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ABSTRACT: A highly enantioselective Cu(II)-catalyzed borylative reaction of β-trifluoromethyl β,β-disubstituted enones 
was developed, which provide a facile access to a variety of 
chiral alkylboronic esters with a quaternary stereocenter 
including both trifluoromethyl and boron group. Mean-
while, CF3-contained tertiary alcohol derivatives were 
obtained in high yield with the maintained ee value by way 
of one pot methodology. The reactions proceed smoothly 
under mild reaction conditions and providing expedient access to con-
struct chiral alkylboronic esters in well functional group toleranced, good yields, diversity conversion and highly 
enantioselectivities. The appropriate SDE test via achiral chromatography illustrated that the results present here were 
reliable.                                                                                                           
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Organoboron derivatives are of great importance in or-
ganic synthesis, not only for their special characteristics 
and biological activities,1 but also for their use as key rea-
gents with broad utility in the field of organic synthesis.2 
Therefore, enantioselective hydroboration,3 diboration,4 
proto-boryl,5 rearrangements,6 reductions,2e cross-
coupling2f-g and conjugate additions7 of unsaturated com-
pounds have been extensively studied. However, the 
construction of a CF3 and boron substituted stereocenter 
still poses considerable challenge, due to low stablity of 
the product and potential B-F elimination (Scheme 1a).8, 9 
In 2009, the group of Braun reported the first example of 
Rh-catalyzed hyroboration of 3,3,3-trifluoroprop-1-ene, 
giving low yield (4-11%) of CF3 containing alkylborons 
(Scheme 1b),8a After that, Molander and co-workers 
reported an alternative method with the use of diazo-
trifluoroethane and organoboronte (Scheme 1c).8b 
However, the pinacol boronates are susceptible to 
oxidation during the separation process, in order to solve 
this problem, the authors converted them into more 
stable potassium trifluoroborates product. Then, Yu’ 
group developed the first asymmetric synthesis of 
fluorinated organoboron in 17-60% yield with 52-94% ees 
(Scheme 1d).8c In general, the construction of chiral 
quaternary carbon stereocenter is much more challenging 
than that of tertiary carbon stereocenter.10 During the 
course of our development of diverse transformations of 
β-CF3-β,β-disubstituted enones.11 we envisaged that the 

construction of organoboron compounds with a 
trifuloromethylated chiral  
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Scheme 1. Methods for the construction of trifluoro-
methylated organoboron compounds  

quaternary carbon stereocenter might be achieved by the 
asymmetric boron conjugate addition. Herein, we disclose 
the first highly enantioselective Cu-catalyzed borylative 
reaction of β-trifluoromethyl β,β-disubstituted 
enones/esters.  

Initially, we conducted the reaction of B2(pin)2 with β-
trifluoromethyl β,β-disubstituted enone 1a in the pres-
ence of Cu(CH3CN)4PF6 and commercial available ligands 
(See SI and table 1). Fortunately, chiral adduct 3a could be 
obtained in 92% ee by the employment of (S,S)-iPr-
FOXAP as the ligand (Table 1, entry 1). We then investi-
gated a series of copper, such as Cu(CH3CN)4BF4, 
Cu(CH3CN)4ClO4, Cu(OTf)2, Cu(OAc)2, Cu(NO3)2･3H2O 
(Table 1, entries 2-6). It was found that Cu(CH3CN)4BF4, 
Cu(OAc)2 and Cu(NO3)2･3H2O could also deliver high 
yields with 97-98% ee. Finally, we choose Cu(NO3)2･3H2O 
as the metal catalyst considering the low price. Solvents 
such as MTBE, Et2O and toluene did not give better re-
sults (Table 1, entries 7-9). Runing the reaction at lower 
temperature (0 oC) does not improve the enantioselectivi-
ty of the reaction (Table 1, entry 10). Overall, the reaction 
displayed the highest enantioselectivity  (98% ee) in THF 
at 25 oC by employing Cu(NO3)2･3H2O/(S,S)-iPr-FOXAP as 
catlyst (Table 1, entry 6). 

