View Article Online View Journal

Journal of Materials Chemistry C

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: Y. Ren and J. Feng, *J. Mater. Chem. C*, 2018, DOI: 10.1039/C8TC03022G.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/materials-c

Journal of Materials Chemistry C

COMMUNICATION

Poly(MMA-co-FMA) as a Platform for Tuning Emission by Clicking with Luminescent Lanthanide Complexes

Received 00th January 20xx, Accepted 00th January 20xx

Yuanyuan Ren,^a Jiachun Feng*^a

DOI: 10.1039/x0xx00000x

www.rsc.org/

Published on 10 September 2018. Downloaded by Gazi Universitesi on 9/10/2018 8:25:01 AM.

In this work, we reported a facile approach to prepare lanthanide metallopolymers with tunable photoluminescence by Diels-Alder reaction between poly(MMA-co-FMA) and lanthanide complexes. Emission colors including white light can be regulated by varying the feed ratios of lanthanide complexes. This straightforward strategy gives us access to the construction of metallopolymers.

Nowadays photoluminescent lanthanide (Ln³⁺) complexes containing metallopolymers have merited intense attention in lighting sources, chemical sensors and optoelectronic devices, ¹⁻⁶ owing to unique optical properties of lanthanide complexes, including sharp and intense luminescence, large Stokes shift, long excited-state lifetime, and excellent properties of polymer matrix such as good transparently, superior mechanical strength, flexibility and ease of processing.^{7,8} Fine tuning of the emission color of luminescent materials, especially white-light emission, is of great significance for optical-device applications. For lanthanide (Ln³⁺)-containing metallopolymers, the tunable emission is generally generated by adjusting ratios of emission intensity of lanthanide complexes, depending on the modulation of either chemical factors (Ln³⁺ concentration and coordination environment) or physical parameters (excitation wavelength and temperature). With regard to non-stimuli-responsive fluorescent metallopolymers, tunable emissions are usually achieved by adjusting the relative amount of primary colors. The popular approach for this is to physically blend two or three lanthanide complexes with polymers.⁹ The major drawback, whereas, is the aggregation of inserted lanthanide complexes which strongly affects the fluorescence intensity and stability. An alternative approach is to copolymerize fluorescent lanthanide complex monomers with monomers of host material, which is able to avoid aggregation of incorporated metal complexes while maintaining the photophysical properties.¹⁰ During the past decades, there has been increasing investigations that focus

on copolymerizing lanthanide complex monomers containing a reactive vinyl-containing ligand with another functional monomer to get metallopolymers.¹¹⁻¹⁴ Unfortunately, the polymerizable complex monomers are hard to design and arduous to polymerize, which results in poor controllability of the amounts of rare earth complexes in polymers. Thus, facile methods for the fabrication of color tunable Ln³⁺-complex grafted polymers are still lacking.

Diels-Alder (D-A) click reaction, a highly selective [4 + 2] cycloaddition between electron-rich dienes and electron-poor dienophiles, has gained a great deal of attention due to their high specificity, nearly quantitative yield, and exceptional tolerance towards a wide range of functional groups and reaction conditions. This reaction has been found specific applications for attachment of drugs, ligands, and biomolecules to polymeric materials to obtain functional polymers.¹⁵⁻¹⁸ However, reported examples focused on the preparation of Ln³⁺ polymer by click reaction are very rare, especially the preparation of color-tunable emitting materials based on click reaction is not reported in open literatures till now. Weng et al. attached tris-(benzyltriazolylmethyl) amine ligand to the polyvinylbenzyl chloride backbone resulted in a metallo-supramolecular polymer via the copper-catalyzed azide-alkyne cycloaddition reaction.¹⁹ In one of our previous work, we attempted to couple Eu(DBM)₃MP to copolymer of methyl methacrylate and anthracenylmethyl methacrylate using D-A click reaction. Although the resultant product only emitted a single color of red light and the content of Eu(DBM)₃MP complexes in the polymer was low due to steric hindrance, our work proved that click reaction was a powerful tool for preparation of lanthanide complex containing metallopolymer. Given that click reactions allow tailor-made functional precursors prior to perform a click reaction, if design and synthesize a "clickable" polymer and "clickable" lanthanide complexes emitting three primary colors, it may be expected that tunable photoluminescence emission could be achieved by D-A reaction.

