AGRICULTURAL AND FOOD CHEMISTRY

Subscriber access provided by University of Sunderland

Bioactive Constituents, Metabolites, and Functions

Absorption and metabolism of luteolin in rats and humans in relation to in vitro anti-inflammatory effects

Natsumi Hayasaka, Naoki Shimizu, Toshikazu Komoda, Satoshi Mohri, Tojiro Tsushida, Takahiro Eitsuka, Teruo Miyazawa, and Kiyotaka Nakagawa

J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jafc.8b03273 • Publication Date (Web): 03 Oct 2018 Downloaded from http://pubs.acs.org on October 5, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1	Journal of Agricultural and Food Chemistry (Research Article)
2	Absorption and metabolism of luteolin in rats and humans in relation
3	to <i>in vitro</i> anti-inflammatory effects
4	Natsumi Hayasaka ¹ , Naoki Shimizu ¹ , Toshikazu Komoda ² , Satoshi Mohri ² , Tojiro
5	Tsushida ² , Takahiro Eitsuka ¹ , Teruo Miyazawa ^{3,4} , Kiyotaka Nakagawa ^{1*}
6	
7	¹ Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science,
8	Tohoku University, Sendai, Miyagi 980-0845, Japan
9	² School of Food, Agricultural and Environmental Sciences, Miyagi University, Sendai,
10	Miyagi 982-0215, Japan
11	³ Food and Biotechnology Innovation Project, New Industry Creation Hatchery Center
12	(NICHe), Tohoku University, Sendai, Miyagi 980-8579, Japan
13	⁴ Food and Health Science Research Unit, Graduate School of Agricultural Science,
14	Tohoku University, Sendai, Miyagi 980-0845, Japan
15	
16	*Corresponding author: Food and Biodynamic Chemistry Laboratory, Graduate School
17	of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai,
18	980-0845, Japan. Fax: +81-22-757-4417.
19	E-mail address: nkgw@m.tohoku.ac.jp

21 ABSTRACT

22	Luteolin is a flavonoid present in plants in the form of aglycone or glucosides. In
23	this study, luteolin glucosides (<i>i.e.</i> , luteolin-7- O - β -D-glucoside,
24	luteolin-7- <i>O</i> -[2-(β-D-apiosyl)-β-D-glucoside], and
25	luteolin-7- <i>O</i> -[2-(β-D-apiosyl)-6-malonyl-β-D-glucoside]) prepared from green pepper
26	leaves as well as luteolin aglycone were orally administered to rats. Regardless of the
27	administered luteolin form, luteolin glucuronides were mainly detected from plasma and
28	organs. Subsequently, luteolin aglycone, the most absorbed form of luteolin in rats, was
29	orally administered to humans. As a result, luteolin-3'-O-sulfate was mainly identified
30	from plasma, suggesting that not only luteolin form, but also animal species affect the
31	absorption and metabolism of luteolin. When LPS-treated RAW264.7 cells were treated
32	with luteolin glucuronides and luteolin sulfate (the characteristic metabolites identified
33	from rats and humans, respectively), the different luteolin conjugates were metabolized
34	in different ways, suggesting that such difference in metabolism results in their
35	difference in anti-inflammatory effects.
36	
37	Keywords
38	Luteolin aglycone, Luteolin glucuronide, Luteolin sulfate, Metabolism,
39	Anti-inflammatory effects

40

 $\mathbf{2}$

Page 3 of 38

41 **1. INTRODUCTION**

42	People consume substantial amounts of flavonoids through the intake of plant
43	foods and beverages. ¹⁻⁴ Intake of flavonoids from such sources is believed to be
44	associated with decreased risk of life-style related diseases such as atherosclerosis,
45	diabetes, and cancer. ^{5–7} In order to unravel the mechanisms by which dietary flavonoids
46	exhibit their physiological effects, it is important to understand the factors that
47	determine their release from foods, their extent of absorption, and their metabolic fate in
48	vivo. ⁸ Hence, many studies concerning the absorption and metabolism of certain major
49	flavonoids (e.g., catechin and quercetin) have been conducted. ^{9,10}
50	Luteolin is a typical flavonoid present in celery, green pepper, and perilla leaf,
51	found in the form of either aglycone or glucosides (<i>e.g.</i> , luteolin-7- O - β -D-glucoside
52	(L-7G), luteolin-7-O-[2-(β-D-apiosyl)-β-D-glucoside] (L-7AG), and
53	luteolin-7- <i>O</i> -[2-(β-D-apiosyl)-6-malonyl-β-D-glucoside] (L-7AMG)) (Fig. 1A). ^{8,11}
54	Intake of luteolin is known to contribute to various beneficial effects such as
55	anti-inflammatory, antioxidative, and anticancer activities. ^{2,12-14} Nevertheless, only few
56	studies have examined the absorption and metabolic fate of luteolin, ¹⁵ which contrasts
57	with the case of catechin and quercetin. ^{9,10}
58	In one of such studies, the absorption of luteolin was examined by Lin et al.
59	through the oral administration of luteolin aglycone and L-7G to rats. ¹⁶ Whereas
60	luteolin aglycone was directly absorbed, L-7G was mainly hydrolyzed to luteolin
61	aglycone in the gastrointestinal tract, followed by absorption into systemic circulation.
62	Also, Shimoi et al. reported that orally administered luteolin aglycone is mainly
63	metabolized to luteolin glucuronide in rats. ^{1,8} In a similar way, when L-7G was orally
64	administered to rats, L-7G was first hydrolyzed to luteolin aglycone and then converted

65	mainly to luteolin glucuronide. Additionally, we recently investigated the position at
66	which glucuronic acid conjugates with luteolin after the oral administration of luteolin
67	aglycone and L-7G to rats, and reported that luteolin-3'- O - β -D-glucuronide was the
68	major metabolite found in plasma. ¹⁷ Thus, luteolin conjugates, especially
69	luteolin-3'- O - β -D-glucuronide, but not luteolin aglycone and luteolin glucosides, are
70	presumably responsible for the physiological effects of luteolin in vivo. However, the
71	absorption and metabolism of luteolin glucosides other than L-7G (e.g., L-7AG and
72	L-7AMG) is still unknown, possibly due to the difficulties in preparing such glucosides.
73	In addition, most studies investigating the absorption of luteolin have focused on
74	rodents, and human data are scarcely available.
75	In this study, we prepared luteolin glucosides (i.e., L-7G, L-7AG, and L-7AMG)
76	from green pepper leaves, and orally administered either these glucosides or luteolin
77	aglycone to rats, in order to investigate the differences with regard to the extent of their
78	absorption and metabolism. We also conducted a human test by which the most easily
79	absorbed form of luteolin in rats (i.e., luteolin aglycone) was orally administered to
80	healthy individuals, and found for the first time that not only the form of luteolin, but
81	also animal species affect the absorption and metabolism of luteolin. To evaluate the
82	relationship of this finding with the physiological effects of luteolin, luteolin
83	metabolites characteristic to rats and humans were each investigated for their effects on
84	inflammation in LPS-treated RAW264.7 cells. The results of this study may help
85	elucidate the relationship between the biological availability and physiological effects of
86	luteolin in animals and humans.
87	

