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The wide varieties of efficient secondary metabolites are 

produced by Myxobacteria, and the genus Sorangium is 

commonly characterized as proficient source for new, 

biologically active natural products.
1
 In 2012, Pellasoren – A 

(1) and B (2) are secondary metabolites, were isolated from S. 

cellulosum So ce35 by Christine Jahn, both display anticancer 

activity, in particular Pellasoren – A (1) exhibits cytotoxicity 

against HCT-116 human colon cancer cells at a concentration 

of 155 nm (IC50), emphasizing the importance of the linear an 

all-(E) configuration. Furthermore, both pellasorens show a 

strong effect on lysosomes. In structural of view in interesting 

structural features of Pellasoren A (1) and B (2) are isobaric 

compounds having the same constitution, some changes in the 

double bond system at C10–C11 which can be rationalized by 

photochemical isomerization of E/Z isomers, respectively.
2  

 

 

 

  

 
 

 

 

 

 

 

 

 

Christine Jahn et al reported the discovery, complete structure 

elucidation in year 2012 and first total synthesis of pellasoren 

- A (1) through coupling of two key fragments by E-selective 

Wittig olefination. Recently Shinji Sekiya et al disclosed total 

synthesis of pellasoren – A (1) by Cross Metathesis via 

synthesis of stereoselective bromination of the E,E-

vinylketene silyl N,O acetal a chiral auxiliary and applied to 

introduction of heteroatom at γ -position of α, β - unsaturated 

imide.
3
 We herein present a facile and general method for the 

stereoselective formal synthesis of Pellasoren - A (1) using 

enzymatic desymmetrization and a Crimmins “non-Evans” 

syn aldol reaction to generate the four of the five stereogenic 

centres with good diastereoselectivity. 
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A convergent and highly stereoselctive formal synthesis of Pellasoren – A is 
described. The salient features of the synthesis are the utilization of enzymatic 
desymmetrization, Crimmin’s non-Evans syn aldol, Lindlar’s and Wittig reaction.  
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Our retrosynthetic plan of Pellasoren – A (1) is disclosed in  

Scheme 1. The target molecule 1 was divided into two 

fragments i.e, lactone fragment 3 and amide fragment 4, 

which could be combined by cross metathesis. A key 

objective for preparing lactone fragment 3 would be obtained 

from a compound 5, which could be constructed by means of 

Crimmin’s non-Evans syn aldol reaction with chiral auxiliary 

10 and aldehyde 9, which in turn to be achived from meso-

4,6-Dimethylcyclohexane-1,3-dione 7. Amide fragment 4 

would be synthesized by coupling of carboxylic acid and 

amine along with the tetraene geometry in a concise manner; 

amine might be derived from 8. 

 

Results and Discussion: 
 

Our synthesis began with a known precursor meso-4,6-

Dimethylcyclohexane-1,3-dione 7 by the application of the 

enzymatic desmmetrization to the known diol to produce 

monoacetate 9 the diol commenced from compound 7 

according to a literature procedure.
4
 Monoacetate 9 was 

protected as silyl ether using TBSCl and imidazole in CH2Cl2 

and then treated with CH3ONa in methanol to furnish the 

desired primary alcohol 6 in 96% yield over two steps.
5
 

(Scheme 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

At this stage primary alcohol in 6 was then oxidized to the 

corresponding aldehyde 11 under Swern conditions
6
 with a 

considerably good yield. The aldehyde 11 was subjected to 

TiCl4 mediated Crimmin’s non-Evans syn aldol reaction
7
 with 

Crimmin’s chiral auxiliary 10 using DIPEA to produce the 

non-Evans syn aldol adduct 12 with dr >95:5 (Scheme 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The chiral auxiliary was cleaved from aldol adduct 12 by 

treating with sodium borohydride in THF: H2O (2:1) to 

furnish diol 13 with a considerably good yield.
8
 The 1, 3-diol 

group of 13 was protected with p-methoxy benzyl dimethyl 

acetal and catalytic amount of CSA in CH2Cl2 to afford the 

acetal compound 14 in 94% yield.
9
 The regioselectively PMB 

acetal 14 was reduced by using DIBAL-H in CH2Cl2 at – 40 
o
C to afford the compound 15 in 92 % yield.

10 
The primary 

alcohol in 15 (TsCl, TEA, 92%) was converted to its tosyl 

derivative 16 (Scheme 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The tosyl derivative 16 was treatment with 5 equiv of lithium 

acetylide in dimethyl sulfoxide (DMSO) to furnish 

corresponding alkyne 5 in 72% yield.
11 

The PMB and TBS 

groups in compound 5 were deprotected with 

CeCl3:7H2O/NaI to furnish diol 17 in 94% yield.
12

 The diol 17 

was converted to compound 18 by the oxidation using 

bis(acetoxy)iodobenzene (BIAB) in the presence of catalytic 

amounts of tetramethyl-1-piperidinyloxyl (TEMPO) in 

CH2Cl2 with good yield.
13

 A partial reduction of alkyne 

functionality in compound 18 was generated using Lindlar’s 

catalyst in the presence of quinoline under hydrogen 

atmosphere to give corresponding partially hydrogenated 

lactone 3 in 95 % yield (Scheme 4).   

 

 

 

 

 

 

 

 

 

 

  

The amide fragment 4 was synthesized starting from Boc-

protected amino alcohol 8. The Boc-protected amino alcohol 

8 converted to required alcohol 19 prepared according to a 

previously reported procedure.
2
 The compound 19 was 

oxidized with IBX in DMSO to afford corresponding 

aldehyde. The aldehyde which was submitted to a one carbon 

extension by means of Wittig reaction with Ph3CH3I and 

Potassium tert-butoxide as base to provide corresponding 

olefine 4 in 66% yield 
14 

(Scheme 5). 

 

The Formal Synthesis of Pellasoren – A (1) 

 

The compounds 3 and 4 are key advanced intermediates for 

the total synthesis of Pellasoren – A (1). Thus, we have 
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accomplished the formal total synthesis of Pellasoren – A (1) 

using enzymatic desymmetrization, a Crimmins “non-Evans” 

syn aldol, Lindlar’s and a Wittig olefination (Scheme 6). The 

formal synthesis of Pellasoren – A (1) involved 11 steps 

starting from compound 8 with a 25% overall yield. Further 

efforts towards the completion of the total synthesis of 

Pellasoren – A (1) is currently underway.    
 

 

 

 

 

 

Conclusions   

In summary, we have successfully completed the efficient 

formal synthesis of Pellasoren – A (1). By using a convergent 

strategy, we utilized an enzymatic desymmetrization for 

enantioselective synthesis of lactone fragment 3 from 

enzymatic desymmetrization of meso-diol by using amino 

lipase AK. The synthesis involved other important reactions 

such as a Crimmins “non-Evans” syn aldol reaction, Lindlar’s 

and a Wittig olefination. The synthesis involved 11 steps 

starting from compound 8 with a 25% overall yield. One 

additional step would be required to complete a total synthesis 

of Pellasoren - A.  
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Highlights of The Pellasoren-A Synthesis  

 

 Formal synthesis of the antitumor 

natural product Pellasoren–A was 

synthesized.   

 Four chiral centers out of five were 

created in this synthesis. 

 Monoacetate 9 obtained by employing 

enzymatic desymmetrization. 

 Key steps are Wittig, Lindlar’S and 

Crimmin’s non-Evans syn aldol reaction. 

 The lactone 3 was achieved in 11 steps 

with 25% overall yield.  

 

   

 

 


