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ABSTRACT: Neutral N-pyrazolyl radicals [3,5-R2pz]
• as

reactive intermediates were generated by one-electron
oxidization of the corresponding 3,5-disubstituted pyr-
azolato anions [3,5-R2pz]

− (R = tBu, Ph) with BiCl3 and
trapped by the use of 5,5-dimethyl-1-pyrroline-N-oxide as
a spin trap, which was confirmed by electron paramagnetic
resonance spectral analysis. With dimerization of the
postulated pyrazolato low-valent BiII radical species, two
novel paddlewheel pyrazolatodibismuthanes [L2(Bi−
Bi)L2] [L = η1,η1-3,5-R2pz; R = tBu (5α, 5β, and 5γ),
Ph (6)] were isolated and structurally characterized.

The aromatic neutral five-membered ring radicals have
attracted great interest in fundamental chemistry,1−3

organometallics,4,5 and physical chemistry.6 Deprotonated
3,4,5-substituted pyrazoles with the aromatic 6π electronic
structure [3,4,5-R1R2R3pz]

− (1; R1, R2, R3 = H, alkyl, aryl, etc.;
Scheme 1) are the heterocyclic analogues of the cyclo-

pentadienyl ligand [Cp−/(Cp*)−] and have been extensively
applied to metal complexes as spectator ligands for many
years.7−12 The electron distribution within the heterocycle,
however, presents a charge shift toward the more electro-
negative N atom, so that σ coordination with N1 or N2 or both
is common in pyrazolato complexes.7 Because heteroatoms are

known to be effective at delocalizing the spin density and
concomitantly stabilizing radicals,13 pyrazolato ions thus have
high potential to electronically stabilize the radical 2,14,15 which
may derived from the one-electron oxidation of 1.16,17

Although species 2 with possible σ (2σ) and π (2π) types has
been theoretically postulated many times,14,15 it has not been
evidenced directly so far because of its high reactivity. Louw
and co-workers reported that thermolysis of tert-butyl-1-
pyrazolepercarboxylate and its 3-methyl derivative in a benzene
solution at 140 °C leads to N-phenylated pyrazoles without the
formation of isomeric C-phenyl derivatives.18 On the basis of
this experimental fact, N-pyrazolyl radicals were, hence,
postulated as intermediates, where the unpaired electron is
delocalized over the two N atoms with a σ-type ground state
(2σ).18 However, no further evidence such as electron
paramegnetic resonance (EPR) spectra for this radical species
was provided. To date, the pyrazolyl radical structure with a σ
(2σ) or π (2π) type is still a question of debate.
We have been interested in pyrazolato complexes19−21 and

particularly in exploring the pyrazolyl radicals (2) that derive
from the one-electron oxidation of 1 with hypervalent metal
ions. Herein we report that neutral 3,5-substituted N-pyrazolyl
radicals [3,5-R2pz]

• (III) were generated by one-electron
oxidization of the corresponding 3,5-disubstituted pyrazolato
anions [3,5-R2pz]

− [R = tBu (3−), Ph (4−)] with BiCl3 (see
Scheme 2 and the Supporting Information, SI). The radical
species [3,5-tBu2pz]

• (III) was trapped as a reactive
intermediate by using 5,5-dimethyl-1-pyrroline-N-oxide
(DMPO) as a spin trap to give a N-pyrazolyl radical adduct
(9), which was confirmed by EPR spectral analysis.
The reaction between BiCl3 and pyrazolatopotassium K[3,5-

