							OH		>10	-
7b							OMe		>10	-
36									>10	-
37									>10	-
Nevirapine									0.013	0.008-0.018

^a There was no cytotoxicity observed for all tested compounds at the final concentration of 10 µM.

Since the approval of Zidovudine (AZT) in 1987, 26 HIV drugs are currently used in the clinic. Combination antiretroviral (ARV) therapy is the standard treatment for HIV infection. However, emergence of resistance to this ARV regimen poses a significant challenge to the successful treatment of HIV. WHO reported that HIV resistance to ARV drugs was identified in 95% of people with HIV in developing countries.¹⁸ As the efficacy of active compounds to resistant virus is an important parameter, we tested the effects of compounds **4b**, **4c**, **4f**, **2**, **6b** and SG-1 on three representative NNRTI-resistant HIV strains which carry mutations in RT as K103N, Y181C, and E138K/M184V.

HIV-1 carries RT-K103N, the most common NNRTIresistance mutation, among 138,560 clinical isolates with an 8.36% of isolates containing this RT-K103N mutation.¹⁹ K103 is located distal to the RT active site and is found on the loop connecting β 5 and β 6 in the RT p66 subunit located at the entrance of NVP and EFV binding pockets. As a non-polymorphic mutation, RT-K103N reduces the efficacy of first generation NNRTI by up to 100 fold. As shown in Table 2, the activities of the 5 tested compounds and SG-1 against HIV-RT-K103N were similar to those observed for wild type HIV-1, while this mutant HIV-1 reduced NVP susceptibility by 70-fold.

HIV-1 RT Y181C is the second most common mutation. It causes virus resistance to NVP (more than 50-fold), EFV (2-fold), ETR (5-fold), and RPV (3-fold).²⁰ We therefore tested compounds **4b**, **4c**, **4f**, **2**, **6b** on HIV-RT-Y181C replication; and none of the compounds tested exhibited any inhibitory activity up to a concentration of 10 μ M (Table 2). This indicated that Y181 is a critical residue for SG-1 derivatives' interaction with RT and plays a crucial role in blocking its binding.

As previously mentioned, HIV-1 RT containing E138K/M184V routinely lead to therapeutic failure in patients treated with RPV, FTC, and TDF. Furthermore, RT-E138K/M184V also has higher processivity than the wild type RT, which results in the mutant virus having a higher replication capacity.²¹ We therefore tested compounds **4b**, **4c**, **4f**, **2** and **6b** on HIV-RT-E138K/M184V replication which showed that this mutant virus conferred 4.7 to 9.1-fold resistance to **4c**, **4f**, **2** and **6b**, but only exhibited slight resistance to **4b** (2-fold) which was better than SG-1(8.6-fold).

Table 2

Inhibitory effects of SG-1 (1), 4b, 4c, 4f, 2, 6b and the references NVP and 3TC on wild-type and NNRTI-resistant HIV-1 replication.

Comp.	HIV-1 wt	HIV-1RT-K103N				HIV-1RT-Y18	HIV-1RT-Y181C		HIV-1RT-E138K, M184V	
	IC ₅₀ (μΝΙ)	IC ₅₀ (µM)	95% confidence intervals (µM)	Folds	IC ₅₀ (µM)	95% confidence intervals (μM)	Folds	$IC_{50}(\mu M)$	95% confidence intervals (μM)	Folds
1	0.16	0.18	0.13-0.27	1.1	10.8	Wide	67.5	1.38	0.65-7.26	8.6
4b	0.09	0.15	0.08-0.26	1.7	> 10	-	>111	0.18	0.11-0.28	2.0
4c	1.02	1.73	1.25-2.53	1.7	> 10	-	>9.8	7.13	Wide	7.0
4f	0.69	0.76	0.62-0.93	1.1	> 10	-	>14.5	5.91	5.28-6.57	8.6
2	0.86	1.38	0.73-2.93	1.6	> 10	-	>11.6	4.02	Wide	4.7
6b	0.94	1.40	0.82-2.64	1.5	> 10	-	>10.6	8.53	Wide	9.1
NVP	0.013	0.91	0.81-1.02	70	2.86	1.08-6.50	220	0.022	0.015-0.032	1.7
3TC	0.51	ND	ND	-	ND	-	-	>10	-	>19.6