In this work, we took advantage of D-A click reaction for tunable emission via anchoring lanthanide complexes emitting

^{a.} State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China

Electronic Supplementary Information (ESI) available: Synthesis and preparation of compounds, supplementary figures. See DOI: 10.1039/x0xx00000x

Published on 10 September 2018. Downloaded by Gazi Universitesi on 9/10/2018 8:25:01 AM

Scheme 1. Reaction scheme for the synthesis of Ln3+ complex grafted poly(MMA-co-FMA)-Ln (Ln = Eu, Tb and/or La) by D-A click reaction.

different colors onto the polymer backbone. Our strategy for fabrication of color-tunable fluorescence emitting metallopolymers involves three following steps (Scheme 1). Firstly, a polymer backbone poly(MMA-co-FMA) having pendent furan groups as a click platform was synthesized. Secondly, three kinds of lanthanide complexes with MP as "clickable" dienophile were synthesized emitting red, green and blue fluorescence, respectively. Thirdly, through D-A reaction between MP ligand of lanthanide complexes and light emitting furan groups of poly(MMA-co-FMA), metallopolymers containing lanthanide complexes could be obtained. By changing the content of the three complexes introduced to the platform, light can be adjusted. Specifically, we can achieve this via D-A reaction by stepwise adding three kinds of complexes (Route 1) or directly adding different proportions of complexes (Route 2) to platforms. In this article, we mainly utilized Route 2 to introduce our strategy.

As for a clickable platform, the tailor-made polymer matrix containing pendant furfuryl groups was prepared via free radical random copolymerization of furfuryl methacrylate (FMA) with methyl methacrylate (MMA). FMA is a high reactive diene that can react with the dienophile-containing lanthanide complexes. By adjusting the feed ratios of FMA and MMA, two kinds of polymers P5 and P20 were synthesized as platforms for D-A reaction, of which the feed ratios of MMA/FMA were 5/1 and 20/1, respectively. The compositions of resultant poly(MMA-co-FMA)s were determined from their ¹H NMR spectra (Fig. S1 and Fig. S2), using the integration ratio of the peaks at 3.5 and 4.9 ppm arising from the CH₃ protons belonging to MMA units and CH₂ protons belonging to furan units, respectively. The ratios of FMA to MMA were 1/5 for P5 and 1/20 for P20, respectively, which were in agreement with their composition ratios directly calculated from their corresponding feed ratios, suggesting that the reactivity of both monomers is roughly the same. The molecular weight (Mn) and polydispersity index (PDI) for each polymer were characterized by GPC (Fig. S3 and Fig. S4). The Mn values were 31 kg mol⁻¹ for P5 and 26 kg mol⁻¹ for P20, PDI were 1.9 for P5

Page 2 of 6

and 1.5 for P20. The PDIs of the copolymers are in a relatively broad range, which is due to chain transfeዎ of ፍ Mንዲዳጀ STC03022G