Table 1. Optimization of Reaction Conditionsa 

 
Entry [Cu] Sol. Temp.  (oC) Ee (%)[b] 

1 Cu(CH3CN)4PF6 THF 25 92 

2 Cu(CH3CN)4BF4 THF 25 97 

3 Cu(CH3CN)4ClO4 THF 25 88 

4 Cu(OTf)2 THF 25 89 

5 Cu(OAc)2 THF 25 97 

6 Cu(NO3)2･3H2O THF 25 98 

7 Cu(NO3)2･3H2O MTBE 25 97 

8 Cu(NO3)2･3H2O Et2O 25 94 

9 Cu(NO3)2･3H2O Toluene 25 92 

10 Cu(NO3)2･3H2O THF 0 97 

 
a Unless otherwise noted, all reactions were carried out with 0.1 
mmol of 1, 0.15 mmol of 2, 5 mol% of catalyst ([Cu]/L = 1:1.2) in 1.0 
mL solvent at 25 oC for 12 h with 100% conversion. b The ee of 3a 

determined by HPLC analysis.  

With the optimized reaction conditions in hand, we 

next investigated the scope of β-trifluoromethyl β,β-
disubstituted enones 1 (Scheme 2). A wide variety of 
electron-donating and withdrawing groups were tolerated 
at para-position of phenyl ring, such as -Cl, -Br, -F, -Me, -
OMe, -SMe, -Ph, -CF3, -CO2Me, -SO2Me and -CN, deliver-
ing the desired products 3a-3k in 68-98% yields with 92-
98% ees. The reactions also worked well for those enones 
bearing ortho-, meta-substituted phenyl group and simple 
phenyl group (3l-3q). Gratifyingly, other aryl 
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31 2
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c The ees of 3 resulting from corresponding alcohol 4 or 7. d 2.0 equiv 
H2O was added. 

Scheme 2. Substrate Scope Exploration 

enones such as 1-naphthyl (3r) and 2-naphthyl (3s) and 
heterocyclic aryl enones, such as furyl, thienyl and ben-
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zothienyl are compatible, delivering the corresponding 
organoboron products 3t-3v in high yields with 90-99% 

ees. Next, we examined the effect of different β-
substituted group on the alkene moiety. In addition to 
methyl, enones with different alkyl or functionalized alkyl 

substituents at β-position could also give nice results (3w-
3aa). Remarkably, compared with the aryl enones, the 
alkyl substituted enones reacted with B2(pin)2 could aslo 
afford the corresponding adducts 3ab-3af in 74-93% 

yields with 90-99% ees. Unfortunately, the β-aryl, β-CF3-
enone gave a defluorinated product12 in low yield rather 
than the desired adduct. The formation of the defluori-

nated product 9 is presumably attributed to β-fluoride 
elimination of an in situ generated unstable trifluoroethyl 
anion.13 The CF3 group could be well extended to CHF2 
and the corresponding product 3ag was obtained in 97% 

yield with 92% ee. The asymmetric boration of β,β-

disubstituted α,β-unsaturated ester is especially more 
challenging compared to enone, because of the relatively 
low reactivity and poor enantioselectivity.14 To estimate 
the reactivity, we set up a competing experiment in which 
a 1:1 mixture of enone (1a) and ester (1ah) with one equiv-
alent of B2pin2 under optimized reaction conditions (de-
tails in Figure S1). As expected, the enone reacted more 
than 3 times faster than the ester. Fortunately, even the 
relative low reactivity, the desired addition product 3ah 
was obtained in 89% yield with 94% ee (eq 1).  

 

Further investigations revealed that the fluorine sub-
stituent of the methyl group in enones had a crucial influ-
ence on the reactivity (Table 2). There was no reactivity 
when CH3-substituted or CCl3-substituted alkenes were 
used (Table 2, entries 1 and 2). The further extension of 

the enone to β-ester enone, only hydrogenation product 
3’ was observed in 96% yield (Table 2, entry 3). When 
fluorinated substrates were used, the corresponding bo-
ron products 3af and 3a were obtained in 97 and 98% 
yields with 92% and 98% ees respectively (Table 2, entries 
4 and 5).  

