

A Journal of the Gesellschaft Deutscher Chemiker A Deutscher Chemiker GDCh International Edition www.angewandte.org

Accepted Article

Title: B(C₅F₅)₃/Amine-Catalyzed C(sp)–H Silylation of Terminal Alkynes with Hydrosilanes: Combined Experimental and Theoretical Studies

Authors: Zhaomin Hou, Yuanhong Ma, Shao-Jie Lou, Gen Luo, Gu Zhan, Yong Luo, Masayoshi Nishiura, and Yi Luo

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201809533 Angew. Chem. 10.1002/ange.201809533

Link to VoR: http://dx.doi.org/10.1002/anie.201809533 http://dx.doi.org/10.1002/ange.201809533

WILEY-VCH

WILEY-VCH

B(C₆F₅)₃/Amine-Catalyzed C(sp)–H Silylation of Terminal Alkynes with Hydrosilanes: Experimental and Theoretical Studies

Yuanhong Ma,^[a] Shao-Jie Lou,^[b] Gen Luo,^{*[c]} Yong Luo,^[a] Gu Zhan,^[a] Masayoshi Nishiura,^[a,b] Yi Luo,^[c] and Zhaomin Hou^{*[a,b,c]}

Abstract: Transition-metal-catalyzed C–H functionalization of organic compounds has proved to be a useful atom-efficient strategy in organic synthesis. In contrast, main-group-element-based catalytic processes for C–H functionalization have remained much underexplored to date. We herein report the catalytic C(sp)–H silylation of a wide range of terminal alkynes with hydrosilanes by a combination of B(C₆F₅)₃ and an organic base such as triethylenediamine (DABCO). This protocol constitutes the first example of boron-catalyzed C(sp)–H functionalization, offering a convenient route for the synthesis of a variety of alkynylsilanes. Experimental and computational studies have revealed that DABCO plays crucial dual roles (Lewis base and Brønsted base) in this catalytic transformation.

The catalytic activation and functionalization of C–H bonds by transition metal complexes have resulted in a wide variety of useful synthetic strategies for organic synthesis.^[1,2] In endeavors to develop main-group-element-based catalytic processes for organic synthesis, boron catalysts, such as $B(C_6F_5)_3$, have recently received much attention.^[3,4] However, studies on the catalytic C–H functionalization by boron catalysts are still limited.^[5-8] Recently, the catalytic C(sp²)–H borylation,^[5] silylation,^[6] alkylation^[7] and deuteration^[8] of (hetero)arenes by boron-based catalysts have been reported (Scheme 1a). As to C(sp)–H activation, the stoichiometric C–H cleavage of terminal alkynes by frustrated Lewis pairs (FLPs) has been achieved.^[9] However, the catalytic transformation of a C(sp)–H bond by a boron catalyst has not been reported previously.

Alkynylsilanes are useful building blocks for the construction of C–C and C–X bonds^[10] as well as for the synthesis of various functional materials.^[11] The catalytic C(sp)–H silylation of terminal alkynes with hydrosilanes through release of H₂ is the most atom-efficient approach for the synthesis of alkynylsilanes. Previously, various transition metal^[12] and alkali metal^[13] catalysts, including the elegant work of Stoltz and Grubbs on KOH-based catalyst,^[13e] have been reported for the synthesis of alkynylsilanes by the C(sp)–H silylation of terminal alkynes with hydrosilanes. However, challenges still exist despite recent advances. The development of new catalytic systems with different working mechanisms and wide substrate scope for the synthesis of alkynylsilanes is of great significance. We herein report the catalytic C(sp)–H silylation of a wide range of terminal alkynes with hydrosilanes by a combination of B(C₆F₅)₃ with an

 [b] Dr. S.-J. Lou, Dr. M. Nishiura, Prof. Dr. Z. Hou Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)
 [c] Prof. Dr. G. Luo, Prof. Dr. Y. Luo, Prof. Dr. Z. Hou

Floi. Di. G. Lub, Floi. Di. T. Lub, Floi. Di. Z. Hou
 State Key Laboratory of Fine Chemicals, School of Chemical
 Engineering, Dalian University of Technology, Dalian 116024
 (China)
 E-mail: luogen@dlut.edu.cn

organic base such as triethylenediamine (DABCO) (Scheme 1b).