88 2. MATERIALS AND METHODS

89 2.1 Chemicals

90	Luteolin was obtained from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan).
91	LPS (Escherichia coli 0111) was purchased from Sigma (St. Louis, MO, USA).
92	Luteolin-3'- O - β -D-glucuronide, luteolin-4'- O - β -D-glucuronide, and
93	luteolin-7- O - β -D-glucuronide were prepared as reported previously. ¹⁸⁻²⁰ For the
94	preparation of luteolin-3'-O-sulfate, 286 mg luteolin was dissolved in 4 mL of
95	anhydrous N,N-dimethylformamide, of which was reacted with 318 mg of sulfur
96	trioxide pyridine complex for five hours at room temperature. After addition of 20 mL
97	water, the solution was loaded onto a TOYOPEARL HW-40F column (TOSOH
98	Corporation, Tokyo, Japan). The column was washed with water (200 mL) and eluted
99	with 30% methanol (1 L). The fraction containing luteolin-3'-O-sulfate was collected,
100	neutralized with 1.0 M NaOH to pH 6.8, and evaporated to obtain luteolin-3'-O-sulfate
101	sodium salt. The purity and chemical structures of luteolin-3'-O-β-D-glucuronide,
102	luteolin-4'-O-β-D-glucuronide, luteolin-7-O-β-D-glucuronide, and luteolin-3'-O-sulfate
103	was confirmed with MS/MS analysis using a micrOTOF-Q II mass spectrometer
104	(Bruker Daltonik, Bremen, Germany) and with ¹ H and ¹³ C NMR using a
105	JNM-ECX-400P spectrometer (Japan Electronic Co., Ltd., Tokyo, Japan) at 400 MHz
106	with dimethyl sulfoxide- d_6 as the solvent. Other chemicals used were of analytical grade
107	or higher.
108	
109	2.2 Preparation of luteolin glucosides
110	Green pepper leaves (500 g) were crushed with 1 L of methanol containing 0.5%
111	phosphoric acid. After the addition of 500 mL distilled water, the solution was filtered

under reduced pressure. A further 2 L of distilled water was added to the obtained

 $\mathbf{5}$

113	filtrate. The solution was loaded onto a DIAION TM HP20 column (Mitsubishi Chemical
114	Co., Ltd., Tokyo, Japan), which was then washed with 25% methanol (1 L). L-7AMG
115	was eluted with 2 L of 90% ethanol. The eluate was evaporated, dissolved in methanol,
116	and centrifuged at 1,000×g for 5 min at 4°C. The precipitate was collected and
117	freeze-dried to obtain L-7AMG powder (1.9 g).
118	L-7G was prepared from L-7AMG as follows: L-7AMG (0.5 g) was dissolved in
119	2.0 M NaOH (20 mL) and hydrolyzed at room temperature for 10 min. Subsequently,
120	7.5 mL of 6.0 M HCl was added, and L-7AMG was further hydrolyzed at 80°C for 1 h.
121	This solution was loaded onto a TOYOPEARL HW-40C column (TOSOH Corporation),
122	and was washed with 100 mL of 40% methanol. L-7G was fractionated by gradient
123	elution with 70–100% methanol containing 0.1% formic acid (2 L). The fractionated
124	solution was dried to obtain L-7G powder (0.3 g).
125	For the preparation of L-7AG, L-7AMG (0.5 g) was dissolved in 1.0 M NaOH (20
126	mL) and hydrolyzed at room temperature for 10 min. After neutralization with 3.3 mL
127	of 6.0 M HCl, this solution was centrifuged at 7,700×g for 5 min at 4°C. The
128	precipitates were purified with distilled water and recentrifuged. The obtained
129	precipitate was dehydrated with methanol. After adding an excessive volume of ethyl
130	acetate, the solution was centrifuged twice at 7,700×g for 5 min at 4°C. Finally, the
131	collected precipitate was dried to obtain L-7AG powder (0.3 g).
132	The purity and chemical structures of L-7G, L-7AG, and L-7AMG were confirmed
133	by MS/MS and by ¹ H and ¹³ C NMR.
134	
135	2.3 Animal study
136	Eight-week-old male Sprague-Dawley rats (weight = 208 ± 12 g) were obtained

137	from CLEA Japan, Inc. (Tokyo, Japan). Rats were housed in cages maintained at 23°C
138	with a 12 h light/dark cycle and were given free access to water and commercial rodent
139	chow (CE-2; CLEA Japan, Inc.) for 1 week before the experiments. After 12 h fast, rats
140	(n = 7-8) were administered either luteolin aglycone, L-7G, L-7AG, or L-7AMG (20)
141	mg/kg body weight) by oral gavage using 1% sodium cholate as vehicle. After 0, 1, 3, 6,
142	12, and 24 h of administration, blood (about 0.3 mL) was collected from the tail vein
143	using capillary tubes. Blood was centrifuged at $1,000 \times g$ for 15 min at 4°C to obtain
144	plasma. In a separate experiment, livers, kidneys, and small intestines $(n = 7-8)$ were
145	excised 6 h after oral administration of either luteolin aglycone, L-7G, L-7AG, or
146	L-7AMG (20 mg/kg body weight). The collected samples were stored at -80°C until
147	analysis. The protocols of the animal study were designed in accordance with the animal
148	experiment guidelines and reviewed by the ethics committee of Tohoku University
149	(approval number: 2016-noudou-006).

150

1512.4 Human study

Nine healthy male subjects aged 23–47 years participated in the study and gave 152written informed consent in accordance with the Declaration of Helsinki. The subjects 153were refrained from consuming foods containing luteolin (e.g., paprika) for one week 154155prior to the study. Subjects orally consumed 50 mg luteolin aglycone via capsules containing a commercial Chrysanthemum morifolium extract (Kiku flower extract-P; 156Oryza Oil & Fat Chemical Co., Ltd., Aichi, Japan) after fasting overnight. HPLC-UV 157analysis confirmed that the extract contained about 10% luteolin aglycone and trace 158159levels of apigenin. Luteolin derivatives other than luteolin aglycone were not detected. 160Blood samples were collected in heparinized tubes before and 1, 3, 6, and 12 h after

161	administration. Blood was centrifuged at $1,000 \times g$ for 10 min at 4°C to obtain plasma.
162	The obtained plasma was stored at -80°C until analysis. During the study period,
163	subjects were allowed to drink water ad libitum and to take light meals (Japanese
164	noodles free of luteolin) at 4 and 10 h after administration of luteolin capsules. The
165	protocols were approved by the ethics committee of Tohoku University (approval
166	numbers: 16-A-02 and 17-A-05).
167	
168	2.5 Extraction of luteolin metabolites from plasma and organs
169	Luteolin metabolites were extracted from plasma and organs as described
170	previously. 17 Acetonitrile (300 $\mu L)$ was added to 100 μL of rat/human plasma, and
171	centrifuged at 1,000×g for 10 min at 4°C. After collecting the supernatant by
172	decantation, methanol (300 μ L) was added to the precipitate. The solution was mixed
173	and centrifuged at 1,000×g for 10 min at 4°C. The resultant supernatants were combined,
174	dried, and redissolved in 10% acetonitrile. For the extraction of luteolin metabolites
175	from organs, a 30% (w/v) homogenate solution was prepared by homogenizing each
176	organ (300 mg) in saline containing 1 mM ethylenediaminetetraacetic acid. Luteolin
177	metabolites were extracted from 500 μ L of the homogenate in the same way as plasma.
178	
179	2.6 Cell study
180	Mouse macrophage RAW264.7 cells were purchased from DS Biomedical Co., Ltd.
181	(Osaka, Japan). RAW264.7 cells were cultured in Dulbecco's Modified Eagle's Medium
182	(DMEM, Sigma) supplemented with 10% fetal bovine serum (FBS, Dainippon
183	Sumitomo Pharmaceutical, Osaka, Japan), 1 mM sodium pyruvate, 0.1 mM nonessential

amino acids, penicillin (100 U/mL), and streptomycin (100 µg/mL) at 37°C under 5%