 

Entry R Product Yield (%) Ee (%)[b] 

1 CH3 3 NR - 

2 CCl3 3 NR - 

3 CO2Me 3’ 96 - 

4 CHF2 3af 97 92 

5 CF3 3a 98 98 

Table 2.  The fluoride effect on the reactivity 

It should note that optically active tertiary alcohols 
could be easily obtained with highly enantioselectivity via 
a ‘one pot’ sequential asymmetric boration and oxidation 
strategy (Scheme 3). As shown in Scheme 3, a series of 
chiral β-hydroxy ketone derivatives 4a-4o, can be 
afforded in good yield with 84-99% ee values by treat-
ment with NaH2PO4 and H2O2 after the boration. The 
absolute configuration of this class of compounds refers 
to the corresponding literature.15 To ensure that the re-
sults obtained are more believable, we conducted an 
appropriate SDE16 (self-disproportionation of enantio-
mers) test via achiral chromatography (details in Table 
S2). Fortunately, the data presented here is reliable be-
cause of column chromatography does not change the ee 
value of the product. 

 

Scheme 3. Synthesis of chiral alcohols 
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Scheme 4. Gram-Scale Experiment and Transfor-
mations of 3a 

A gram-scale of 3a was obtained in 83% yield with 98% 
ee with the use of only 2 mol% catalyst (Scheme 4). Syn-
thetic transformations of 3a were then carried out. Be-
sides the oxidation reaction to tertiary alcohol showed in 
Scheme 4, the elimination of B and F was observed during 
the reduction with NaBH4, furnishing the corresponding 
chiral homoallyl alcohol 5 with the slightly lower ee. Chi-
ral oxirane derivative 6 containing two consecutive stere-
ocenters was obtained by treatment with NaClO at room 
temperature but unfortunately with only 24% ee. The 
condensation with TsNHNH2 in MeOH for 12 h produced 
the hydrazones 7a-7b smoothly without loss of the chirali-
ty information. Treatment of 3a with aqueous KHF2 could 
deliver the corresponding potassium trifluoroborate 8 in 
80% yield.  

Finally, the turnover frequency (TOF) of the asymmet-
ric boration was confirmed to be very high. Borylation 
product 3a was obtained in 98% yield with 98% ee at rt 
for less than 1 min in the presence of Cu(NO3)2･3H2O (5 
mol%), iPr-POXAP (6 mol%). Estimated the TOF of the 
reaction between 1200-72,000 h-1, and the highest value 
ever reported in an asymmetric boron conjugate addition 
reaction was 17,600 h-1 (Scheme 5).17 

 

Scheme 5. Turnover Frequency Test 

In summary, we have developed the first highly 
enantioselective copper-catalyzed boration of β-
fluoromethyl β,β-disubstituted enones and esters under 
mild conditions. This mild and general protocol provides 
a rapid access to a variety of chiral alkylboronic esters 
with a trifluoromethylated quaternary stereocenter. 
Meanwhile, a series of CF3-contained tertiary alcohol 
derivatives with the maintained ee value via a one-pot two 
step strategy. The salient features of the method include 
good functional group tolerance, good yields, diverse 
synthetic transformation, high enantioselectivities, 

inexpensive catalyst and mild conditions. Further studies 
including synthetic applications of its diversity 
transformations are underway. 
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Chiral N-Heterocyclic Carbenes. J. Am. Chem. Soc. 2012, 134, 
8277-8285. 
(8) (a) Braun, T.; Salomon Dr., M. A.; Dipl.-Chem., K. A.; Dipl.-

Chem., M. T.; Hinze, S. C-F Activation at Rhodium Boryl Com-
plexes: Formation of 2-Fluoroalkyl-1,3,2-Dioxaborolanes by Cata-
lytic Functionalization of Hexafluoropropene. Angew. Chem. Int. 