To introduce "clickable" dienophile into lanthanide complexes to perform a D-A reaction with poly(MMA-co-FMA), we synthesized MP ligand, a maleimide substituted derivative of 1,10-phenanthroline (see ESI, for details), used as dienophile and the second ligand as well to coordinate with different lanthanide metal ions. To realize tunable emission, Eu³⁺ primarily coordinated with dibenzoylmethane (DBM) was used for red color emission, and Tb³⁺ primarily coordinated with 4-benzoylbenzoic acid (p-BBA) was used for green color emission, respectively. As for blue emission, we skillfully used 2-(2-hydroxyphenyl)benzothiazole (BTZ), a blue emission source, to coordinate with La³⁺ to get La(BTZ)₃MP complex, since there is no suitable ligand for sensitization of blue-emitting lanthanum ion at room temperature under 365 nm excitation wavelength. With MP as clickable groups, three MP-containing lanthanide complexes Eu(DBM)₃MP, Tb(p-BBA)₃MP and La(BTZ)₃MP were synthesized, respectively (see ESI, for details). The successful synthesis of these complexes was confirmed by Elemental Analysis and FT-IR (Fig. S5). The corresponding excitation and emission spectra of the three complexes in DMSO solution excited at 365 nm (room temperature) were displayed in Fig. 1. For Eu(DBM)₃MP, the emission spectrum (Fig. 1a) exhibited five shape bands at 578, 590, 613, 651 and 700 nm related to the ⁵D₀ - ⁷F_J transitions of Eu^{3+} , where J = 0 – 4, respectively.^{20,21} It was dominated by the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ band at 613 nm, which was responsible for the red emission color shown in the inset of Fig.1a. For Tb(p-BBA)₃MP, excited at 365 nm resulted in line-shaped emission bands (Fig. 1b) at 488, 543, 584 and 619 nm, respectively, corresponding to the transitions of ${}^{5}D_{4} - {}^{7}F_{J}$ (J = 6, 5, 4, 3) of Tb³⁺.²² The dominated ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ transition was responsible for the bright

Fig.1 Fluorescence excitation and emission spectra of complex Eu(DBM)₃MP (a), complex Tb(p-BBA)₃MP (b) and complex La(BTZ)₃MP (c), as well as P20-Eu (a'), P20-Tb (b') and P20-La (c') excited at 365 nm in DMSO. The insets show the photographs under the excitation of a 365 nm hand-held UV lamp.

Published on 10 September 2018. Downloaded by Gazi Universitesi on 9/10/2018 8:25:01 AM

Journal Name

green emission color shown in the inset of Fig. 1b. Unlike the sharp emission lines from Eu³⁺ and Tb³⁺ complexes, La(BTZ)₃MP had a broad emission band locating in the blue region centered at 465 nm (Fig. 1c), which is ascribed to the π - π * transition of BTZ ligand.^{23,24} It's worth noting that all three complexes can match a 365 nm UV chip well.

To demonstrate the effectiveness of D-A reaction in preparation of metallopolymers, we used P20 as a platform to click reacted with the three complexes to give monochromatic red, green and blue light, respectively. Eu(DBM)₃MP, Tb(p-BBA)₃MP and La(BTZ)₃MP with P20 at equimolar ratio of reactive groups of MP to furan were efficiently coupled via D-A click reaction to give their corresponding P20-Eu, P20-Tb and P20-La. The adduct of complex and P20 was confirmed by ¹H NMR (Fig. S6), which shows the peak disappeared completely of the proton of furan ring at 7.4 ppm and the emergence of new triplet peak signal at 4.85 ppm assigned to the bridgehead proton of the cycloadduct CH. As shown in Fig. 1a', 1b' and 1c', the emission colors of metallopolymers P20-Eu, P20-Tb and P20-La in DMF solution excited at 365 nm were red, green and blue, respectively, quite similar to their corresponding complexes. As to the photoluminescence spectra, P20-Eu and P20-Tb exhibit similar Ln3+-centered emission to that of their corresponding complexes. Compared with La(BTZ)₃MP, a slight blue shift to 448 nm in metallopolymer P20-La was observed. The reason may be that the absorbed energy of the polymer chain is partially passed to the BTZ ligand, resulting in the decrease of energy loss of the nonradiative transition. ^{14,25}