185	CO_2 .
	2.

186	RAW264.7 cells (5.0×10^5) were preincubated with 10% FBS/DMEM in 10 cm
187	dishes for 24 h. Luteolin aglycone and conjugates were dissolved in dimethyl sulfoxide
188	(50 mM), and 5 μL of the solution was added to the test medium to achieve a final
189	concentration of 25 μ M. Cells were incubated in each test medium for 24 h. After
190	removal of cell medium, the cell surface was washed with PBS several times, after
191	which the cells were collected and homogenized. Intracellular luteolin metabolites were
192	extracted from the cell suspension in the same way as human plasma.
193	For the identification of genes related to the anti-inflammatory effects of luteolin,
194	RAW264.7 cells (8.0×10^5) were treated either with or without luteolin aglycone and
195	conjugates. After incubation for 24 h, LPS was to the medium to achieve a final
196	concentration of 1 μ g/mL. Cells were further incubated for 3 h and total RNA was
197	extracted with the use of an RNeasy Mini Kit (Qiagen, Tokyo, Japan). As a control,
198	total RNA was extracted from cells that were not treated with luteolin nor LPS.
199	PrimeScript Master mix (Takara Bio, Otsu, Japan) was used for the synthesis of cDNA
200	from total RNA (500 ng) according to the manufacturer's instructions. PCR
201	amplification was performed with a CFX96 Real-Time PCR Detection System (Bio-Rad
202	Laboratories, New South Wales, Australia) with SYBR Premix Ex TaqII (Takara Bio)
203	and gene-specific primers (Sigma-Aldrich Japan, Tokyo, Japan) for interleukin-6 (IL-6),
204	interleukin-1 beta (<i>IL-1</i> β), CC chemokine ligand 2 (<i>Ccl2</i>), CC chemokine ligand 3
205	(Ccl3), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). PCR conditions
206	were 95°C for 3 min, followed by 40 cycles of 95°C for 10 s and 55°C for 30 s.
207	

208 2.7 LC-MS/MS analysis

209	LC-MS/MS analysis of luteolin was performed based on our previous method with
210	slight modifications. 17 The extracted samples (10 $\mu L)$ were injected into a 4000 QTRAP
211	mass spectrometer (SCIEX, Redwood City, CA, USA) equipped with a Prominence
212	HPLC system (Shimadzu, Kyoto, Japan). Samples were analyzed with a C18 column
213	(CAPCELLPAK C18 MGII S3, 4.6×150 mm; Shiseido, Tokyo, Japan) maintained at
214	40°C with a flow rate of 0.8 mL/min. Gradient elution was performed using a
215	two-solvent system: A, water containing 0.1% trifluoroacetic acid; and B, acetonitrile.
216	The gradient program was as follows: 0–20 min, 90–70% A linear; 20–25 min, 70–50%
217	A linear. The mobile phase was split at the postcolumn, such that the eluate entered the
218	HPLC-MS/MS system at a flow rate of 0.2 mL/min. MS/MS parameters were optimized
219	with luteolin aglycone, luteolin-3'-O-β-D-glucuronide, luteolin-4'-O-β-D-glucuronide,
220	luteolin-7- <i>O</i> -β-D-glucuronide, and luteolin-3'- <i>O</i> -sulfate standards under electrospray
221	ionization in the negative ion mode. The MS parameters were as follows: turbo gas
222	temperature, 600°C; spray voltage, -4500 V; nebulizer gas, 40 psi; auxiliary gas, 40 psi;
223	curtain gas, 20 psi; collision gas, 4.0 psi. For the quantification of luteolin aglycone and
224	luteolin glucuronides, the instrument was operated in the multiple-reaction monitoring
225	(MRM) mode and concentrations were calculated based on respective standard curves.
226	Detection limits were in the range of 0.1–0.2 pmol/injection at a S/N ratio of 3, and
227	recovery tests confirmed that recoveries were $>70\%$. ¹⁷ The precursor/product ion
228	transitions were the following: luteolin aglycone, m/z 284 > 133 (collision energy (CE),
229	-48 V; declustering potential (DP), -100 V); luteolin-3'- O - β -D-glucuronide, m/z 461 >
230	285 (CE, -32 V; DP, -95 V); luteolin-4'- <i>O</i> -β-D-glucuronide, <i>m/z</i> 461 > 285 (CE, -32
231	V; DP, -95 V); luteolin-7- <i>O</i> -β-D-glucuronide, <i>m/z</i> 461 > 285 (CE, -32 V; DP, -95 V);
232	luteolin-3'- <i>O</i> -sulfate, m/z 365 > 285 (CE, -50 V; DP, -90 V). Luteolin of other forms

233	were qualitatively analyzed using the following MRM transitions either defined in
234	literature ²¹⁻²³ or predicted MRM ion pairs (CE, -50 V; DP, -90 V): luteolin glucoside,
235	m/z 447 > 285; luteolin diglucoside, m/z 609 > 285; luteolin diglucuronide, m/z 637 >
236	285; luteolin glucoside glucuronide, m/z 632 > 285; luteolin disulfate, m/z 444 > 285;
237	luteolin glucoside sulfate, m/z 637 > 285; luteolin glucuronide sulfate, m/z 541 > 285;
238	methylated luteolin, m/z 301 > 285; methylated luteolin glucoside, m/z 463 > 285;
239	methylated luteolin glucuronide, m/z 477 > 285; methylated luteolin sulfate, m/z 381 >
240	285.
241	
242	2.8 Statistical Analysis
243	Data are presented as mean \pm standard error (SE). Statistical analysis was
244	performed by one-way ANOVA followed by Tukey's test. A <i>p</i> value of <0.05 was

considered to be significant.

246

247 **3. RESULTS AND DISCUSSION**

248 **3.1 Preparation of luteolin glucosides for oral administration studies**

249 Unlike catechin and quercetin, which are flavonoids that have been investigated in

250 detail, studies examining the metabolic fate of luteolin are limited.¹⁵ We previously

identified the structures of the major luteolin metabolites (*i.e.*, luteolin glucuronides)

252 found in plasma and organs after oral administration of luteolin aglycone or L-7G to

- 253 rats,¹⁷ and suggested that luteolin conjugates, especially luteolin-3'-*O*- β -D-glucuronide,
- are responsible for the biological activity of luteolin *in vivo*. However, the absorption
- and metabolism of L-7AG and L-7AMG, the primary glucosides detected in certain
- 256 plants such as pepper fruits,¹¹ are still unknown. Hence, in this study, the metabolic fate

257of luteolin glucosides (*i.e.*, L-7G, L-7AG, and L-7AMG) and luteolin aglycone was investigated by a single oral administration test to clarify how luteolin is absorbed and 258259metabolized. 260Since L-7AG and L-7AMG are not commercially available, these luteolin 261glucosides were prepared for oral administration studies. First, L-7AMG was extracted from green pepper leaves and chromatographically purified with a DIAIONTM HP20 262column. L-7G was fractionated with a TOYOPEARL HW-40C column after 263hydrolyzing L-7AMG with NaOH and HCl solutions. L-7AG was produced by 264265hydrolyzing L-7AMG in a NaOH solution and by drying the precipitate. Each luteolin glucoside was pure enough for the use in oral administration tests (HPLC purity > 90%). 266267As a point of reference, although apiosylated flavonoids (e.g., L-7AG and apigenin-7-*O*-apiosyl-glucoside) are known to be present in nature,^{11,24} the 268269apiosyl-malonyl type (*i.e.*, L-7AMG) is characteristic to luteolin. It has been suggested 270that the malonyl group in L-7AMG is easily dissociated in aqueous solutions; thus, it was thought interesting to see whether such property would affect the absorption and 271272metabolism of L-7AMG. 2733.2 Absorption and metabolism of luteolin aglycone and glucosides in rats 274

In the animal study, rats were orally administered 20 mg/kg body weight of either luteolin aglycone or luteolin glucosides (*i.e.*, L-7G, L-7AG, and L-7AMG). This dose was comparable to other studies observing the metabolism of flavonoids, as well as our previous study that investigated the metabolic fate of luteolin.¹⁷ In the present study, HPLC-MS/MS analysis in the MRM mode was utilized to analyze various luteolin metabolites, since the method offers advantages such as selectivity over conventional