R2pz] [R = tBu (3),19 Ph (4)22], at a ratio of 1:3, in
tetrahydrofuran (THF) resulted in an orange solution at room
temperature (Scheme 2).23 The solution was worked up, and
the paddlewheel dibismuthane {(η1,η1-3,5-R2pz)2(Bi−Bi)(η1,η1-
3,5-R2pz)2] [R = tBu (5), Ph (6)] was readily isolated as orange
crystals in a fair yield (38.7% for 5 and 13.9% for 6).
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Scheme 1. N-Pyrazolyl Radicals (2) with σ- or π-Type
Structures
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Concentrating the mother liquor allowed an additional portion
of the dibismuthane to be isolated and the related colorless free
ligand H[3,5-R2pz] [R = tBu (7),19 Ph (8)] to be isolated in
low yield (11.1% for 7 and small amounts of 8).22 The air- and
moisture-sensitive dibismuthanes 5 and 6 were soluble in
common organic solvents and decomposed at 267 and 256 °C,
respectively.
X-ray diffraction analysis confirmed the dibismuthane

assembly [{η1,η1-3,5-R2pz}2(Bi−Bi){η1,η1-3,5-R2pz}2] [R =
tBu (5), and Ph (6); Figures 1 and 2 and Tables S1−

S3].23,24 Complex 5 possessed three distinct but similar Bi2
molecules (5α, 5β, and 5γ). As can been seen from Figures 1
and 2, the inversion center was at the midpoint of the Bi−Bi
bond in each dibismuthane 5α, 5β, 5γ, and 6. This indicated
that the overall ligand arrangement around the Bi2 core was an
almost perfect paddlewheel structure for 6 but a twisted
structure (because of steric substituent repulsion) for 5. A total
absence of axial interactions of any kind between the dibismuth
units in 5 and 6 was found. Each Bi atom was coordinated with
one other Bi atom and four N atoms with a slightly distorted
square-pyramidal geometry. The length of the Bi−N bonds
within each of 5α, 5β, 5γ, and 6 varied slightly, by ca. 0.03 Å
around the average. The average Bi−N bond distance was ca.
2.455(9) Å for 5α, 2.460(8) Å for 5β, 2.458(9) for 5γ, and
2.464(8) Å for 6. These Bi−N bond lengths are close to those
found for dibismuthanes [Bi−N 2.446(3)−2.484(6) Å].25,26

The Bi−Bi distances [2.8185(6) Å in 5 and 2.8705(6) Å in 6]
were much shorter than that found in [Bi2(O2CCF3)4]·C6Me6
[2.947(1) Å]25 and other dibismuthanes.26 Notably, the Bi−Bi

bond [2.8185(6) Å] in 5 was very short, even shorter than the
BiBi double bond distance of ca. 2.82 Å.27 The planes of the
pyrazolato in the face-to-face orientation were almost
perpendicular to each other, with an average dihedral angle of
close to 90° despite the average N−Bi−N angle being
84.27(7)° in 5α, 5β, and 5γ and 84.58(18)° in 6, which are
comparable to those found in the recently reported 1,2,4-
diazaphospholide dibismuthanes [{η1,η1-3,5-R2dp}2(Bi−Bi)-
{η1,η1-3,5-R2dp}2] [dp = 1,2,4-diazaphospholide; R = tBu
(A), and Ph (B)]: 84.3(8)° for A and 84.35(11)° for B (Tables
1 and S12 and S13).16

The isolation of low-valent bismuth paddlewheel complexes
5 and 6 suggested that a redox reaction occurred. However,
oxidation of K+[3−] (or K+[4−]) by BiCl3 produced an orange
solution that gave no EPR signal (Scheme 2).
Performing the reaction under similar conditions but using

DMPO as a spin trap gave a strong EPR signal corresponding
to DMPO[3,5-tBu2pz]