The color tunability may be realized by adding different complexes to click with platforms stepwise, as shown in Route 1, Scheme 1. We here demonstrated P5 as a "clickable" platform to realize color-tunability. Heating the mixture of Tb(p-BBA)₃MP and P5 (molar ratio of 1:2 relatives to reactive groups) in DMSO, a metallopolymer we denoted P5-Tb emitting green light was obtained, in which half of the furan groups were residual for further click reactions with lanthanide complexes. Upon addition of Eu(DBM)₃MP into P5-Tb by Tb/Eu molar ratio of 50:1, the resulting adduct was metallopolymer we denoted as P5-Tb₅₀Eu₁. When excited at 365 nm, a yellow emission was observed. Corresponding fluorescence spectrum shows multiple peaks related to ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ transitions of the Eu^{3+} ion and ${}^{5}D_{4} \rightarrow {}^{7}F_{J}$ transitions of the Tb³⁺ ion (Fig. 2a). The CIE coordinate of P5-Tb₅₀Eu₁ is calculated to be (0.37, 0.33), located to the yellow region (point A in Fig. 2e), which shows that the relative intensities of the red emission from Eu³⁺ and green emission from Tb³⁺ are comparable. Further addition of Eu(DBM)₃MP to P5-Tb₅₀Eu₁, leaded to the generation of metallopolymer we denoted P5-Tb₅₀Eu_{1.7} (Tb:Eu in 50:1.7 molar ratio) with CIE coordinates of (0.41, 0.38) and giving rise to orange color emission, as shown by point B in Fig. 2e. The intensity of emission from Eu³⁺ was stronger than the intensity of emission from Tb³⁺ (Fig. 2b). Finally, we used La(BTZ)₃MP emitting blue color to click with its complementary yellow emission from P5-Tb₅₀Eu₁. After adding to P5-Tb₅₀Eu₁ by molar ratio of Tb/Eu/La = 50:1:3, the color changed from yellow to greenish-yellow. The resulting adduct we named P5-Tb₅₀Eu1La3

COMMUNICATION

with CIE coordinate of (0.31, 0.40) (point D in Fig. 2e). Fig. 2c displayed the emission peaks of **P5-Tb₅₀Eu₁La₃** at 460 nm (the blue emission of La(BTZ)₃MP), 488 nm, 545 nm (the green emission of Tb(p-BBA)₃MP) and 589 nm, 615 nm (the red emission of Eu(DBM)₃MP).

As mentioned above, the white light emission is usually high required in many applicant fields. Based the emission of above **P5-Tb₅₀Eu₁La₃**, we decreased the amount of La(BTZ)₃MP to Tb/Eu/La = 50:1:1. It was found that the resulting adduct we named as **P5-Tb₅₀Eu₁La₁** emitted white light with CIE coordinate of (0.33, 0.34) (point C in Fig. 2e) under 365 nm UV light (Fig. 2d). We summarized the luminescent colors of metallopolymers with different lanthanide complex ratios in Table 1. It could be see that, the method of utilizing D-A click chemistry between platforms and complexes to prepare tunable fluorescent materials is very effective.

Except for the above route (Route 1), metallopolymer with tuning emission can also be prepared by adding different molar ratios of lanthanide complexes to click with the platform in one-step (Route 2, Scheme 1). We herein prepared a metallopolymer which had a similar composition with the white emission **P5-Tb**₅₀**Eu**₁**La**₁ prepared by stepwise process. By mixing the three complexes at a molar ratio of Eu/Tb/La = 1:50:0.95 (our intended ratio is 1:50:1. However, the added La complex was slightly less than expectant in practical operation) and subsequently heating with **P5** together, we got a metallopolymer named **P5-Tb**₅₀**Eu**₁**La**_{0.95}. As expected, its emission was similar to that of **P5-Tb**₅₀**Eu**₁**La**₁ prepared by stepwise-click process and emitted a pure white light (Fig. S7).