281	techniques (e.g., HPLC-UV). ¹ As a result, regardless of the form by which luteolin was
282	administered, luteolin glucuronides (<i>i.e.</i> , luteolin-3'-O-β-D-glucuronide,
283	luteolin-4'- O - β -D-glucuronide, and luteolin-7- O - β -D-glucuronide) were mainly
284	detected from plasma and organs (i.e., liver, kidney, and small intestine).
285	Luteolin-3'- O - β -D-glucuronide was observed as the largest peak (Fig. 1B and 2).
286	Luteolin diglucuronide, luteolin glucuronide sulfate, and luteolin aglycone were seen at
287	low peak intensities, whereas luteolin glucosides, luteolin diglucosides, luteolin
288	glucoside glucuronide, luteolin sulfate, luteolin disulfate, luteolin glucoside sulfate,
289	luteolin glucuronide sulfate, methylated luteolin, methylated luteolin glucoside,
290	methylated luteolin glucuronide, and methylated luteolin sulfate were either found in
291	only trace levels or not detected, suggesting their low concentrations in plasma and
292	organs. Based on the present results and earlier findings, ^{1,8,16,17} we can suggest the
293	following absorption and metabolism routes of luteolin. When rats receive luteolin
294	aglycone, a part of luteolin is absorbed from the intestine into the systemic circulation.
295	In case of luteolin glucosides, regardless of sugar chain type, L-7G, L-7AG, and
296	L-7AMG are primarily hydrolyzed to luteolin aglycone in the gastrointestinal tract and
297	then absorbed into the body. Following this absorption, luteolin is mainly converted to
298	luteolin glucuronides, especially luteolin-3'- O - β -D-glucuronide. However, further
299	studies are necessary to elucidate whether such hydrolysis of different luteolin
300	glucosides takes place in the gastrointestinal tract.
301	HPLC-MS/MS analysis of both the plasma and organs demonstrated that the
302	concentration of luteolin glucuronides was larger in the luteolin aglycone administrated
303	group than that of the luteolin glucoside administrated groups (Table 1 and 2). In
304	previous studies, luteolin glucoside was suggested to be hydrolyzed to luteolin aglycone

305	by the bacterial flora in the intestine, and then converted to luteolin glucuronide by
306	phase II enzymes in the small intestine, liver, and kidney. ^{8,15} This suggests that luteolin
307	aglycone is easily absorbed compared to luteolin glucoside, because luteolin aglycone
308	does not need to be hydrolyzed, and coincides with the results of the current study in
309	which oral administration of luteolin aglycone resulted in greater amounts of luteolin
310	metabolites in plasma and organs compared to the administration of luteolin glucosides.
311	With regard to the metabolism of luteolin glucosides, the concentrations of luteolin
312	glucuronides were typically higher in order of the L-7G group > L-7AG group >
313	L-7AMG group. Hence, L-7G may be hydrolyzed and absorbed easier than L-7AG or
314	L-7AMG. In a previous study, Chang et al. compared the absorption of
315	quercetin-3-O-glucoside and quercetin-3-O-galactoside and suggested that
316	quercetin-3-O-glucoside is rapidly absorbed and transformed into glucuronidated
317	quercetin as compared to quercetin-3-O-galactoside. ²⁵ Such results indicate that the
318	absorption of flavonoid glycosides relates to the hydrolysis of the type of sugar chains
319	attached to its aglycone. Furthermore, the withdrawal of sugar chains attached to
320	flavonoids have been suggested to take place as a result of enzymatic reactions. For
321	example, it has been reported that the glucose bound to flavonoids is hydrolyzed by
322	glucosidases that exist in the lower sections of the small intestine or enteric bacteria. ²⁶
323	These studies suggest that glucose is easily hydrolyzed, and thus L-7G is absorbed
324	easier than L-7AG or L-7AMG. Also, the fact that L-7AG was absorbed easier than
325	L-7AMG can be considered to be due to the presence of a malonyl group in L-7AMG.
326	Since it is known that the malonyl group in L-7AMG is easily dissociated in aqueous
327	solutions, further research will be necessary to identify why the malonyl group seems to
328	be difficult to be dissociated during the metabolism of L-7AMG in vivo.

329	The concentration of luteolin-3'- O - β -D-glucuronide in plasma reached its
330	maximum level at 3–6 h after oral administration, and then gradually decreased (Fig. 3).
331	Although the absorbance of luteolin differed according to its different forms, the major
332	metabolite of luteolin (<i>i.e.</i> , luteolin-3'- β -D-O-glucuronide) remained in rat plasma even
333	after 24 h of administration of both luteolin aglycone and luteolin glucosides (Table 1).
334	Chung et al. reported that the peak concentration of catechin in rat plasma was reached
335	at 0.14–0.18 h after ingestion, and gradually reduced to detection limits at 12 h.9
336	Although the study only examined the free forms of catechin, and not its conjugates, the
337	fact that luteolin-3'- O - β -D-glucuronide remained to about half of the maximum level
338	even 12 h after administration regardless of administrating luteolin aglycone or
339	glucosides suggests that luteolin remains for a much longer time in rat body compared
340	to other flavonoids. This may be due to enterohepatic recycling, of which previous
341	studies have demonstrated that following initial absorption of flavonoids, their phase II
342	metabolites (<i>e.g.</i> , glucuronides) are excreted to the gastrointestinal tract via bile. ^{27,28}
343	However, further studies are necessary to prove that such mechanism prolongs the
344	bioavailability of luteolin.
345	

346 3.3 Absorption and metabolism of luteolin aglycone in humans

As mentioned above, it was suggested that luteolin aglycone and glucosides were mainly metabolized to luteolin glucuronide in rats. However, because intestinal enzymatic activities differ between humans and animals,⁸ we considered that luteolin is not necessarily converted to only luteolin glucuronide in humans. While human studies related to the metabolism of other flavonoids (*e.g.*, catechin and quercetin) have been conducted,²⁹⁻³¹ knowledge regarding the metabolism of luteolin in humans have been

353	scarce. Therefore, we conducted a human study in which luteolin aglycone, the most
354	absorbed form of luteolin in the animal study, was orally administered. Nine male
355	subjects consumed 50 mg luteolin aglycone, and blood samples were collected over
356	time to investigate time-dependent changes of luteolin in human plasma. As a result,
357	consistent with the oral administration test to rats, luteolin-3'- O - β -D-glucuronide and
358	luteolin-4'- O - β -D-glucuronide were detected in human plasma (Fig. 4A). However, the
359	maximum peak identified during the LC-MS/MS analysis of human plasma was not
360	luteolin glucuronide but was an unidentified peak. Considering the study by Roubalová
361	et al. in which the major form of quercetin identified in humans was
362	quercetin-3'-O-sulfate, ³² and the fact that phenol sulfotransferase, an enzyme that
363	metabolizes flavonoids to flavonoid sulfates, is present in the human intestine, ³³ it was
364	speculated that the unidentified peak was luteolin sulfate. Hence, a standard of luteolin
365	sulfates (<i>i.e.</i> , luteolin-3'-O-sulfate and luteolin-4'-O-sulfate) was prepared by reacting
366	luteolin aglycone with sulfur trioxide pyridine complex. Luteolin sulfate in human
367	plasma was analyzed with the use of these standards, and consequently, the unidentified
368	peak corresponded to that of the luteolin-3'-O-sulfate standard. Based on these results,
369	it was suggested that the metabolism of luteolin varies according to animal species.
370	Subsequently, time-dependent changes of luteolin-3'-O-sulfate concentration in human
371	plasma were further investigated. The plasma concentration of luteolin-3'-O-sulfate
372	reached its maximum level (801.9 ± 277.6 nM) at 3 h and was about half of the
373	maximum concentration at 6 h after oral administration of luteolin aglycone. Although
374	the concentration gradually decreased, luteolin-3'-O-sufate still remained even after 12
375	h of administration (Fig. 4B). In the study by Mullen et al. where humans consumed
376	261 µmol quercetin (equivalent to 79 mg quercetin aglycone), the concentration of