(a) Previous Work: C(sp²)-H functionalization of arenes

 $\label{eq:Scheme1.Catalytic C-H functionalization by boron-based catalysts$

We have recently found that $B(C_6F_5)_3$ can serve as an efficient catalyst for the C(sp²)-H silvlation^[6b] of electron-rich arenes with hydrosilanes and the C-Si/Si-H cross metathesis^[4j] of hydrosilanes. These results promoted us to explore the potential of B(C₆F₅)₃ as a catalyst for the C(sp)–H silylation of terminal alkynes with hydrosilanes. At first, we examined the reaction of phenylacetylene (1a) with diphenylsilane (2a) using $B(C_6F_5)_{3}$ as a catalyst under various conditions (Table 1 and Table S1). In the presence of 10 mol % of $B(C_6F_5)_3$, the reaction of **1a** with **2a** in toluene at 100 °C did not give a silylation product (Table 1 entry 1), showing that the C(sp)-H silylation of a terminal alkyne significantly differs from the analogous C(sp²)-H silylation of arenes. In contrast, addition of 1 equiv. of 2,6-lutidine to the reaction system afforded the alkyne C–H silylation product 3a in 49% yield in 24 h (Table 1, entry 2). We then investigated the influence of various organic bases on this reaction. The use of Et₃N and DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) gave a lower yield of 3a, while 2,6-dicloropyridine or 2,6-di-tbutylpyridine did not work under the same conditions (Table 1, entries 3-6). When DABCO (triethylenediamine) was used as an additive, the desired product 3a was isolated in 81% yield (Table 1 entry 7). It is also worth noting that even a catalytic amount of DABCO (10-20 mol %) could promote this transformation, although a slightly lower yield of 3a (60-68%) was obtained, compared to that (85%) in the case of 1 equiv of DABCO (Table 1, entries 7, 8 and 9). In all of these reactions, hydrosilylation at the C≡C unit of 1a was not observed.

Next, we examined the scope of hydrosilanes using **1a** as an alkyne partner in the presence of 10 mol % of $B(C_6F_5)_3$ and 1.0 equiv of DABCO at 100 °C for 24 h. Some representative results are shown in Table 2. In addition to Ph_2SiH_2 (**2a**), a wide range of secondary hydrosilanes such as $PhMeSiH_2$, $Ph(PhCH_2)SiH_2$, $(n-Bu)_2SiH_2$, and Et_2SiH_2 were suitable for the C(sp)–H silylation of **1a**, affording the corresponding alkynylsilane products (**3a-3e**) in 65–81% yields. A gram-scale (5 mmol) reaction of **1a** with **2a** could be easily performed, affording **3a** in 77% isolated yield. In the case of primary hydrosilanes such as $n-C_{18}H_{37}SiH_3$ and

[[]a] Dr. Y. Ma, Dr. Y. Luo, Dr. Z. Gu, Dr. M. Nishiura, Prof. Dr. Z. Hou Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan) E-mail: houz@riken.jp

WILEY-VCH

PhSiH₃, the target alkynylsilane products **3f** and **3g** were formed in 85% and 74% yields, respectively, as shown by ¹H NMR analyses. However, attempts to isolate a pure product in a significant yield by chromatography were not successful probably due to decomposition. A tertiary hydrosilane such as PhMe₂SiH did not work for this transformation under the same conditions.

Table 1. Optimization of reaction conditions^[a]

<u>1а</u> н	+ Ph ₂ SiH ₂ 2a	B(C ₆ F ₅) ₃ (10 mol%) Additive Toluene, 100 ^o C, 24 h	Ph Si-Ph H 3a
Entry	Additive		Yield (%) ^[b]
1	None		0
2	2,6-Lutidine (1.0 equiv.)		49
3	2,6-Dichloropyridine (1.0 equiv.)		Trace
4	2,6-Di-t-butylpyridine (1.0 equiv.)		N.D. ^[d]
5	Et ₃ N (1.0 equiv.)		25
6	DBU (1.0 equiv.)		10
7	DABCO (1.0 equiv.)		85 (81) ^[c]
8	DABCO (0.1 equiv.)		60
9	DABCO (0.2 equiv.)		68