Ed. 2009, 48, 1818-1822. (b) Argintaru, O. A.; Ryu, D.; Aron, I.; 

Molander, G. A. Synthesis and Applications of α-
Trifluoromethylated Alkylboron Compounds. Angew. Chem., Int. 
Ed. 2013, 52, 13656-13660. (c) Jiang, Q.; Guo, T.; Yu, Z. Copper-
Catalyzed Asymmetric Borylation: Construction of a Stereogenic 
Carbon Center Bearing Both CF3 and Organoboron Functional 
Groups. J. Org. Chem. 2017, 82, 1951-1960. (d) Gao, X.; Xiao, Y.-L.; 
Wan, X.; Zhang, X. Copper-Catalyzed Highly Stereoselective 
Trifluoromethylation and Difluoroalkylation of Secondary Pro-
pargyl Sulfonates. Angew.Chem. Int. Ed. 2018, 57, 3187-3191. 
(9) (a) Huheey, J. E.; Keiter, E. A.; Keiter, R. L.; Inorganic Chem-

istry, Harper Collins College Publishers, New York, 1993. (b) 

Uneyama, K.; Katagiri, T.; Amii, H. α-Trifluoromethylated Car-
banion Synthons. Acc. Chem. Res. 2008, 41, 817-829.  
(10) For synthesis of enantiomerically enriched compounds 

bearing a B-substituted quaternary carbon stereogenic center, 
see: (a) Chen, I.-H.; Yin, L.; Itano, W.; Kanai, M.; Shibasaki, M. 
Catalytic Asymmetric Synthesis of Chiral Tertiary Organobo-
ronic Esters through Conjugate Boration of β-Substituted Cyclic 
Enones. J. Am. Chem. Soc. 2009, 131, 11664-11665. (b) O’Brien, J. 
M.; Lee, K.-s.; Hoveyda, A. H. Enantioselective Synthesis of Bo-
ron-Substituted Quaternary Carbons by NHC-Cu-Catalyzed 
Boronate Conjugate Additions to Unsaturated Carboxylic Esters, 
Ketones, or Thioesters. J. Am. Chem. Soc. 2010, 132, 10630-10633. 

(c) Feng, X.; Yun, J. Conjugate Boration of β,β-Disubstituted 
Unsaturated Esters: Asymmetric Synthesis of Functionalized 
Chiral Tertiary Organoboronic Esters. Chem. Eur. J. 2010, 16, 
13609-13612. (d) Kobayashi, S.; Xu, P.; Endo, T.; Ueno, M.; Ki-
tanosono, T. Chiral Copper(II)-Catalyzed Enantioselective Boron 

Conjugate Additions to α,β-Unsaturated Carbonyl Compounds 
in Water. Angew. Chem. Int. Ed. 2012, 51, 12763-12766. (e) Ra-
domkit, S.; Hoveyda, A. H. Enantioselective Synthesis of Boron-
Substituted Quaternary Carbon Stereogenic Centers through 
NHC-Catalyzed Conjugate Additions of (Pinacolato)boron Units 
to Enones. Angew. Chem. Int. Ed. 2014, 53, 3387-3391.  
(11) (a) Zhang, Z.-M.; Xu, B.; Xu, S.; Wu, H.-H.; Zhang, J. Dia-

stereo- and Enantioselective Copper(I)-Catalyzed Intermolecular 

[3+2] Cycloaddition of Azomethine Ylides with β-

Trifluoromethyl β,β-Disubstituted Enones. Angew. Chem. Int. Ed. 
2016, 55, 6324-6328. (b) Liu, B.; Zhang, Z.-M.; Xu, B.; Xu, S.; Wu, 
H.-H.; Liu, Y.; Zhang, J. Cu(I)-catalyzed Michael Addition of 
Ketiminoesters to β-Trifluoromethyl β,β-Disubstituted Enones: 
Rapid Access to 1-Pyrrolines Bearing a Quaternary All-carbon 
Stereocenter. Org. Chem. Front. 2017, 4, 1772-1776. (c) Liu, B.; 
Zhang, Z.-M.; Xu, B.; Wu, H.-H.; Zhang, J. Cu(I)-Ming-phos 
Catalyzed Enantioselective [3+2] Cycloadditions of Glycine 

ketimines to β-Trifluoromethyl Enones. Adv. Synth. Catal. 2018, 
360, 2144-2150. (d) Xu, S.; Zhang, Z.-M.; Xu, B.; Liu, B.; Liu, Y.; 
Zhang, J. Enantioselective Regiodivergent Synthesis of Chiral 
Pyrrolidines with Two Quaternary Stereocenters via Ligand-
Controlled Copper(I)-Catalyzed Asymmetric 1,3-Dipolar Cy-
cloadditions. J. Am. Chem. Soc. 2018, 140, 2272-2283.  