377	quercetin-3'-O-sulfate in human plasma reached a maximum level (665.0 ± 82.0 nM) at
378	0.75 h and was half at 1.71 h after administration. ³¹ Thus, our results suggest that
379	luteolin remains for a relatively long time in the human body compared with other
380	flavonoids. However, compared with the results of the animal study where luteolin
381	glucuronides remained in plasma to about half of the maximum level 12 h after
382	administration (Fig. 3), luteolin sulfate remained in human plasma for a considerably
383	shorter time (Fig. 4B). This may be related to the enterohepatic recycling discussed
384	above, considering that while flavonoid sulfates are mainly excreted only into urine,
385	glucuronides are usually excreted also to bile to undergo enterohepatic recycling. ³⁴⁻³⁶
386	Thus, further studies examining luteolin glucuronides and sulfates in urine may provide
387	a more detailed view on the possible mechanism regarding how enterohepatic
388	circulation possibly prolongs the bioavailability of luteolin.
389	
390	3.4 In vitro anti-inflammatory effects of luteolin conjugates in relation to their
391	cellular intake
391 392	cellular intake Based on the above studies, it was elucidated that the metabolism of luteolin is
391 392 393	cellular intake Based on the above studies, it was elucidated that the metabolism of luteolin is different between rats and humans. As such, a cell study was conducted to examine
391 392 393 394	cellular intake Based on the above studies, it was elucidated that the metabolism of luteolin is different between rats and humans. As such, a cell study was conducted to examine whether different luteolin metabolites demonstrate different strengths of physiological
391 392 393 394 395	cellular intake Based on the above studies, it was elucidated that the metabolism of luteolin is different between rats and humans. As such, a cell study was conducted to examine whether different luteolin metabolites demonstrate different strengths of physiological effects. Recent studies have examined the anti-inflammatory effects of luteolin; Chen et
 391 392 393 394 395 396 	cellular intake Based on the above studies, it was elucidated that the metabolism of luteolin is different between rats and humans. As such, a cell study was conducted to examine whether different luteolin metabolites demonstrate different strengths of physiological effects. Recent studies have examined the anti-inflammatory effects of luteolin; Chen et al. reported that luteolin aglycone inhibits the expression of inflammatory genes (<i>i.e.</i>
 391 392 393 394 395 396 397 	cellular intake Based on the above studies, it was elucidated that the metabolism of luteolin is different between rats and humans. As such, a cell study was conducted to examine whether different luteolin metabolites demonstrate different strengths of physiological effects. Recent studies have examined the anti-inflammatory effects of luteolin; Chen et al. reported that luteolin aglycone inhibits the expression of inflammatory genes (<i>i.e. TNF-α</i> , <i>IL-6</i> , <i>iNOS</i> , and <i>COX-2</i>) in LPS-treated mouse macrophage RAW264.7 cells. ³⁷
 391 392 393 394 395 396 397 398 	cellular intake Based on the above studies, it was elucidated that the metabolism of luteolin is different between rats and humans. As such, a cell study was conducted to examine whether different luteolin metabolites demonstrate different strengths of physiological effects. Recent studies have examined the anti-inflammatory effects of luteolin; Chen et al. reported that luteolin aglycone inhibits the expression of inflammatory genes (<i>i.e. TNF-α</i> , <i>IL-6</i> , <i>iNOS</i> , and <i>COX-2</i>) in LPS-treated mouse macrophage RAW264.7 cells. ³⁷ In addition, we previously compared the anti-inflammatory properties of luteolin

400 luteolin-4'-*O*-β-D-glucuronide, and luteoin-7-*O*-β-D-glucuronide) in LPS-treated

401	RAW264.7 cells. ¹⁷ However, the anti-inflammatory properties of luteolin sulfate, which
402	was identified as the major metabolite of luteolin in humans in the current study, has not
403	yet been evaluated. Moreover, studies on how luteolin aglycone and luteolin conjugates
404	are incorporated into cells have been scarce, although it can be assumed that luteolin
405	first has to be incorporated into the cell to exhibit physiological functions (e.g.,
406	anti-inflammatory effects). Therefore, the anti-inflammatory effects of luteolin aglycone,
407	luteolin glucuronides (i.e., luteolin metabolites characteristic to rats), and luteolin
408	sulfates (i.e., luteolin metabolites characteristic to humans) were investigated in relation
409	to their cellular intake.
410	Our previous study along with other reports have demonstrated that luteolin
411	aglycone and luteolin conjugates at a concentration of 25 μ M have no effect on cell
412	viability. ^{17,37} As such, we decided that a concentration of 25 μ M was suitable for
413	examining the cellular intake and anti-inflammatory effects of luteolin. The cellular
414	intake of luteolin was investigated by extracting luteolin from RAW264.7 cells treated
415	with either luteolin aglycone, luteolin glucuronides (<i>i.e.</i> , luteolin-3'-O-β-D-glucuronide
416	and luteolin-4'- <i>O</i> -β-D-glucuronide), or luteolin sulfate (<i>i.e.</i> , luteolin-3'- <i>O</i> -sulfate). Also,
417	to investigate the anti-inflammatory effects of each luteolin form, RAW264.7 cells were
418	first treated with each luteolin form for 24 h, after which LPS (1 μ g/mL) was added to
419	the test medium. After further incubating for 3 h, total RNA was extracted, and mRNA
420	expression of <i>IL-6</i> , <i>IL-1</i> β , <i>Ccl2</i> , and <i>Ccl3</i> was examined by real-time RT-PCR. These
421	genes related to inflammation were selected based on the results of our previous study,
422	in which it was identified through DNA microarray analysis that luteolin treatment
423	affects their expression. ¹⁷
424	When RAW264.7 cells were treated with luteolin aglycone, luteolin aglycone was

425	mainly detected from the cell (Fig. 5). Also, in accordance with our previous study, ¹⁷
426	PCR analysis demonstrated that treatment of cells with luteolin aglycone inhibits the
427	expression of <i>IL-6</i> , <i>IL-1</i> β , <i>Ccl2</i> , and <i>Ccl3</i> genes (Fig. 6). With regard to treatment of
428	cells with luteolin conjugates, when cells were treated with luteolin glucuronide (i.e.,
429	luteolin-3'- <i>O</i> -β-D-glucuronide and luteolin-4'- <i>O</i> -β-D-glucuronide), luteolin aglycone
430	was the main metabolite detected from the cell. Shimoi et al. previously reported that
431	β -glucuronidase enzymes convert luteolin glucuronides to luteolin aglycone as a
432	consequence of inflammation <i>in vitro</i> in human neutrophils as well as <i>in vivo</i> in rats. ³⁸
433	The predominance of luteolin aglycone after treatment of luteolin glucuronides may be
434	a result of such β -glucuronidase activity; previous studies identifying β -glucuronidase
435	as the major deglucuronidation enzyme that deconjugates quercetin glucuronide in
436	RAW264 cells, further emphasizes this hypothesis. ^{39,40} The expression levels of
437	inflammatory genes were also suppressed, suggesting that luteolin aglycone is the major
438	form related to the anti-inflammatory effects of luteolin. On the other hand, the
439	intracellular amounts of luteolin metabolites after the treatment of cells with
440	luteolin-3'-O-sulfate was very low compared with that of treatment with luteolin
441	glucuronides, suggesting that luteolin-3'-O-sulfate is difficult to be incorporated into
442	RAW264.7 cells. Also, metabolites other than luteolin-3'-O-sulfate were not detected
443	(Fig. 5), which demonstrates the difference in metabolism between luteolin-3'-O-sulfate
444	and luteolin glucuronides. This difference in metabolism was somewhat reflected in the
445	expression levels of inflammatory genes, considering that the inhibitory effects of
446	luteolin-3'-O-sulfate was lower than that of luteolin aglycone and luteolin glucuronide
447	(Fig. 6). One exception was the expression level of <i>Ccl2</i> , which was increased by
448	treatment with luteolin-3'-O-sulfate; the reason for this is unclear and requires further

research. With regard to the physiological effects of phenolic sulfates, Roubalová et al. 449reported that the bioactivity of quercetin sulfate *in vitro* is weak because the affinity of 450sulfated guercetin to target molecules is low compared to guercetin aglycone.³² 451452Similarly, it can be considered that the anti-inflammatory effects of luteolin sulfate was 453weaker than that of luteolin aglycone and luteolin glucuronide due to the affinity of luteolin sulfate to molecules that control the expression of inflammatory genes being 454455lower. In conclusion, it was revealed that regardless of administrating luteolin aglycone or 456glucosides, these molecules are mainly metabolized to luteolin glucuronide (e.g., 457luteolin-3'-O-β-D-glucuronide) in rats. Meanwhile, luteolin-3'-O-sulfate was identified 458as the most abundant luteolin form in human plasma after administration of luteolin 459aglycone. Although the metabolism of luteolin varied between animal species, it was 460 461 suggested that luteolin glucuronide and luteolin sulfate, which are the major metabolites of luteolin in rats and humans, remain for a relativity long time in the body. Luteolin 462 glucuronide was mainly converted to luteolin aglycone after being incorporated into the 463

