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ABSTRACT: The transient directing group promoted C-
(sp*)—H functionalization of benzaldehydes with anthranils
by a cationic rhodium(II) catalyst is described. Notably,
anthranils have been used as both transient directing groups
and amination sources to afford 2-acyl acridines through
direct C—H amination followed by acid-mediated cyclization.
A range of substrate scopes and functional group tolerance
were observed.

he transient directing group assisted C—H functionaliza-

tion of carbonyl compounds under transition metal
catalysis has been recently investigated." Generally, this
strategy obviates extra synthetic steps for the installation and
removal of the external directing groups. As a pioneering work,
the transient imine-directed hydroacylation of aldehydes with
alkenes by using a catalytic amount of 2-aminopicoline under
rhodium(I) catalysis was reported by Jun in 1997.> Later, the
transient imine directing groups derived from carbonyl groups
with a catalytic amount of primary amines have been
intensively utilized for the aromatic C—H functionalizations.
For example, Jun demonstrated the Rh(I)-catalyzed hydro-
arylation of acetophenones with alkenes in the presence of
benzylamine.’ In addition, Kuninobu and Takai disclosed the
Re(I)-catalyzed annulation reaction of aromatic ketones with
a,f-unsaturated esters via the reversible in situ imine
formation. The transient-directed approaches have been
efficiently extended to the Pd(II)-catalyzed sp* and sp> C—H
functionalizations of carbonyl compounds by Yu, Jin, Sorensen,
Li, Ge, and Shi.’ In addition, the transient-imine-directed
ortho-C—H aminations of aromatic aldehydes with organic
azides and nitrosobenzenes under Ir(III) or Rh(III) catalysis
were also reported.’

Transition-metal-catalyzed C—N bond formation via a C—H
bond activation event has been of great interest in organic
synthesis and medicinal chemistry.” In this area, anthranils
have been explored as aryl amine surrogates in the C—H
amination reactions of sp* and sp® C—H bonds,” although
anthranils have been used in the coupling reaction with
organozinc compounds under Ni(0) catalysis.” However, to
our best knowledge, the dual role of anthranils as both
transient directing groups and amination sources has been
unexplored (Scheme 1). The acridine derivatives have been
initially used as pigments and dyestuffs. Recently, acridine
derivatives have been extensively explored as potential
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therapeutic agents for the treatment of a number of dlseases,
such as cancer, Alzheimer’s disease, and bacterial infections.'’
In continuation of our research goal on the construction of
biologically relevant heterocycles through catalytic C—H
functionalization,'' we herein present the transient-imine-
directed C—H amination followed by intramolecular annula-
tions of aromatic aldehydes with C3-aryl-substituted anthranils
under cationic Rh(III) catalysis to deliver a range of 2-acyl
acridines. In sharp contrast, C3-alkyl-substituted anthranils are
employed for the formation of dibenzoazocinones by the
intramolecular aldol condensation.

Our initial optimization of reaction conditions was
performed by the coupling reaction of benzaldehyde (1a)
with 3-aryl anthranil 2a, as shown in Table 1. We were pleased
to see the coupling reaction under cationic Rh(III) catalysis in
the presence of a Cu(OAc), additive in DCE at 110 °C,
affording the desired 2-acyl acridine 3a in 37% yield (Table 1,
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Table 1. Optimization for Reaction Conditions”

[CP*RhCly],, additive
_—_—
solvent, 110 °C, 24 h

entry additive (mol %) solvent yield”
1 AgSbF, (10) DCE N.R.
2 AgSbF, (10), Cu(OAc), (50) DCE 37
3 AgSbFq (10), Cu(OAc), (100) DCE 29
4 AgSbF (10), NaOAc (50) DCE 32
5 AgSbF (10), LiOAc (50) DCE 28
6 AgSbF, (10), AcOH (50) DCE 72
7 AgSbF (10), AcOH (100) DCE 77
8 AgSbF, (10), PivOH (100) DCE 30
9 AgSbF (10), AACO,H (100) DCE 42
10 AcOH (100) DCE N.R.
11 AgNTf, (10), AcOH (100) DCE 57
12 AgPF (10), AcOH (100) DCE 34
13 AgSbFg (10), AcOH (100) THF 35
14 AgSbF, (10), AcOH (100) MeCN 31
15 AgSbFg (10), AcOH (100) DMF 20
16° AgSbF (10), AcOH (100) DCE N.R.
174 AgSbF, (10), AcOH (100) DCE NR
18° AgSbF, (10), AcOH (100) DCE 57
19" AgSbF (4), AcOH (100) DCE 40