[a] Conditions: **1a** (0.25 mmol), **2a** (0.75 mmol), B(C₆F₅)₃ (10.0 mol %), additive and toluene (1.0 mL) under N₂ at 100 °C for 24 h, unless otherwise noted. [b] Yield determined by ¹H NMR with CH₂Br₂ as an internal standard. [c] Isolated yield. [d] N.D. = Not detected. DABCO = triethylenediamine. DBU = 1,8-Diazabicyclo[5.4.0]undec-7-ene

Table 2. Scope of hydrosilanes.^[a]

[a] Conditions: **1a** (0.25 mmol), **2** (0.75 mmol), B(C₆F₅)₃ (10.0 mol%), DABCO = triethylenediamine (1.0 equiv) and toluene (1.0 mL) under N₂ at 100 °C for 24 h, unless otherwise noted. Isolated yield. [b] 5 mmol scale, 48 h. [c] 12 h. [d] Yield determined by ¹H NMR with CH₂Br₂ as an internal standard. [e] Not detected.

Table 3. Scope of terminal alkynes^[a,b]

[a] Conditions: **1** (0.25 mmol), **2a** (0.75 mmol), B(C₆F₅)₃ (10.0 mol %), DABCO = triethylenediamine (1.0 equiv) and Toluene (1.0 mL) under N₂ at 100 °C for 24 h, unless otherwise noted. Isolated yield. [b] 48 h. [c] B(C₆F₅)₃ (20.0 mol %), DABCO (2.0 equiv) and **2a** (1.50 mmol).

We then evaluated the scope of terminal alkynes by using diphenylsilane **2a** as a hydrosilane partner. Some representative results are summarized in Table 3. Phenylacetylenes bearing a wide range of functional groups such as alkyl, phenoxy, diphenylamino, halogen (F, Cl, Br), trifluoromethyl, and trifluoromethylthiol substituents at the phenyl ring were smoothly C-H silylated by **2a**, affording the corresponding alkynylsilane products (**4a-o**) in moderate to high yields. The bulky 1-

ethynylnaphthalene and 9-ethynylphenanthrene also worked well with 2a, affording the desired products 4p (68%) and 4q (70%), respectively. Important heteroaromatic groups such as carbazolyl (4r), dibenzofuryl (4s) and thienyl (4t), which are often used as efficient donor units in materials science,^[14] were compatible with this catalyst system. The solid structure of 4r was confirmed by single-crystal X-ray diffraction analysis. Besides (hetero)aryl-substituted alkynes, terminal alkynes bearing cyclohexenyl (4u), cyclohexyl (4v), cyclopropyl (4w), benzyl (4x), n-octyl (4y), phenylthiomethyl (4z), aminomethyl (4aa), and silyl (4ab, 4ac) substituents could also be efficiently C-H silylated with 2a. In view of the wide existence of siliconcontaining components in pharmaceuticals and natural products, the reaction of 3β-ethynylcholestane with 2a was examined, which afforded the corresponding C-H silylation product 4ad in 56% isolated yield. In the case of 1,4-diethynylbenzene, the monosilylation product 4ae was formed in 56% yield together with 8% yield of the disilvlation product 4ae' under the standard conditions. When a further excess of the hydrosilane partner 2a (6 equiv) was used, the disilvlation product 4ae' was obtained as a major product in 61% isolated yield. To demonstrate the synthetic usefulness of the alkynylsilane products, several transformations of 3a were also examined as shown in the Supporting Information.

