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ABSTRACT: A concise synthesis of (+)-pancratistatin and (+)-

7-deoxypancratistatin from benzene using an enantioselective, 

dearomative carboamination strategy has been achieved. This 

approach, in combination with the judicious choice of subsequent 

olefin-type difunctionalization reactions, permits rapid and con-

trolled access to a hexasubstituted core. Finally, minimal use of 

intermediary steps as well as direct, late stage C-7 hydroxylation 

provides both natural products in six and seven operations. 

The plant-derived metabolites (+)-pancratistatin (1)1 and (+)-7-

deoxypancratistatin (2)2 belong to a family of densely 

functionalized and stereochemically complex Amaryllidaceae 

alkaloids that are well known for their potent anticancer activity 

(Figure 1).3 For example, pancratistatin (1) showed substantial in 

vivo activity against murine P-388 lymphocytic leukemia and 

murine M-5076 ovary sarcoma, and reduced growth of 

subcutaneous colon HT-29 tumors.4 Moreover, experiments 

examining pancratistatin-induced apoptosis revealed noticeably 

reduced death in non-cancerous cells relative to cancer cell lines, 

making these compounds appealing clinical lead candidates.5 

Finally, pancratistatins also showed significant antiviral activities, 

including in vivo models for Japanese encephalitis,6 a disease for 

which no other known small-molecule anti-infective agent exists. 

Figure 1. Structures of pancratistatin (1) and 7-

deoxypancratistatin (2) and their retrosynthetic analysis. 

These promising biological properties made pancratistatins 

exceptionally attractive targets for chemical synthesis.7,8 

Nevertheless, despite numerous impressive efforts, only milligram 

quantities of pancratistatins have been prepared to date. Herein, 

we report a scalable and concise synthesis of (+)-pancratistatin (1) 

and (+)-7-deoxypancratistatin (2) from benzene (3) using a 

dearomative functionalization approach. Using this strategy, 

benzene can be seen as a surrogate for the hypothetical 1,3,5-

cyclohexatriene that could readily undergo three olefin-type 

functionalizations and enable key retrosynthetic simplifications 

(Figure 1).  

With the foregoing analysis in mind, we recognized that the 

development of a dearomatization process9 that would also result 

in desymmetrization of benzene10 was critical to our synthetic 

plan. We hypothesized that the application of visible-light-

promoted para-cycloaddition of the N–N arenophile MTAD (4),11 

in combination with an aryl nucleophile (ArM) and transition 

metal catalysis (TM cat.), could provide trans-carboaminated 

product 6 (Figure 2). Specifically, the intermediate MTAD-

benzene cycloadduct 5 could serve as a viable substrate for 
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Figure 2. Design of dearomative trans-carboamination sequence. 

oxidative addition due to its bis-allylic bridgehead positions 

bearing an electron-deficient urazole.12 Mechanistically, we 

envisioned this catalytic process as commencing with π-

coordination of the diene to the metal complex anti to the 

arenophile moiety (5→I). Subsequent oxidative addition should 

give cyclohexadienyl intermediate II, which should undergo 

transmetalation with an aryl metal reagent to form species III. 

This symmetric η5-complex can then undergo reductive 

elimination to deliver diene complex IV.  Finally, diene 

decomplexation yields the product and regenerates the metal 

catalyst. The central feature of this design is the generation and 

capture of η5-cyclohexadienyl reactive intermediate; the desired 

1,2-site-selectivity of the carboamination process would be 

favored because of the greater positive charge localized on the 
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termini of the η5-system.13 Though no catalytic processes 

involving cyclohexadienyl complexes exist to date, such 

outcomes are well precedented in cases wherein cationic 

cyclohexadienylmetal complexes react with nucleophiles in a 

stoichiometric fashion.14 Importantly, because of the symmetrical 

nature of the η5-intermediate III, a suitable chiral ligand bound to 

the metal center could enable enantiodiscrimination that involves 

the differentiation of the enantiotopic termini of the 

cyclohexadienyl system, forming the desired product in an 

enantioselective fashion. 