“Reaction conditions: 1a (0.2 mmol), 2a (0.3 mmol), [Cp*RhCl,],
(2.5 mol %), additive (quantity noted), and DCE (1 mL) under air at
110 °C for 24 h in pressure tubes. “Isolated percent yield by flash
column chromatography ‘[Ru(p-cymene)Cl,], (2.5 mol %) was used
as a catalyst. [Cp*IrClz] (2.5 mol %) was used as a catalyst. “2a (0.5
mmol, 2.5 equiv) was used. 7{Cp*RhCL,], (1 mol %) was used as a
catalyst.

entries 1—3). Screening of acetate additives was found to be
less effective in this transformation (Table 1, entries 4 and S).
Surprisingly, a loading of AcOH additive (100 mol %)
displayed significantly increased reactivity to give 3a in 77%
yield (Table 1, entries 6 and 7). However, pivalic acid
(PivOH) and 1-adamantanecarboxylic acid (AdCO,H) were
found to be ineffective in this reaction (Table 1, entries 8 and
9). In the absence of AgSbF, no formation of 3a was observed
(Table 1, entry 10). In addition, exchanging of silver additives
to AgNTf, and AgPF, provided 57% and 34% yields of 3a,
respectively (Table 1, entries 11 and 12). Further screening of
solvents indicated that DCE was found to be the most effective
solvent (Table 1, entries 13—15). Notably, cationic Ru(1I) and
Ir(III) catalysts were found to be unsuccessful (Table 1, entries
16 and 17). It is mentioned that an increasing amount of
anthranil 2a afforded the decreased formation of 2-acyl
acridine 3a in 57% yield (Table 1, entry 18). Finally, a lower
amount (1 mol %) of Rh catalyst resulted in a decreased yield
(Table 1, entry 19).

With the optimized reaction conditions in hand, the
substrate scope of aryl aldehydes was examined, as shown in
Scheme 2. The reaction of para-substituted benzaldehydes
1b—1d with both electron-donating and halogen groups was
found to be good substrates in this coupling reaction,
furnishing the desired products 3b—3d in good to high yields.
The structure of synthetic 2-acyl acridines was confirmed by X-
ray crystallographic analysis of compound 3a. However,
electron-deficient benzaldehyde le was found to be less
reactive under the current reaction conditions. Most of starting

Scheme 2. Scope of Aryl Aldehydes”
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“Reaction conditions: la—lo (0.2 mmol), 2a (0.3 mmol),
[Cp*RhCL], (2.5 mol %), AgSbFs (10 mol %), AcOH (100 mol

%), and DCE (1 mL) under air at 110 °C for 24 h in pressure tubes.
bIsolated yield by flash column chromatography.

material 1e and a trace amount of aldimine intermediate were
detected by TLC analysis. Based on this result, we assume that
relatively lower formation of 3e might be due to the low
efficiency of ortho-C—H activation of electron-deficient
benzaldehyde. We were delighted to observe that meta-
substituted benzaldehydes 1f—1h were found to exhibit the
complete site selectivity at the less hindered C—H bonds to
generate the corresponding products 3f—3h. However,
piperonal (1i) was reacted with 2a, providing a mixture of
acridines 3i and 3i’ with a 2:1 ratio in 56% combined yield.
This result can be rationalized because the formation of the
rhodacycle intermediate might be affected by both electronic
and steric environments. In addition, ortho-substituted
benzaldehydes showed good reactivity toward the C—H
amination followed by subsequent cyclization, affording 2-
acyl acridine adducts 3j—31 in high yields. It should be noted
that highly conjugated acyl acridines 3m and 3n were also
formed in 82% and 61% yields under the optimal reaction
conditions. Moreover, fluorene-2-carboxaldehyde (lo) was
found to be tolerable to provide 30 in 72% yield. However, in
the case of acetophenone, trans-cinnamaldehyde, and 1-
cyclohexene-1-carboxaldehyde, no formation of corresponding
coupling products was observed.