The ¹H NMR examination of the independent reactions of **1a** and [D]1a with 2a at the initial stage revealed a significant kinetic isotope effect (KIE = $k_{\rm H}/k_{\rm D}$ = 4.3) (Scheme 2), suggesting that the C(sp)-H bond cleavage of the terminal alkyne is involved in the rate-determining step in the present catalytic reaction. To gain more information on the present C-H silvlation reaction mechanism, some stoichiometric reactions were examined. The reaction of phenylacetylene (1a) with DABCO and B(C₆F₅)₃ in a 1:1:1 feed ratio at 80 °C for 8 h gave an ionpair product 8 in 69% yield through deprotonation and borylation of the terminal C-H unit of 1a (Scheme 3).[9,15] Treatment of 8 with 2 equiv of Ph₂SiH₂ (2a) at 100 °C afforded the alkynylsilane product 3a in 65% yield in 4 h (Scheme 3). The use of 5 mol % of 8 in the reaction of 1a with 2a gave 3a in 46% yield (See Supporting Information). These results suggest that an ion-pair intermediate like 8 could be involved in the catalytic cycle. However, the density functional theory (DFT) studies showed that the reaction of an ion-pair intermediate like 8 with PhSiH₃ to give the alkynylsilane product has to overcome an energy barrier of as high as 43.7 kcal/mol (See Scheme S1 and Figure S2), which is energetically inaccessible under the present experiment conditions.

Scheme 2. Kinetic isotope effect experiments

Scheme 3. Isolation and transformation of an ion-pair compound 8

It is well-known that a hydrosilane such as PhSiH₃ could be activated by B(C₆F_{5)₃} through the "B···H" interaction to give an adduct PhH₂Si–H···B(C₆F_{5)₃.^[3,4] The DFT examination of a catalytic cycle involving such an adduct suggests that the reaction of PhH₂Si–H···B(C₆F_{5)₃} with phenylacetylene to afford the desired C–H silylation product requires overcoming a rather high energy barrier (38.2 kcal/mol) (See Scheme S2 and Figure S3). Therefore, this reaction process may also be ruled out.}

We then searched for a new pathway for the formation of the alkynylsilane product by DFT studies. As illustrated in Figure 1, phenylacetylene could easily be deprotonated by DABCO in the presence of B(C₆F₅)₃ via transition state **TS1** (ΔG^{\ddagger} = 11.2 kcal/mol) to give a thermodynamically stable ion-pair intermediate (A),^[9] which is equivalent to 8 obtained experimentally. The intermediate A could be viewed as a resting state, which may regenerate phenylacetylene, DABCO and $B(C_6F_5)_3$ by overcoming an energy barrier of 26.0 kcal/mol. The reaction of $B(C_6F_5)_3$ with PhSiH₃ could easily take place to give the adduct PhH₂Si–H···B(C₆F₅)₃ (**B**), as reported previously.^[3,4] The reaction between **B** and DABCO through N-Si bond formation via TS2 could give a more stable ion-pair species C. The role of DABCO in this process is to stabilize the cationic $PhSiH_2^+$ moiety. The subsequent reaction of **C** with phenylacetylene and DABCO through N···H and F···H. interactions would give D, which then yields the alkynylsilane product **3g** and an ion-pair species $[DABCO-H]^+[HB(C_6F_5)_3]^-$ (E) via TS3 through deprotonation of PhC=CH by DABCO and concerted C-Si bond formation. The relative high energy barrier (31.6 kcal/mol, A-TS3) for such deprotonation process could account for the experimental observation of KIE. The regeneration of $B(C_6F_5)_3$ could be effectively promoted by the entropy-driven elimination of H₂, although this process needs to overcome an energy barrier of 32.5 kcal/mol.

WILEY-VCH

Figure 1. Energy profile (kcal/mol) for the B(C₆F₅)₃-catalyzed C(sp)–H silylation of PhC=CH with PhSiH₃ calculated at the level of M06-2X(SMD, toluene)/6-311+G(d,p)//M06-2X/6-31G(d) (373.15 K, 1.0 atm).