465 Luteolin sulfate also reduced expression levels of inflammatory genes, but this effect

cell and inhibited the expression of inflammatory genes in LPS-treated RAW264.7 cells.

466 was weaker than that of luteolin glucuronide. However, further investigations will be

required to fully elucidate the mechanism by which luteolin exhibits its physiologicalfunctions *in vitro* and *in vivo*.

469

464

470 Abbreviations Used

471 CE, collision energy; DP, declustering potential; FBS, fetal bovine serum; L-7AG,

472 luteolin-7-*O*-[2-(β-D-apiosyl)-β-D-glucoside]; L-7AMG,

- 473 luteolin-7-*O*-[2-(β-D-apiosyl)-6-malonyl-β-D-glucoside]; L-7G,
- 474 luteolin-7-*O*-β-D-glucoside; MRM, multiple-reaction monitoring
- 475

476 Acknowledgements

- 477 The authors thank Shunji Kato (Division of Host Defense Mechanism, Tokai University
- 478 School of Medicine, Japan) for support in LC-MS/MS analysis.
- 479

480 **Funding sources**

- 481 This study was supported in part by a grant-in-aid "A scheme to revitalize agriculture
- and fisheries in disaster area through deploying highly advanced technology" from the
- 483 Ministry of Agriculture, Forestry and Fisheries (MAFF), Japan.

484 References

- Shimoi, K.; Okada, H.; Furugori, M.; Goda, T.; Takase, S.; Suzuki, M.; Hara, Y.;
 Yamamoto, H.; Kinae, N. Intestinal absorption of luteolin and luteolin
- 487 7-O-β-glucoside in rats and humans. *FEBS Lett.* **1998**, 438, 220–224.
- 488 2. Harris, G. K.; Qian, Y.; Leonard, S. S.; Sbarra, D. C.; Shi, X. Luteolin and chrysin
- differentially inhibit cyclooxygenase-2 expression and scavenge reactive oxygen
- 490 species but similarly inhibit prostaglandin-E2 formation in RAW 264.7 cells. J. Nutr.
- **2006**, 136, 1517–1521.
- 492 3. Davatgaran-Taghipour, Y.; Masoomzadeh, S.; Farzaei, H. M.; Bahramsoltani, R.;
- 493 Karimi-Soureh, Z.; Rahimi, R.; Abdollahi, M. Polyphenol nanoformulations for
 494 cancer therapy: Experimental evidence and clinical perspective. *Int. J.*
- 495 *Nanomedicine*. **2017**, 12, 2689–2702.
- 496 4. Serafini, M.; Bugianesi, R.; Maiani, G.; Valtuena, S.; Santis, D, S.; Crozier, A.
 497 Plasma antioxidants from chocolate. *Nature*. 2003, 424, 1013.
- 498 5. Li, Y.; Qin, R.; Yan, H.; Wang, F.; Huang, S.; Zhang, Y.; Zhong, M.; Zhang, W.;
 499 Wang, Z. Inhibition of vascular smooth muscle cells premature senescence with
- Wang, Z. Inhibition of vascular smooth muscle cells premature senescence with
 rutin attenuates and stabilizes diabetic atherosclerosis. *J. Nutr. Biochem.* 2018, 51,
 91–98.
- 502 6. Deepa, P.; Sowndhararajan, K.; Kim, S.; Park, S. J. A role of Ficus species in the
 503 management of diabetes mellitus: a review. *J. Ethnopharmacol.* 2018, 215, 210–
 504 232.
- 505 7. Wu, W.; Li, D.; Zong, Y.; Zhu, H.; Pan, D.; Xu, T.; Wang, T.; Wang, T. Luteolin
 506 inhibits inflammatory responses via p38/MK2/TTP-mediated mRNA stability.
 507 *Molecules*. 2013, 18, 8083–8094.

508	8. Yasuda, M. T.; Fujita, K.; Hosoya, T.; Imai, S.; Shimoi, K. Absorption and
509	metabolism of luteolin and its glycosides from the extract of Chrysanthemum
510	morifolium flowers in rats and Caco-2 cells. J. Agric. Food Chem. 2015, 63, 7693-
511	7699.
512	9. Chung, J. O.; Lee, S. B.; Jeong, K. H.; Song, J. H.; Kim, S. K.; Joo, K. M.; Jeong, H.
513	W.; Choi, J. K.; Kim, J. K.; Kim, W. G.; Shina, S. S.; Shim S. M. Quercetin and
514	fisetin enhanced the small intestine cellular uptake and plasma levels of epi
515	-catechins in <i>in vitro</i> and <i>in vivo</i> models. Food Funct. 2018, 9, 234–242.
516	10. Terao, J. Factors modulating bioavailability of quercetin-related flavonoids and the
517	consequences of their vascular function. Biochem. Pharmacol. 2017, 139, 15-23.
518	11. Materska, M.; Konopacka, M.; Rogoliński, J.; Ślosarek, K. Antioxidant activity and
519	protective effects against oxidative damage of human cells induced by X-radiation
520	of phenolic glycosides isolated from pepper fruit (Capsicum annuum L.). Food
521	<i>Chem.</i> 2015 , 168, 546–553.
522	12. Sabzichi, M.; Hamishehkar, H.; Ramezani, F.; Sharifi, S.; Tabasinezhad, M.;
523	Pirouzpanah, M.; Ghanbari, P.; Samadi, N. Luteolin-loaded phytosomes sensitize
524	human breast carcinoma MDA-MB 231 cells to doxorubicin by suppressing Nrf2
525	mediated signalling. Asian Pacific J. Cancer Prev. 2014, 15, 5311–5316.
526	13. Siracusa, R.; Impellizzeri, D.; Cordaro, M.; Crupi, R.; Esposito, E.; Petrosino, S.;
527	Cuzzocrea, S. Anti-inflammatory and neuroprotective effects of co-ultraPEALut in a
528	mouse model of vascular dementia. Front. Neurol. 2017, 8, 1-18.
529	14. Kumazawa, Y.; Kawaguchi, K.; Takimoto, H. Immunomodulating effects of
530	flavonoids on acute and chronic inflammatory responses caused by tumor necrosis

531 factor alpha. *Curr. Pharm. Des.* **2006**, 12, 4271–4279.