After successful screening of aryl aldehydes, we further
evaluated the scope of anthranils 2b—21 with o-tolualdehyde
(1j), as shown in Scheme 3. The C3-aryl-substituted anthranils
2b—2j, regardless of electronic nature on C3-aryl rings, were
successfully reacted with 1j, giving 2-acyl acridine derivatives
4b—4j in 67—90% yields. To our pleasure, anthranil 2k bearing
a 1-naphthyl moiety at the C3-position was found to be highly
reactive under the standard reaction conditions to furnish a
highly conjugated acridine 4k in 88% yield. Additionally, 6-
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Scheme 3. Scope of C3-Aryl-Substituted Anthranils”
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“Reaction conditions: 1j (0.2 mmol), 2b—21 (0.3 mmol),
[Cp*RhCL], (2.5 mol %), AgSbFs (10 mol %), AcOH (100 mol

%), and DCE (1 mL) under air at 110 °C for 24 h in pressure tubes.
bIsolated yield by flash column chromatography.

chloro-3-phenylbenzo[ clisoxazole (21) was found to be a good
substrate in this transformation to afford 41 in 78% yield.
Meanwhile, we also performed the reaction of C3-methyl-
substituted anthranil 2m under the optimal reaction conditions
(Scheme 4). Interestingly, anthranil 2m was coupled with aryl

Scheme 4. Synthesis of Dibenzoazocinones
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aldehydes 1la and 1j to furnish dibenzoazocinones Sa (36%)
and Sb (32%), respectively. No formation of 2-acetyl acridine
was observed. This observation might be rationalized by the
intramolecular aldol condensation between acetyl and
aldehyde groups on C—H aminated intermediate.

To recognize the formation of 2-acyl acridines, various
control experiments were subjected, as shown in Scheme S. To
confirm whether aldimine intermediate is a crucial inter-
mediate in this process, we performed the reaction of 2a with
AcOH (100 mol %) at 110 °C for 24 h, resulting in the
formation of 2-benzoyl aniline 6a in 43% yield (Scheme $, eq
1). This result indicates that an AcOH additive can serve as a
proton donor to facilitate N—O bond cleavage of anthranil.
Next, treatment of 1j with 6a (150 mol %) provided aldimine
7a in 38% yield based on the crude '"H NMR analysis, and no
formation of 2-acyl acridine 3j was detected (Scheme S, eq 2).
Subsequently, aldimine 7a was subjected to be coupled with 2b
to deliver 4b in 64% yield (Scheme S, eq 3). Based on the
results, we speculated that a bidentate imine directing group'”
derived from benzaldehyde and 2-benzoyl aniline might be
very crucial to initiate the C—H bond activation and
subsequent insertion of anthranil. An intermolecular competi-
tion experiment using electronically different anthranils 2a and
2c was performed to illustrate the chemoselectivity of this

Scheme 5. Mechanistic Investigation
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method (Scheme $, eq 4). No significant distinction of product
distribution between 3j and 4c was observed. Finally, the
kinetic isotope effect experiment was carried out between la
and deuterio-1a with 2a under standard reaction conditions
for 12 h, resulting in the observed kinetic isotope effect (ky/
kp) value of 1.2 (Scheme S, eq 5). This result indicates that
C—H bond cleavage might not be involved in the turnover-
limiting step.

With the above mechanistic investigation, a proposed
reaction mechanism is outlined in Scheme 6. Initially,
benzaldehyde 1j was reacted with 6a, derived from anthranil
2a, to afford aldimine 7a under acidic conditions. Aldimine 7a

Scheme 6. Proposed Reaction Mechanism
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can undergo the C—H activation step with a cationic Rh(III)
catalyst to deliver a rhodacycle intermediate I. Coordination of
2a and subsequent migratory insertion can take place to afford
a rhodacycle intermediate III, which undergoes protonolysis to
provide intermediate IV and an active Rh(III) catalyst. Next,
intramolecular electrophilic cyclization followed by aromatiza-
tion occurs to give 2-acyl acridine 3j, and a regenerated 2-
benzoyl aniline 6a can be involved in the catalytic cycle for
imine formation.

In conclusion, we disclosed the transient directing group-
assisted Rh(III)-catalyzed C—H functionalization followed by
intramolecular electrophilic cyclization between benzaldehydes
and anthranils. Anthranils have been utilized for in situ
formation of imine directing groups, which further underwent
the reaction of the remaining anthranils as amination sources
to afford 2-acyl acridines.
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