Scheme 4. Proposed catalytic cycle based on experimental and DFT studies

Based on the above experimental and DFT studies, the most possibly operative mechanism for the present alkyne C–H silylation is shown in Scheme 4. The deprotonation of phenylacetylene by DABCO would easily give an ion-pair intermediate I (equivalent to **A** in Figure 1) in a reversible way. On the other hand, PhSiH₃ could be activated by $B(C_6F_5)_3$ with the assistance of DABCO to give an ion-pair intermediate III (which is equivalent to **C** in Figure 1) via a transition state like II (equivalent to **TS2** in Figure 1). The reaction of III with phenylacetylene and DABCO may give the alkynylsilane product via IV (equivalent to **TS3** in Figure 1) with release of DABCO and **V**. The elimination of H₂ from **V** would regenerate $B(C_6F_5)_3$ and DABCO. It is worth noting that DABCO plays two important roles in this transformation. One is acting as a Lewis base to

stabilize the cationic PhSiH_2^+ species and the other is serving as a Brønsted base to deprotonate a terminal alkyne.

In summary, we have demonstrated for the first time that the combination of a boron Lewis acid such as $B(C_6F_5)_3$ and an organic base such as DABCO can serve as an excellent catalytic system for the C(sp)-H silylation of terminal alkynes with hydrosilanes. This protocol offers a novel route for the efficient synthesis of alkynylsilanes, featuring wide substrate scope, excellent chemoselectivity, good functionality tolerance, good scalability, and no need for H₂ acceptor. Experimental and computational studies have revealed that DABCO plays critically important roles in this catalytic transformation, thus offering unprecedented insights into the $B(C_6F_5)_3$ -catalyed C–H silylation reactions.

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research (S) (No. 26220802) and a Grant-in-Aid for Scientific Research on Innovative Areas (17H06451) from JSPS, a grant from NSFC (No. 21429201), and the Fundamental Research Funds for the Central Universities (DUT18RC(3)002, DUT18GJ201). We gratefully appreciate accesses to RICC (RIKEN Integrated Cluster of Clusters) and the Network and Information Centre of Dalian University of Technology for computational resources. We also gratefully appreciate Dr. Takemichi Nakamura at Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science for high-resolution mass spectrum measurements and Mrs. Akiko Karube at Organometallic Chemistry Laboratory for micro element analyses.

Keywords: Boron catalysis • Cross-dehydrogenative coupling • DFT study • Silylation • Synthetic method