- 15. Wu, L.; Liu, J.; Han, W.; Zhou, X.; Yu, X.; Wei, Q.; Liu, S.; Tang, L.
 Time-dependent metabolism of luteolin by human UDP-glucuronosyltransferases
 and its intestinal first-pass glucuronidation in mice. *J. Agric. Food Chem.* 2015, 63,
 8722–8733.
- 536 16. Lin, L. C.; Pai, Y. F.; Tsai, T. H. Isolation of luteolin and luteolin7-O-glucoside from
- 537 *Dendranthema morifolium* Ramat Tzvel and their pharmacokinetics in rats. J. Agric.
 538 *Food Chem.* 2015, 63, 7700–7706.
- 539 17. Kure, A.; Nakagawa, K.; Kondo, M.; Kato, S.; Kimura, F.; Watanabe, A.; Shoji, N.;
- 540 Hatanaka, S.; Tsushida, T.; Miyazawa, T. Metabolic fate of luteolin in rats: Its
- relationship to anti-inflammatory effect. J. Agric. Food Chem. 2016, 64, 4246–4254.
- 18. Borrás-Linares, I; Stojanović, Z, Quirantes-Piné, R; Arráez-Román, D; Švarc-Gajić,
- J; Fernández-Gutiérrez, A; Segura-Carretero, A. *Rosmarinus officinalis* leaves as a
 natural source of bioactive compounds. *Int. J. Mol. Sci.* 2014, 15, 20585–20606.
- 19. Tsushida, T.; Suzuki, M. Isolation of flavonoid glycosides in onion and
 identification by chemical synthesis of the glycosides (Flavonoid in fruits and
 vegetables part 1). *Nippon Shokuhin Kagaku Kogaku Kaishi*. 1995, 42, 100–108.
- 548 20. Dapkevicius, A.; van Beek, T. A.; Lelyveld, G. P.; van Veldhuizen, A.; de Groot, A.;
- Linssen, J. P.; Venskutonis, R. Isolation and structure elucidation of radical
 scavengers from *Thymus vulgaris* leaves. *J. Nat. Prod.* 2002, 65, 892–896.
- 551 21. Pikulski, M.; Brodbelt, J. S. Differentiation of flavonoid glycoside isomers by using
- metal complexation and electrospray ionization mass spectrometry. J. Am. Soc.
 Mass Spectrom. 2013, 14, 1437–1453.
- 22. Zhang, J.; Satterfield, M. B.; Brodbelt, J. S.; Britz, S. J.; Clevidence, B.; Novotny, J.
- 555 A. Structural characterization and detection of kale flavonoids by electrospray

ionization mass spectrometry. Anal. Chem. 2003, 75, 6401–6407.

- 557 23. Tang, L.; Li, Y.; Chen, W. Y.; Zeng, S.; Dong, L. N.; Peng, X. J.; Jiang, W.; Hu, M.;
- Liu, Z. Q. Breast cancer resistance protein-mediated efflux of luteolin glucuronides
- in HeLa cells overexpressing UDP glucuronosyltransferase 1A9. *Pharm. Res.* 2014,
 31, 847–860.
- 24. Pradas Del Real, A. E.; Silvan, J. M.; de Pascual-Teresa, S.; Guerrero, A.;
 García-Gonzalo, P.; Lobo, M. C.; Pérez-Sanz, A. Role of the polycarboxylic
 compounds in the response of *Silene vulgaris* to chromium. *Environ. Sci. Pollut. Res.*2017, 24, 5746–5756.
- 565 25. Chang, Q.; Zuo, Z.; Chow, M. S. S.; Ho, W. K. K. Difference in absorption of the
 566 two structurally similar flavonoid glycosides, hyperoside and isoquercitrin, in rats.
 567 *Eur. J. Pharm. Biopharm.* 2005, 59, 549–555.
- 568 26. Hackett, A. M. The metabolism of flavonoid compounds in mammals. *Prog. Clin.*569 *Biol. Res.* 1986, 213, 177.
- 570 27. Xia, B.; Zhou, Q.; Zheng, Z.; Ye, L.; Hu, M.; Liu, Z. A novel local recycling 571 mechanism that enhances enteric bioavailability of flavonoids and prolongs their
- 572 residence time in the gut. *Mol. Pharmaceutics.* **2012**, 9, 3246–3258.
- 28. Zeng, M.; Sun, R.; Basu, S.; Ma, Y.; Ge, S.; Yin, T.; Gao, S.; Zhang, J.; Hu, M.
 Disposition of flavonoids via recycling: Direct binary excretion of enterically or
 extrahepatically derived flavonoid glucuronides. *Mol. Nutr. Food Res.* 2016, 60,
 1006–1019.
- 577 29. Naumovski, N.; Blades, B.; Roach, P. Food inhibits the oral bioavailability of the
 578 major green tea antioxidant epigallocatechin gallate in humans. *Antioxidants*. 2015,
 579 4, 373–393.

30. Lee, J.; Mitchell, A. E. Pharmacokinetics of quercetin absorption from apples and
onions in healthy humans. *J. Agric. Food Chem.* 2012, 60, 3874–3881.

- 31. Mullen, W.; Edwards, C. A.; Crozier, A. Absorption, excretion and metabolite
 profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in
- human plasma and urine after ingestion of onions. *Br. J. Nutr.* **2006**, 96, 107–116.
- 585 32. Roubalová, L.; Purchartová, K.; Papoušková, B.; Vacek, J.; Kəen, V.; Ulrichová, J.;

Vrba, J. Sulfation modulates the cell uptake, antiradical activity and biological

- effects of flavonoids in vitro: An examination of quercetin, isoquercitrin and
 taxifolin. *Bioorg. Med. Chem.* 2015, 23, 5402–5409.
- 33. Murota, K.; Terao, J. Antioxidative flavonoid quercetin: Implication of its intestinal
 absorption and metabolism. *Arch. Biochem. Biophys.* 2003, 417, 12–17.
- 591 34. Klaassen, C. D.; Watkins, J. B. Mechanisms of bile formation, hepatic uptake, and
 592 biliary excretion. *Pharmacol. Rev.* 1984, 36, 1–67.
- 593 35. Mulder, G. J.; Brouwer, S.; Weitering, J. G.; Scholtens, E.; Pang, K. S.
- 594 Glucuronidation and sulfation in the rat *in vivo*: The role of the liver and the
- 595 intestine in the *in vivo* clearance of 4-methylumbelliferone. *Biochem. Pharmacol.*
- **1985**, 34, 1325–1329.

586

- 597 36. Fleck, C.; Braunlich, H. Factors determining the relationship between renal and
 598 hepatic excertion of xenobiotics. *Arzneim. Forsch./Drug res.* 1990, 40, 942–946.
- 599 37. Chen, C. Y.; Peng, W. H.; Tsai, K. D.; Hsu, S. L. Luteolin suppresses
- 600 inflammation-associated gene expression by blocking NF-κB and AP-1 activation
- pathway in mouse alveolar macrophages. *Life Sci.* **2007**, 81, 1602–1614.
- 602 38. Shimoi, K.; Saka, N.; Nozawa, R.; Sato, M.; Amano, I.; Nakayama, T.; Kinae, N.
- 603 Deglucuronidation of a flavonoid, luteolin monoglucuronide, during inflammation.

604 Drug Metab. Dispos. 2001, 29, 1521–1524.

- 39. Kawai, Y. β-Glucuronidase activity and mitochondrial dysfunction: the sites where
 flavonoid glucuronides act as anti-inflammatory agents. *J. Clin. Biochem. Nutr.*2014, 54, 145–150.
- 40. Ishikawa, A.; Kawabata, K; Miki, S.; Shibata, Y.; Minekawa, S.; Nishikawa, T.;
- 609 Mukai, R.; Terao, J.; Kawai, Y. Mitochondrial dysfunction leads to deconjugation of
- 610 quercetin glucuronides in inflammatory macrophages. *PLoS ONE*. **2013**, 8, e80843.

612 Tables

613 **Table 1.** Time-dependent changes of luteolin-3'-*O*-β-D-glucuronide in rat plasma

614 following oral administration of luteolin aglycone or glucosides.