 (12) The reaction of β-aryl, β-CF3 unsaturated enone gave the 
defluorinated product 9 in 12% yield.  
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(13) For recent reviews and selected examples about α-CF3 car-
banion synthons, see: (a) Mikami, K.; Itoh, Y. Metal Enolates of 

α-CF3 Ketones: Theoretical Guideline, Direct Generation, and 
Synthetic Use. Chem. Rec. 2006, 6, 1-11. (b) Ichikawa, J. gem-
Difluoroolefin Synthesis: General Methods via Thermostable 
Difluorovinylmetals Starting from 2,2,2-Trifluoroethanol Deriva-
tives. J. Fluorine Chem. 2000, 105, 257-263. (c) Itoh, Y.; Yamanaka, 
M.; Mikami, K. Direct Generation of Ti-Enolate of α-CF3 Ke-
tone:  Theoretical Study and High-Yielding and Diastereoselec-
tive Aldol Reaction. J. Am. Chem. Soc. 2004, 126, 13174-13175. (d) 
Brewitz, L.; Arteaga, F. A.; Yin, L.; Alagiri, K.; Kumagai, N.; Shi-
basaki, M. Direct Catalytic Asymmetric Mannich-Type Reaction 
of α- and β-Fluorinated Amides. J. Am. Chem. Soc. 2015, 137, 
15929-15939. (e) Yang, J.; Zhou, X.; Zeng, Y.; Huang, C.; Xiao, Y.; 
Zhang, J. Synthesis of 2-Fluoro-2-pyrrolines via Tandem Reaction 
of α-Trifluoromethyl-α,β-unsaturated Carbonyl Compounds with 
N-Tosylated 2-Aminomalonates. Chem. Commun. 2016, 52, 4922-
4925.  
(14) (a) Takahashi, K.; Ishiyama, T.; Miyaura, N. A Borylcopper 

species Generated from Bis(pinacolato)diboron and its Additions 
to α,β-Unsaturated Carbonyl Compounds and Terminal Alkynes. 
J. Organomet. Chem. 2001, 625, 47-53. (b) Lee, K-s.; Zhugralin, A. 
R.; Hoveyda, A. H. Efficient C−B Bond Formation Promoted by 

N-Heterocyclic Carbenes: Synthesis of Tertiary and Quaternary 
B-Substituted Carbons through Metal-Free Catalytic Boron Con-
jugate Additions to Cyclic and Acyclic α,β-Unsaturated Carbon-
yls. J. Am. Chem. Soc. 2009, 131, 7253-7255. 
(15) Absolute configuration of 4h is consistent with ‘4a’ in the 

reference: Liu, Z.-J.; Mei, Y.-Q.; Liu, J.-T. A Practical Diastereose-
lective Synthesis of β-Hydroxy-β-trifluoromethyl Imines. Tetra-
hedron 2007, 63, 855-860.  
(16) (a) Soloshonok, V. A.; Wzorek, A.; Klika, K. D. A question 

of policy: should tests for the self-disproportionation of enanti-
omers (SDE) be mandatory for reports involving scalemates? 
Tetrahedron: Asymmetry, 2017, 28, 1430-1434. (b) Han, J.; Kitaga-
wa, O.; Wzorek, A.; K. Klika, D.; Soloshonok, V. A. The self-
disproportionation of enantiomers (SDE): a menace or an oppor-
tunity? Chem. Sci. 2018, 9, 1718-1739. (c) Han, J.; V. Soloshonok, 
A.; Klika, K. D.; Drabowicz, J.; Wzorek, A. Chiral sulfoxides: ad-
vances in asymmetric synthesis and problems with the accurate 
determination of the stereochemical outcome. Chem. Soc. Rev. 
2018, 47, 1307-1350.  
(17) The TOF was less than 50 h-1, See: Ref 7b, 7c, 7e, 7g. 5580 h-1 

TOF, see: 7f. 17,600 h-1 TOF, see: 10e.  
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