The photoluminescence (PL) quantum yield (QY), which is a principal characteristic of luminescent materials, can quantify the efficiency of the energy transfer. Thus, we investigated the QYs of the as-prepared metallopolymer samples (10^{-5} mol L⁻¹ in DMSO) under excited at 365 nm. The QYs were 5.40% for Eu(DBM)₃MP, 4.49% for Tb(p-BBA)₃MP, 14.57% for La(BTZ)₃MP, 6.35% for **P20-Eu**, 4.08% for **P20-Tb**, 5.52% for **P20-La**, 3.47% for **P5-Tb₅₀Eu**₁, 4.01% for **P5-Tb₅₀Eu**_{1.7}, 5.24% for **P5-Tb₅₀Eu**₁La₁ and 5.89% for **P5-Tb₅₀Eu**₁La₃, respectively.

Furthermore, the luminescence decay curves of samples containing Eu^{3+} and/or Tb^{3+} were monitored at characteristic emission of Eu^{3+} (⁵D₀) and Tb^{3+} (⁵D₄) (Fig. S8). By fitting to a

Journal Name

COMMUNICATION

Table 1 . The QYs of Eu, Tb and La complexes and various metallopolymers samples						View Article Online
Samples	Complexes			A	DOI: 10.	0.1039/C8TC03022G
	Eu(DBM)₃MP	Tb(p-BBA)₃MP	La(BTZ)₃MP	Approximate color regions	QY (%)	
Eu(DBM)₃MP				red	5.40	
Tb(p-BBA)₃MP				green	4.49	
La(BTZ)₃MP				blue	14.57	
P20-Eu	1	0	0	red	6.35	
P20-Tb	0	1	0	green	4.08	
P20-La	0	0	1	blue	5.52	
P5-Tb	0	0.5	0	green	4.01	
P5-Tb ₅₀ Eu _{1.7}	0.017	0.5	0	yellow	4.33	
P5-Tb ₅₀ Eu ₁	0.01	0.5	0	orange	5.24	
P5-Tb ₅₀ Eu ₁ La ₁	0.01	0.5	0.01	white	5.90	
P5-Tb ₅₀ Eu ₁ La ₃	0.01	0.5	0.03	greenish-yellow	5.89	
P5-Tb ₅₀ Eu ₁ La _{0.95}	0.01	0.5	0.0095	white	5.77	

double exponential function, the average lifetimes τ_{av} we \mathcal{B} 1 2 calculated (Table SI, ESI). The fitting results suggested that tB2 3 presence of different coordination environments around the 4 Eu³⁺ or Tb³⁺ ions in these complexes and metallopolymer 34 5 Compared to the mono-lanthanide metallopolymer, Eu³⁺ asd 6 Tb³⁺ containing hetero-lanthanide metallopolymers had 7 shorter τ_{av} of Tb³⁺ but a longer τ_{av} of the Eu³⁺. In addition, **By** 8 comparing the lifetimes of **P5-Tb**₅₀**Eu**₁ (τ_{av} = 152.59 µs for Eu39 τ_{av} = 334 µs for Tb³⁺) and **P5-Tb₅₀Eu_{1.7}** (τ_{av} = 391.66 µs for Eu39 10 τ_{av} = 211.54 µs for Tb³⁺), we found that the lifetime of Eu4011 increased, while the lifetime of Tb^{3+} decreased with the 12 increase of Eu³⁺ content. It means that there may be energy 13 transfer between Eu^{3+} and Tb^{3+} ion. What needs to be pointed 14 out is that the energy level of Tb^{3+} (${}^{5}D_{4}$ = 20500 cm ${}^{-1}$) 26 is 15 higher than that of Eu^{3+} (⁵D₀ = 17500 cm⁻¹)²⁷. Based on dec**4**2 16 lifetimes and excited stated energy levels of related ligan43 17 (DBM, MP and p-BBA)²⁸ and lanthanide ions. We proposed4a4 18 possible energy transfer process in the metallopolymers 45 19 shown in Scheme 2: (i) the organic ligand moieties DBM, MPG 20 and p-BBA absorb UV light and transiting to the singlet excited? 21 state (${}^{1}\pi$ - π^{*} , S₁) and then to the triplet state (${}^{3}\pi$ - π^{*} , T₁) **48** 22 intersystem crossing. (ii) non-radiative energy transf49 23 pathway from the T₁ state of the ligand to excited states of the 24 Eu³⁺ and Tb³⁺ ion. (iii) In the Eu³⁺-Tb³⁺-containi 25 metallopolymers, energy transfer occurs from the Tb³⁺ centers? 26 to Eu³⁺ centers. 53