On the basis of this design, we began our investigations into the 

dearomative carboamination. Accordingly, we found that nickel-

based catalysts with bidentate ligands, in combination with aryl 

Grignard reagents, gave the best results (Figure 3). Specifically, 

we identified that conducting the MTAD-benzene cycloaddition 

reaction in dichloromethane, followed by the addition of a Ni-

catalyst ([Ni(cod)2]/dppf (8) = 10/20 mol%) and aryl Grignard 

reagent 7 delivered the desired dearomatized product 6 in 74% 

yield as a single constitutional and diastereoisomer. In addition, 

we performed a comprehensive evaluation of chiral bidentate 

ligands,15 and discovered that the PHOX-type ligand (R,Rp)-iPr-

Phosferrox (9) afforded desired product 6 in 75% yield and with 

high enantioselectivity (98:2 er). 

Figure 3. MTAD-mediated, Ni-catalyzed dearomative trans-1,2-

carboamination of benzene. 

The enantioselective, dearomative trans-carboamination of 

benzene serves as the key strategic maneuver as it installs the first 

two vicinal stereocenters and drastically simplifies synthetic entry 

to the pancratistatin core (Figure 4). Early on, we found that 

masking the acidic urazole hydrazyl group (pKa = 5.8 in water) is 

crucial for the precise orchestration of subsequent stereoselective 

manipulations. Therefore, we selected the methyl group as it 

could be introduced simply by quenching the dearomatization 

reaction with dimethyl sulfate (3→10). Moreover, on a 

preparative scale, we were able to lower the catalyst and ligand 

loadings to 5 and 10 mol% without significant erosion in yield or 

selectivity (65% yield, 98:2 er, after methylation quench). Thus, 

by simply executing this reaction in a one-liter media bottle with 

commercial-grade visible-light diodes we were able to 

conveniently prepare dearomatized compound 10 on a decagram 

scale. It is worth noting that using this protocol, we have prepared 

>300 g of this carboaminated product in total. 

With the key diene intermediate 10 in hand, the focus then 

shifted to the next two olefin difunctionalization operations, 

which would introduce the remaining four hydroxy substituents in 

a stereoselective manner and complete the pancratistatin core. 

Because of the electron-withdrawing effect of the urazole 

nitrogen, the alkene distal to this moiety reacted preferentially 

with electrophilic reagents. Thus, a chemo- and diastereoselective 

preparation of trans-diol 11 was accomplished using a one-pot 

protocol involving epoxidation with mCPBA and subsequent 

epoxide hydrolysis in the presence of pTsOH and a large excess 

of water.16 In addition, the use of hexafluoroisopropanol (HFIP) 

as the solvent was essential to obtain diol product 11 in 74% 

yield.17 Exposure of the remaining alkene in 11 to Upjohn 

dihydroxylation conditions18 provided tetraol 12 in 91% yield and 

as a single stereoisomer. Importantly, this step completes the 

trifold olefin difunctionalization sequence that transforms benzene 

into the fully decorated pancratistatin core, establishes all six 

contiguous stereocenters, and sets the stage for lactam 

construction. To this end, deprotection of urazole 12 to free amine 

14 using conditions to effect hydrolysis and N–N bond cleavage 

proved challenging, as aggressively acidic or basic conditions led 

to complete decomposition of starting material. Therefore, we 

explored hydride-based reducing agents and found that treatment 

of 12 with LiAlH4 could reduce the urazole; however, the 

resulting cyclic hydrazine hemiaminal 13 proved unstable, 

complicating its isolation and the overall reproducibility of this 

step. To overcome this hurdle, we decided to developed a one-pot 

protocol that directly reduced urazole 12 to amine 14 without 

handling the sensitive intermediate 13. Thus, LiAlH4 reduction, 

followed by aqueous quench and subsequent addition of Raney®-

cobalt19 under a hydrogen atmosphere, gave the best results and 

provided free amine 14 in 60% yield. Noteworthy, using this 

sequence, we were able to prepare several grams of aminotetraol 

precursor 14 in a single pass. 