In summary, a series of potent HIV-1 reverse transcriptase inhibitors were designed and synthesized. Compound 4b showed potent inhibitory activity against HIV-1 with an IC₅₀ of 0.09 μ M. In addition, five compounds 2, 4c, 4f, 6b, 6c and 5b also showed impressive submicromolar IC₅₀ values against HIV-1. These results have established preliminary SAR trends and the activities of the 5 tested compounds and SG-1 against HIV-RT-K103N were similar to those observed for wild type HIV-1, while this mutant HIV-1 reduced NVP susceptibility by 70fold. Furthermore, this mutant virus (HIV-RT-E138K/M184V) conferred 4.7 to 9.1-fold resistance to 4c, 4f, 2 and 6b, but only slightly resistance to 4b (2-fold) which was better than SG-1.

Acknowledgments

This work was financially supported by the National Natural Basic Research Program of China (Nos. 81473256, 81273561), the CAMS Innovation Fund for Medical Sciences (No. 2016-I2M-1-014 and No. 2016-I2M-3-009), the Beijing Key Laboratory of New Drug Mechanisms and Pharmacological

Evaluation Study (No. BZ0150), the National Science and Technology Major Project (No. 2015ZX09102-023-004), and the Science and Technology Program of Beijing (No. Z151100000115008).

References and notes

- http://www.who.int/mediacentre/factsheets/fs360/en/; Accessed 18 January 2018.
- Zhang Z, Hamatake R, Hong Z. Antivir Chem Chemother. 2004; 15: 121-134.
- https://hivdb.stanford.edu/pages/phenoSummary/Pheno.NNRTI.F ull.html/; Accessed 18 January 2018.
- 4. Lai MT, Munshi V, Lu M, et al. Viruses. 2016; 8: 263.
- 5. Usach I, Melis V, Peris JE. J Int AIDS Soc. 2013; 16: 1-14.
- 6. Hu Z, Kuritzkes DR. Journal of virology. 2011; 85: 11309-11314.
- Cos P, Maes L, Vlietinck A, et al. *Planta Med.* 2008; 74: 1323-1337
- 8. Lee J, Huh MS, Kim YC, et al. *Antiviral Research*. 2010; 85: 425-428.
- 9. Guo J, Ba M, Yang Y, et al. J Asian Nat Prod Res.
- https://doi.org/10.1080/10286020.2017.1417266.
 10. Li X, JiaoX, Liu X, et al. *Tetrahedron Letters*. 2014; 55: 6324-6327.
- 11. Goff RD, Thorson JS. J. Med. Chem. 2010; 53:8129-8139.

- 12. a) Jiao XZ, Jiang YJ, Feng WH, et al. Chin. J. Synth. Chem. 2007; 15: 34-37. b) Chattopadhyay SK, Rao KV. Tetrahedron. 1987; 43: 669-678. c) Eklund P, Sillanpää R, Sjöholm R. J. Chem. Soc., Perkin Trans. 1. 2002; 0; 1906-1910.
- Hunt JA, Kallashi F, Ruzek RD, et al. Bioorg Med Chem Lett. 13. 2003; 13: 467-470.
- 14. Kyasa S, Fisher TJ, Dussault PH. Synthesis. 2011; 21: 3475-3481.
- 15. Aigret BM, Jacobs J, Meervelt LV, et al. Synlett. 2013; 24: 1097-1100.
- Ma X, Li L, Zhu T, et al. J Nat Prod. 2013; 76: 2298-2306. 16.
- Accepter

Highlights

• A series of potent HIV-1 reverse transcriptase

inhibitors were synthesized.

• Compound **4b** showed potent inhibitory activity against HIV-1(IC₅₀ 0.09 µM).

• These results in the paper have established

preliminary SAR trends.

Accepter • RT- E138K/M184V mutant virus conferred 2-fold resistance to **4b** (better than SG-1).

Graphical Abstract