Published on 10 September 2018. Downloaded by Gazi Universitesi on 9/10/2018 8:25:01 AM

27 The thermal properties of the Ln³⁺ metallopolymers webe 28 investigated by thermogravimetric analysis (TGA) measured under 55

air atmosphere at a heat rate of 20 °C min-1. It was found that the metallopolymers showed slight increase for the T_{onset} in comparison with lanthanide complexes, and decomposition with maxima located at higher temperature interval than that of complexes (Fig. S9). P5-Tb₅₀Eu₁La₁ remained stable up to 258 °C, indicating that thermal stability of metallopolymers are significantly improved. In view of the operation temperatures of LEDs below 150 °C,^{29,30} the prepared metallopolymer Poly(MMA-co-FMA)-Eu-Tb-La is thermally stable enough for the fabrication of LEDs.

Conclusions

In summary, this study demonstrates that poly(MMA-co-FMA) obtained by the copolymerization of MMA and FMA can be used as a clickable platform for the synthesis of a series of photofluorescent homometallic and heterometallic lanthanide complexes containing poly(MMA-co-FMA)-Ln metallopolymers. In particular, direct white-light emission (CIE: x = 0.33, y = 0.34) with a quantum yield (5.90%) was achieved by P5-Tb₅₀Eu₁La₁ upon excitation at 365 nm in DMSO. The strategy presented here is universal and give a straightforward access to the preparation of variety of lanthanide metallopolymers, thereby opening new perspectives in the field of synthesis of fluorescent polymers where tunable fluorescence emissions are required.

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51773040, 21574029).

Notes and references 60

- 1 L. D. Carlos, R. A. Ferreira, V. de Zea Bermudez, B. Julian-Lopez and P. Escribano, Chem. Soc. Rev., 2011, 40, 536-549.
- 2 P. Li, Y. Wang, H. Li and G. Calzaferri, Angew. Chem., Int. Ed., 2014, 53, 2904-2909.

61

62

63

64

65

1

2

3

4

5

6

7

8

9

10

11

Published on 10 September 2018. Downloaded by Gazi Universitesi on 9/10/2018 8:25:01 AM

- 3 S. Bhunia, N. Chatterjee, S. Das, K. Das Saha and A. Bhaumik, ACS Appl. Mater. Interfaces, 2014, **6**, 22569-22576.
- 4 X.-d. Wang, O. S. Wolfbeis and R. J. Meier, *Chem. Soc. Rev.*, 2013, **42**, 7834-7869.
- 5 C. Yang, J. Xu, Y. Zhang, Y. Li, J. Zheng, L. Liang and M. Lu, J. *Mater. Chem. C*, 2013, **1**, 4885-4901.
- 6 K. X. Song, L. He, L. Zhang and G. H. Tao, *Adv. Mater. Interfaces*, 2018, **5**, 1870002.
- 7 J. Feng and H. Zhang, Chem. Soc. Rev., 2013, 42, 387-410.
- 8 W. Kwon, S. Do, J. Lee, S. Hwang, J. K. Kim and S.-W. Rhee, *Chem. Mater.*, 2013, **25**, 1893-1899.
- 12 9 Y. Zhao, L. He, S. Qin and G.-H. Tao, *Polym. Chem.*, 2016, 7, 7068-7077.
- 10 C. Peng, H. Zhang, J. Yu, Q. Meng, L. Fu, H. Li, L. Sun and X.
 Guo, *J. Phys. Chem. B*, 2005, **109**, 15278-15287.
- 16 11 W.-X. Feng, S.-Y. Yin, M. Pan, H.-P. Wang, Y.-N. Fan, X.-Q. Lü
 and C.-Y. Su, J. Mater. Chem. C, 2017, 5, 1742-1750.
- 18 12 L. Liu, H. Li, P. Su, Z. Zhang, G. Fu, B. Li and X. Lü, J. Mater.
 19 Chem. C, 2017, 5, 4780-4787.
- 20
 13
 Z. Zhang, Y.-N. He, L. Liu, X.-Q. Lü, X.-J. Zhu, W.-K. Wong, M.