	Luteolin aglycone administration		L-7G administration		L-7AG administration		L-7AMG administration	
Time (h)	Concentrations	Concentrations	Concentrations	Concentrations	Concentrations	Concentrations	Concentrations	Concentrations
	(nM)	(µg/L)	(nM)	(µg/L)	(nM)	(µg/L)	(nM)	(µg/L)
0	n.d.*	n.d.*	n.d.*	n.d.*	n.d.*	n.d.*	n.d.*	n.d.*
1	356.5 ± 499.0	164.7 ± 230.5	94.3 ± 91.0	43.6 ± 42.0	25.3 ± 16.6	11.7 ± 7.7	1.2 ± 0.5	0.6 ± 0.2
3	1074.1 ± 909.0	496.3 ± 420.0	301.1 ± 153.8	139.1 ± 195.5	24.3 ± 14.8	11.2 ± 6.8	2.8 ± 1.5	1.3 ± 0.7
6	570.0 ± 519.3	263.1 ± 239.9	153.8 ± 156.4	71.0 ± 72.3	121.2 ± 147.4	56.0 ± 68.1	40.5 ± 72.9	18.7 ± 33.7
12	531.7 ± 742.9	245.6 ± 343.2	133.2 ± 185.0	61.5 ± 85.5	11.0 ± 8.6	5.1 ± 4.0	30.8 ± 27.7	14.2 ± 12.8
24	6.8 ± 6.3	3.1 ± 2.9	4.3 ± 5.3	2.0 ± 2.4	1.3 ± 0.8	0.6 ± 0.4	0.5 ± 0.5	0.2 ± 0.2

Data are mean \pm SE (n = 7-8).

 $L-7G, \ Luteolin-7-{\it O}-glucoside; \ L-7AG, \ Luteolin-7-{\it O}-apiosyl-glucoside; \ L-7AMG, \ Luteolin-7-{\it O}-apiosyl-malonyl-glucoside.$

n.d. = not detected

616 **Table 2.** The concentration of luteolin glucuronides in rat organs at 6 h after oral

617 administration of luteolin aglycone or glucosides.

618

		Luteolin-3'-C	-glucuronide	Luteolin-4'-O-glucuronide		Luteolin-7-0	Luteolin-7-O-glucuronide	
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration	
		(pmol/g)	(ng/g)	(pmol/g)	(ng/g)	(pmol/g)	(ng/g)	
	Liver	638.2 ± 344.8	294.8 ± 159.3	277.5 ± 173.1	128.2 ± 80.0	165.1 ± 163.5	76.3 ± 65.4	
Luteolin aglycone administration	Kidney	906.7 ± 344.3	418.9 ± 159.1	184.6 ± 87.9	85.3 ± 40.6	120.2 ± 86.8	55.6 ± 34.7	
	Small intestine	4818.5 ± 7008.5	4542.8 ± 3237.9	597.5 ± 440.9	276.0 ± 203.7	3573.4 ± 2814.4	1650.9 ± 1126.0	
	Liver	186.7 ± 91.0	86.2 ± 42.1	150.4 ± 109.7	69.5 ± 50.7	23.1 ± 8.8	10.7 ± 4.1	
L-7G administration	Kidney	258.7 ± 220.9	119.5 ± 102.1	50.8 ± 38.3	23.5 ± 17.7	32.6 ± 26.2	15.1 ± 12.1	
	Small intestine	487.8 ± 443.0	225.4 ± 204.7	92.6 ± 98.8	42.8 ± 45.6	339.5 ± 375.7	142.8 ± 185.4	
	Liver	41.7 ± 58.6	19.3 ± 27.1	16.5 ± 12.7	7.6 ± 5.9	13.6 ± 10.1	6.3 ± 4.7	
L-7AG administration	Kidney	49.0 ± 38.2	22.6 ± 17.6	12.1 ± 11.0	5.6 ± 5.1	13.1 ± 10.9	6.0 ± 5.0	
	Small intestine	211.2 ± 327.6	97.6 ± 151.4	50.5 ± 84.5	23.4 ± 39.1	149.2 ± 246.1	68.9 ± 113.7	
	Liver	26.5 ± 25.1	12.2 ± 10.1	10.0 ± 6.0	4.6 ± 2.8	6.0 ± 5.1	2.8 ± 2.4	
L-7AMG administration	Kidney	33.5 ± 30.0	15.0 ± 12.0	6.8 ± 5.8	3.1 ± 2.7	6.9 ± 8.0	3.2 ± 3.7	
	Small intestine	308.2 ± 496.8	142.4 ± 198.8	39.5 ± 54.2	18.2 ± 25.0	312.4 ± 517.2	144.3 ± 238.9	

Data are mean \pm SE. (n = 4)

L-7G, Luteolin-7-O-glucoside; L-7AG, Luteolin-7-O-apiosyl-glucoside; L-7AMG, Luteolin-7-O-apiosyl-malonyl-glucoside.

619 Figure captions

- 620 Figure 1. Chemical structures of luteolin aglycone and glucosides
- 621 (luteolin-7-*O*-β-D-glucoside, luteolin-7-*O*-[2-(β-D-apiosyl)-β-D-glucoside], and
- 622 luteolin-7-*O*-[2-(β-D-apiosyl)-6-malonyl-β-D-glucoside]) (A) and major luteolin
- 623 metabolites in rats and humans (B).

624

- 625 **Figure 2.** MRM chromatograms of luteolin-3'-O-β-D-glucuronide,
- 626 luteolin-4'-O-β-D-glucuronide, luteolin-7-O-β-D-glucuronide, and luteolin aglycone in
- rat plasma and organs (liver, kidney, and small intestine) at 6 h after oral administration
- 628 of luteolin aglycone (20 mg/kg body weight). Similar chromatograms were also
- 629 obtained by the oral administration of either L-7G, L-7AG, and L-7AMG (20 mg/kg
- 630 body weight).
- 631
- 632 **Figure 3.** Time-dependent changes of luteolin-3'-*O*-β-D-glucuronide concentrations in

rat plasma after oral administration of luteolin aglycone or glucosides (20 mg/kg body

634 weight). Mean \pm SE (n = 7–8).

- 635
- 636 **Figure 4.** MRM chromatogram of luteolin-3'-*O*-β-D-glucuronide,
- 637 luteolin-4'-O-β-D-glucuronide, luteolin-3'-O-sulfate, and luteolin aglycone in human
- 638 plasma at 3 h after oral administration of luteolin aglycone (50 mg) (A).
- 639 Time-dependent changes of luteolin-3'-O-sulfate in human plasma after consumption of
- 640 luteolin aglycone (50 mg). Mean \pm SE (n = 9) (B).

642	Figure 5. MRM chromatograms demonstrating the luteolin metabolites identified from
643	RAW264.7 cells treated with luteolin aglycone, luteolin 3'- O - β -D-glucouronide,
644	luteolin-4'-O- β -D-glucuronide, and luteolin-3'-O-sulfate. RAW264.7 cells (5.0×10^5)
645	were preincubated with 10% FBS/DMEM for 24 h and subsequently treated with 25 μM
646	luteolin aglycone, luteolin-3'- O - β -D-glucuronide, luteolin-4'- O - β -D-glucuronide, or
647	luteolin-3'-O-sulfate for 24 h.
648	
649	Figure 6. Effect of luteolin aglycone, luteolin-3'- O - β -D-glucuronide,
650	luteolin-4'- O - β -D-glucuronide, and luteolin-3'- O -sulfate on the mRNA expression of
651	genes related to inflammation in LPS-treated RAW264.7 cells. RAW264.7 cells (8.0 \times
652	10^5) were pre-incubated with 10% FBS/DMEM in 10 cm dishes for 24h. Cells were
653	treated with 25 μ M luteolin aglycone, luteolin-3'-O- β -D-glucuronide,
654	luteolin-4'- O - β -D-glucuronide, or luteolin-3'- O -sulfate for 24 h, and then stimulated
655	with or without LPS (1 μ g/mL) for 3 h. mRNA expression of genes was analyzed by
656	real-time RT-PCR. Values are expressed as mean \pm SE (n = 3). Means without a

657 common letter differ significantly at p < 0.05.

659 Figure graphics

660 **Figure 1**

670 **Figure 6**

672 Graphic for table of contents