- Selected reviews on C-H activation by late transition metal catalysts: a)
 D. A. Colby, R. G. Bergman, J. A. Ellman, *Chem. Rev.* 2010, *110*, 624–655; b)
 T. W. Lyons, M. S. Sanford, *Chem. Rev.* 2010, *110*, 1147–1169; c)
 P. B. Arockiam, C. Bruneau, P. H. Dixneuf, *Chem. Rev.* 2012, *112*, 5879–5918; d)
 J. Wencel-Delord, F. Glorius, *Nature Chem.* 2013, *5*, 369–375; e)
 Y. Segawa, T. Maekawa, K. Itami, *Angew. Chem. Int. Ed.* 2015, *54*, 66–81; *Angew. Chem.* 2015, *127*, 68–83; f)
 J. F. Hartwig, *J. Am. Chem. Soc.* 2016, *138*, 2–24; g)
 R. Shang, L. Ilies, E. Nakamura, *Chem. Rev.* 2017, *117*, 9086–9139.
- Selected reviews on C-H activation by early transition metal catalysts:
 a) K. R. D. Johnson, P. G. Hayes, *Chem. Soc. Rev.*, 2013, 42, 1947–1960;
 b) P. L. Arnold, M. W. McMullon, J. Rieb, F. E. Kühn, *Angew. Chem., Int. Ed.* 2015, 54, 82–100; *Angew. Chem.* 2015, 127, 84–103;
 c) M. Nishiura, F. Guo, Z. Hou, *Acc. Chem. Res.* 2015, 48, 2209–2220.
- Selected reviews: a) W. E. Piers, A. J. V. Marwitz, L. G. Mercier, *Inorg. Chem.* 2011, *50*, 12252–12262; b) D. W. Stephan, G. Erker, *Angew. Chem. Int. Ed.* 2015, *54*, 6400–6441; *Angew. Chem.* 2015, *127*, 6498–6541; c) D. W. Stephan, *Acc. Chem. Res.* 2015, *48*, 306–316; d) D. W. Stephan, *J. Am. Chem. Soc.* 2015, *137*, 10018–10032; e) M. Oestreich, J. Hermeke, J. Mohr, *Chem. Soc. Rev.* 2015, *44*, 2202–2220. f) D. W. Stephan, *Science* 2016, *354*, aaf7229.1–8.
- [4] Selected examples: a) D. J. Parks, W. E. Piers, J. Am. Chem. Soc. 1996, 118, 9440–9441; b) D. J. Parks, J. M. Blackwell, W. E. Piers, J. Org. Chem. 2000, 65, 3090–3098; c) S. Rendler, M. Oestreich, Angew. Chem. Int. Ed. 2008, 47, 5997–6000; d) K. Sakata, H. Fujimoto, J. Org. Chem. 2013, 78, 12505–12512; e) A. Y. Houghton, J. Hurmalainen, A. Mansikkamäki, W. E. Piers, H. M. Tuononen, Nature Chem. 2014, 6, 983–988; f) N. Gandhamsetty, S. Joung, S.-W. Park, S. Park, S. Chang, J. Am. Chem. Soc. 2014, 136, 16780–16783; g) A. Simonneau, M. Oestreich, Nature Chem. 2015, 7, 816–822; h) X. Ren, H. Du, J. Am. Chem. Soc. 2016, 138, 810–813; i) L. Süsse, J. Hermeke, M. Oestreich, J. Am. Chem. Soc. 2016, 138, 6940–6943; j) Y. Ma, L. Zhang, Y. Luo, M. Nishiura, Z. Hou, J. Am. Chem. Soc. 2017, 139, 12434–12437. k) Y. Kim, R. B. Dateer, S. Chang, Org. Lett. 2017, 19, 190–193.
- [5] a) M.-A. Légaré, M.-A. Courtemanche, É. Rochette, F.-G. Fontaine, Science 2015, 349, 513–516; b) K. Chernichenko, M. Lindqvist, B. Kótai, M. Nieger, K. Sorochkina, I. Pápai, T. Repo, J. Am. Chem. Soc. 2016, 138, 4860–4868; c) J. L. Lavergne, A. Jayaraman, L. C. M. Castro, É. Rochette, F.-G. Fontaine, J. Am. Chem. Soc. 2017, 139, 14714–14723; d) Q. Yin, H. F. T. Klare, M. Oestreich, Angew. Chem. Int. Ed. 2017, 56, 3712–3717; Angew. Chem. 2017, 129, 3766–3771; e)

Y.-L. Liu, G. Kehr, C. G. Daniliuc, G. Erker, *Chem. Eur. J.* 2017, *23*, 12141–12144.