 21
 Pan and C.-Y. Su, Chem. Commun., 2016, 52, 3713-3716.
- 14 A. Zhang, N. Sun, L. Li, Y. Yang, X. Zhao, H. Jia, X. Liu and B. Xu,
 J. Mater. Chem. C, 2015, 3, 9933-9941.
- 24 15 R. Pola, A. Braunová, R. Laga, M. Pechar and K. Ulbrich,
 25 Polym. Chem., 2014, 5, 1340-1350.
- 26 16 M. Shi, K. Ho, A. Keating and M. S. Shoichet, *Adv. Funct.* 27 *Mater.*, 2009, 19, 1689-1696.
- 17 B. Gacal, H. Durmaz, M. Tasdelen, G. Hizal, U. Tunca, Y. Yagci and A. Demirel, *Macromolecules*, 2006, **39**, 5330-5336.
 18 O. I. Kalaoglu-Altan, R. Sanyal and A. Sanyal,
- 30 18 O. I. Kalaoglu-Altan, R. Sanyal and A. Sanyal,
 31 Biomacromolecules, 2015, 16, 1590-1597.
 32 19 B. Yang, H. Zhang, H. Peng, Y. Xu, B. Wu, W. Weng and L. Li,
- 32 19 B. Yang, H. Zhang, H. Peng, Y. Xu, B. Wu, W. Weng and L. Li,
 33 *Polym. Chem.*, 2014, 5, 1945-1953.
- 34 20 K. Binnemans, *Chem. Rev.*, 2009, **109**, 4283-4374.
- 35 21 V. Divya and M. Reddy, *J. Mater. Chem. C*, 2013, **1**, 160-170.
- 36 22 S. Sivakumar and M. Reddy, *J. Mater. Chem.*, 2012, **22**, 10852-10859.
- 38 23 Q.-D. Liu, R. Wang and S. Wang, *Dalton Trans.*, 2004, 2073-2079.
- 40 24 C. Seward, J. Pang and S. Wang, *Eur. J. Inorg. Chem.*, 2002, 1390-1399.
- 42 25 S. G. Roh, Y. H. Kim, K. D. Seo, D. H. Lee, H. K. Kim, Y. I. Park, J.
 43 W. Park and J. H. Lee, *Adv. Funct. Mater.*, 2009, 19, 1663-1671.
- 45 26 W. Chen, R. Fan, H. Zhang, Y. Dong, P. Wang and Y. Yang, 46 *Dalton Trans.*, 2017, **46**, 4265-4277.
- 47 27 H. F. Jiu, J. J. Ding, Y. Y. Sun, J. Bao, C. Gao and Q. J. Zhang, J.
 48 Non-Cryst. Solids, 2006, 352, 197-202.
- 49 28 N. Sun, L. Li, Y. Yang, A. Zhang, H. Jia, X. Liu and B. Xu, *Opt. Mater.*, 2015, 49, 39-45.
- 51 29 H. Wang, P. He, H. Yan and M. Gong, Sens Actuators B Chem.,
 2011, 156, 6-11.
- 53 30 A. Fischer, T. Koprucki, K. Gärtner, M. L. Tietze, J. Brückner, B.
 54 Lüssem, K. Leo, A. Glitzky and R. Scholz, *Adv. Funct. Mater.*,
 55 2014, 24, 3367-3374.

COMMUNICATION

View Article Online DOI: 10.1039/C8TC03022G

Lanthanide metallopolymers with tunable emission were prepared by skillfully designed Diels-Alder reaction.