• adduct (9).23 As shown in Figure 3, the
spectrum for the Bi3+-oxidized system displays a hyperfine of
well-resolved coupling multiplet with 12 observed lines. This
clearly indicates that the radical species III formed.23 The
distinction between a nitrogen coupling constant aN = 13.48 G,
a proton splitting of aH = 13.19 G, and a second nitrogen
splitting aN′ = 4.10 G suggests a N-pyrazolyl spin adduct
structure (σ-type) on the basis of the line width of the signals (g
= 2.012).
The reaction of 3/4 with BiCl3 is unusual. There were no

examples that the pyrazolato anion could be oxidized into the
corresponding neutral radical before this presentation. It seems
that, probably by a self-redox reaction of pyrazolatobismuth (I),
the resultant low-valent pyrazolatobismuth(II) radicals (II)
dimerized to afford two corresponding novel paddlewheel
pyrazolatodibismuthanes 5 and 6 (Scheme 2). Verify the
oxidation ability of other hypervalent metal ions such as a SbIII

ion with pyrazolato ligands under similar conditions was not
successful. Only a homoleptic complex [Sb(η2-3,5-tBu2pz)3]
(10) with a slipped η2-coordination mode was isolated
(Scheme S2 and Figure S1). Cyclic voltammetric analysis of
3 was performed in the presence of Bu4N·PF6, and a one-
electron irreversible oxidation wave was found for 3−/3• at
about Eox = +0.60 V vs AgNO3/Ag,

23 but the wave was not

Scheme 2. Formation of 5−9 Involving N-Pyrazolyl (III)
Radicals

Figure 1. X-ray crystal structures of 5α, 5β, and 5γ. Drawn with
ellipsoids at 30% probability. tBu groups and H atoms omitted for
clarity. Selected bond distances [Å] and angles (deg). 5α: Bi(1)−Bi(2)
2.8189(6); N(1)−Bi(1)−Bi(2) 71.7(2). 5β: Bi(3)−Bi(4) 2.8185(6);
N(16)−Bi(4)−Bi(3) 71.5(2). 5γ: Bi(5)−Bi(6) 2.8183(6); N(24)−
Bi(6)−Bi(5) 72.1(2).

Figure 2. X-ray crystal structures of 6. Drawn with ellipsoids at 30%
probability. H atoms omitted for clarity. Selected bond distances [Å]
and angles (deg): Bi(1)−Bi(1A) 2.8705(6), N(1)−Bi(1) 2.331(5);
N(1)−Bi(1)−N(4) 87.55(18).
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significant (Figure S11), which may suggest that the pyrazolato
anion could be oxidized.
The p-plock paddlewheel complexes with very short metal−

metal bonds have attracted interest very recently.16,17 To
understand the characteristic of the bonding and the
paddlewheel motif in 5/6, we optimized complex 5 by the
B3LYP method with the 6-31G(d) basis set for C, H, and N
atoms and the Lanl2dz basis set for the Bi atom (see the
SI),28,29 and the SMD30 solvation model of THF. We also
calculated the Gibbs free energy required for the homocleavage
of [Bi(tBu2pz)3] (I) to afford the [Bi(tBu2pz)2]

• (II) and III
radicals. The calculated bond dissociation energy for this
process is only 29.7 kcal/mol in THF, which seemed available
at room temperature. The formation of II from the
intermediate [ClBi(tBu2pz)2] by the cleavage of Bi−Cl bond
can be ruled out because the calculated bond dissociation
energy is 65.4 kcal/mol.
In addition, we calculated the relative stability of two

expected dimers derived from the radical III dimerization at the
B3LYP/6-31G(d) level, and the results suggested that the
dimer III(N)−III(N) with N−N coupling (Figure S8) is the
more stable one, which was located 5.1 kcal/mol lower than the
dimer III(N)−III(C) with N−C coupling (Figure S9). The
calculated Bi−Bi bond distance in 5, 2.814 Å, is in good
agreement with the experimental value 2.818 Å (Table S12).
In conclusion, the paddlewheel bismuthanes 5 and 6 with the

very short Bi−Bi single bonds are the first examples of
bismuth(II) paddlewheel complexes bearing pyrazolato ligands.
Most importantly, neutral 3,5-substituted pyrazolyl radicals III
were confirmed by EPR spectral analysis, which demonstrated
that the unpaired electron of the pyrazolyl radicals is
delocalized at the two N atoms with a σ-type ground state
(2σ) instead of over the five-membered ring with a π-type
ground state (2π).18
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