The final step, needed to complete isocarbostyril framework of 

the pancratistatins, namely the installation of the carbonyl group, 

was achieved in two steps comprising halogenation and 

intramolecular aminocarbonylation. To increase step economy 

and the overall efficiency of the synthesis20 we probed reactions 

that could function on the unprotected aminotetraol 14. After 

extensive investigation, this task was effectively accomplished 

using bromination (Br2 in AcOH),21 followed by NaCo(CO)4-

catalyzed carbonylation under a CO atmosphere and UV light 

irradiation22 to give the corresponding (+)-7-deoxypancratistatin 

(2) in 72% yield over the two steps. Moreover, we were able to 

conduct both transformations in a single reaction vessel, without 

the need of isolation and purification of the bromide intermediate, 

making this formal carbonyl insertion operation more practical on 

a gram scale. 

Though more than a dozen chemical syntheses of (+)-7-

deoxypancratistatin (2) exist, its conversion to (+)-pancratistatin 

(1) through late-stage C-7 arene hydroxylation has never been 

established. We undertook this task by exploring directed ortho 

metalations and found that hydroxylation of position C-7 could be 

effected using a cupration/oxidation sequence23; however, only 

when (+)-7-deoxypancratistatin (2) was persilylated with 

hexamethyldisilazane (HMDS).24 According to control 

experiments (see Supplementary materials), this direct arene 

hydroxylation is likely to proceed through the intermediacy of 

tetra-O-silylated-(+)-7-deoxypancratistatin (15), which undergoes 

C-7 cupration with (TMP)2Cu(CN)Li2. Subsequent in situ 

oxidation with tBuOOH and acidic workup furnished (+)-

pancratistatin (1) in 62% yield.  

In summary, we have completed the syntheses of (+)-7-

deoxypancratistatin (2) and (+)-pancratistatin (1) in six and seven 

operations in 19% and 12% overall yield. Importantly, using this 

synthetic blueprint, we have prepared several grams of natural 

products 1 and 2 to date. The synthetic efficiency of our approach 

originates from the development of an enantioselective, catalytic, 

dearomative trans-carboamination of benzene for which no 

chemical or biological equivalent exists. This transformation 

permits access to the key diene 10 and greatly simplifies the 

synthetic approach to the aminocyclitol core. Finally, by 
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Figure 4. Synthesis of (+)-pancratistatins (1 and 2) from benzene (3). Reagents and conditions: [1.] benzene (3), MTAD (4), CH2Cl2, 

visible light, –78 °C; then [Ni(cod)2] (5 mol%), (R,Rp)-iPr-Phosferrox (9, 10 mol%), arylmagnesium bromide 7, CH2Cl2, THF, –78 °C to 

rt; quench with Me2SO4, K2CO3, 65% (98:2 er). [2.] mCPBA, TsOH, CH2Cl2, HFIP, H2O, 50 °C, 74%. [3.] NMO, OsO4 (5 mol%), 

tBuOH:H2O, rt, 91%. [4.] LiAlH4, THF, reflux; quench with Rochelle salt; then Raney®-Co, H2 (1 atm), 60 °C, 60%. [5.] Br2, AcOH, rt. 

[6.] NaCo(CO)4 (30 mol%), nBu4NBr, CO (1 atm), NaHCO3, H2O, 1,4-dioxane, 365 nm light, 60 °C, 72% over two steps. [7.] HMDS, I2 

(1 mol%), MeCN, 80 °C; then solvent removal and (TMP)2Cu(CN)Li2, THF, –78 °C→0 °C; then tBuOOH, THF, –78 °C, 62%. 

 

providing a chemical connection between (+)-7-

deoxypancratistatin (2) and (+)-pancratistatin (1), this work also 

presents a notable departure from previous syntheses of the 

pancratistatins, in which each member required de novo synthesis 

using the properly C-7 functionalized aromatic starting material. 

We believe that the myriad opportunities in alkene 

functionalization should render the dearomative carboamination 

strategy amenable to the preparation of other natural products, as 

well as a diverse set of congeners. 
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