- [6] a) L. D. Curless, E. R. Clark, J. J. Dunsford, M. J. Ingleson, *Chem. Commun.* 2014, *50*, 5270–5272; b) Y. Ma, B. Wang, L. Zhang, Z. Hou, J. Am. Chem. Soc. 2016, *138*, 3663–3666; c) Q. Yin, H. F. T. Klare, M. Oestreich, *Angew. Chem. Int. Ed.* 2016, *55*, 3204–3207; *Angew. Chem.* 2016, *128*, 3256–3260; d) Y. Han, S. Zhang, J. He, Y. Zhang, J. Am. Chem. Soc. 2017, *139*, 7399–7407. e) Y. Luo, H.-L. Teng, C. Xue, M. Nishiura, Z. Hou, *ACS Catal.* 2018, *8*, 8027–8032.
- a) W. Li, T. Werner, Org. Lett. 2017, 19, 2568–2571; b) Z. Yu, Y. Li, J. Shi, B. Ma, L. Liu, J. Zhang, Angew. Chem. Int. Ed. 2016, 55, 14807–14811; Angew. Chem. 2016, 128, 15027–15031.
- [8] W. Li, M.-M. Wang, Y. Hu, T. Werner, Org. Lett. 2017, 19, 5768–5771.
- [9] a) M. A. Dureen, D. W. Stephan, J. Am. Chem. Soc. 2009, 131, 8396–8397; b) C. Jiang, O. Blacque, H. Berke, Organometallics 2010, 29, 125–133; c) T. Voss, T. Mahdi, E. Otten, R. Fröhlich, G. Kehr, D. W. Stephan, G. Erker, Organometallics 2012, 31, 2367–2378. d) H. Ye, Z. Lu, D. You, Z. Chen, Z. H. Li, H. Wang, Angew. Chem. Int. Ed. 2012, 51, 12047–12050; Angew. Chem. 2012, 124, 12213–12216. e) V. Iashin, K. Chernichenko, I. Pápai, T. Repo, Angew. Chem. Int. Ed. 2016, 55, 14146–14150; Angew. Chem. 2016, 128, 14352–14356.
- a) N. Sakai, R. Komatsu, N. Uchida, R. Ikeda, T. Konakahara, *Org. Lett.* 2010, *12*, 1300–1303; b) K. Aikawa, Y. Hioki, K. Mikami, *Org. Lett.* 2010, *12*, 5716–5719; c) B. M. Trost, M. T. Rudd, M. G. Costa, P. I. Lee, A. E. Pomerantz, *Org. Lett.* 2004, *6*, 4235–4238; c) J. P. Brand, D. F. González, S. Nicolai, J. Waser, *Chem. Commun.* 2011, *47*, 102–115.
- [11] a) R. Gleiter, D. B. Werz, Chem. Rev. 2010, 110, 4447-4488; b) E. Langkopf, D. Schinzer, Chem. Rev. 1995, 95, 1375-1408; c) A. L. K. Shi Shun, R. R. Tykwinski, Angew. Chem. Int. Ed. 2006, 45, 1034-1057; Angew. Chem. 2006, 118, 1050-1073.
- Selected examples: a) M. G. Voronkov, N. I. Ushakova, I. I. Tsykhanskaya, V. B. Pukhnarevich, *J. Organomet. Chem.* 1984, 264, 39–48; b) R. Shimizu, R. Fuchikami, *Tetrahedron Lett.* 2000, 41, 907–910; c) T. Tsuchimoto, M. Fujii, Y. Iketani, M. Sekine, *Adv. Synth. Catal.* 2012, 354, 2959–2964; d) Yamaguchi, K.; Wang, Y.; Oishi, T.; Kuroda, Y.; Mizuno, N. *Angew. Chem. Int. Ed.* 2013, 52, 5627–5630; *Angew. Chem.* 2013, 125, 5737–5740.
- [13] Selected examples: a) M. Itoh, M. Mitsuzuka, T. Utsumi, K. Iwata, K. Inoue, J. Organomet. Chem. 1994, 476, C30-C31; b) T. Baba, A. Kato, H. Yuasa, F. Toriyama, H. Handa, Y. Ono, Catal. Today 1998, 44, 271-276; c) J.-i. Ishikawa, K. Inoue, M. Itoh, J. Organomet. Chem. 1998, 552, 303-311; d) J.-i. Ishikawa, M. Itoh, J. Catal. 1999, 185, 454-461. e) A. A. Toutov, K. N. Betz, D. P. Schuman, W.-B. Liu, A. Fedorov, B. M. Stoltz, R. H. Grubbs, J. Am. Chem. Soc. 2017, 139, 1668–1674.
- [14] A. Fukazawa, S. Yamaguchi, Chem. Asian J. 2009, 4, 1386–1400.
- [15] For the solid structure of 8, see Supporting Information (Figure S9).

WILEY-VCH

COMMUNICATION

COMMUNICATION

Boron catalysis

COMMUNICATION

 $R - - H + H - [Si] \xrightarrow{B(C_6F_5)_3/DABCO} R - - H_2$ 39 examples

The combination of $B(C_6F_5)_3$ and an organic base such as triethylenediamine (DABCO) served as an excellent catalytic system for the C(sp)–H silylation of terminal alkynes with hydrosilanes, in which DABCO played crucial dual roles (Lewis base and Brønsted base) as revealed by experimental and DFT studies.

Y. Ma, S.-J. Lou, G. Luo,* Y. Luo, G. Zhan, M. Nishiura, Y. Luo, Z. Hou*

Page No. – Page No. B(C_6F_5) $_3$ /Amine-Catalyzed C(sp)–H Silylation of Terminal Alkynes with Hydrosilanes: Experimental and Theoretical Studies