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Fingerprints of Modified RNA Bases from Deep Sequencing Profiles 

Anna M. Kietrys, Willem A. Velema, and Eric T. Kool
* 

 

Department of Chemistry, Stanford University, Stanford, California 94305

ABSTRACT: Posttranscriptional modifications of RNA bases are found not only in many noncoding RNAs but also have recently been 

identified in coding (messenger) RNAs as well. They require complex and laborious methods to locate, and many still lack methods for 

localized detection. Here we test the ability of next-generation sequencing (NGS) to detect and distinguish between ten modified bases in 

synthetic RNAs. We compare ultra-deep sequencing patterns of modified bases, including miscoding, insertions and deletions (indels), and 

truncations, to unmodified bases in the same contexts. The data show widely varied responses to modification, ranging from no response, 

to high levels of mutations, insertions, deletions, and truncations. The patterns are distinct for several of the modifications, and suggest the 

future use of ultra-deep sequencing as a fingerprinting strategy for locating and identifying modifications in cellular RNAs. 

Supporting Information Placeholder

INTRODUCTION  

    The nucleobases of RNA in the cell are often modified 

posttranscriptionally to alter their structural and functional 

properties.
1-3

 More than 100 modifications are known and are 

highly prevalent in noncoding RNAs such as transfer RNAs 

(tRNA), ribosomal RNAs (rRNA) and small nuclear RNAs 

(snRNA). Recent studies have reported that some modified 

nucleotides are also present in long noncoding RNAs 

(lncRNA) and in messenger RNAs (mRNAs) as well.
4-10

 It is 

becoming evident that at least some of these modifications are 

dynamic, changing over the lifespan of the RNA to alter their 

biological activities.
11 

The field is rapidly moving as more 

modifications are found in messenger RNAs, and as the 

pathways that recognize, add, and remove modifications are 

identified.
12-14

 

    To clarify the roles of modified nucleotides in RNA 

biology, it is necessary to develop methods to locate and 

identify these modifications both in single specific RNAs as 

well as in the broader transcriptome. To date, most methods 

rely on selective chemical properties of modified bases, or on 

specific antibody recognition.
15-16

 Methods vary widely from 

one modification to another, and can be quite complex. The 

majority of known modifications (see examples in Fig. 1) are 

still challenging to locate and identify, and many have not yet 

been identified, or searched for, in lncRNAs and mRNAs. 

Thus, new methods that can aid in detection of new species or 

more easily identify sites and types of modifications would be 

useful to the field. 

    Next-generation sequencing (NGS) is rapidly becoming a 

standard tool for biological and biomedical analysis. RNA 

sequencing (RNA-seq) is now commonly applied for 

exploring and characterizing expressed genes.
17-18 

While 

sequencing of short (~50 nt) reads at a depth of 10-100× 

allows sufficient confidence in homology for alignment and 

assembly of gene sequences,
19

 deeper sequencing that is 

possible with modern instruments can potentially allow the 

analysis of smaller differences such as heterozygous mutations 

or mixed splicing patterns,
20-21

 and do so with much greater 

statistical confidence. Standard NGS relies on a polymerase to 

accurately copy the nucleic acid target. It has long been 

recognized that chemical modifications to nucleobases can 

strongly affect the ability of a polymerase enzyme to copy 

them; for example, chemical differences that alter shape and 

H-bonding properties of a nucleobase can affect the efficiency 

of reading as well as the complementary base that is 

inserted.
22-23

  

 

Figure 1. Structures of canonical (shaded) and modified RNA 

bases in this study (modifications highlighted in red). MMLV 

reverse transcriptase (PDB: 4mh8), from which Super Script IV 

was derived, is shown at right.  

    Here we considered the possibility that posttranscriptionally 

modified bases in RNA might measurably affect their reading 

by the reverse transcriptase (RT) enzyme used in next 

generation sequencing. Biologically relevant modifications, 

such as methylation of the heterocyclic base or its substituents, 

might well affect polymerase reading of that base, leading to a 

pause, an insertion or deletion, or miscoding near the position 

of modification.
24

 For example, we recently described the 

ability of one reverse transcriptase enzyme to distinguish 6-
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methyladenine (m6A) from adenine in RNA by its tendency to 

pause at the methylated base.
25

 Other studies have also noted 

effects of RNA base modifications on polymerases. For 

example, hypoxanthine (a product of A-to-I editing) pairs with 

C, causing miscoding in RNA-seq as a G. Modification of 

inosine by acrylonitrile results in an RT stop.
26

 Similarly, 

pseudouracil selectively modified with carbodiimide can 

generate an RT stop just prior to the modification.
7
 In a third 

example, an antibody complex with m1A results in a block to 

reverse transcriptase.
10

 In addition, a sequencing study of m1A 

noted blocks and mutations associated with this 

modification.
27

 Thus, the early studies show clearly that RNA 

base modifications can alter polymerase behavior. However, 

there exists no broader study yet to study and compare 

multiple modifications, and to test whether such modifications 

can directly cause distinguishable patterns in deep sequencing 

data, perhaps even without further chemical modification. 

    If such altered sequencing patterns were found for modified 

bases in RNA, it could have two important implications. First, 

it suggests the use of deep sequencing as a general tool to 

directly identify new sites and types of base modifications in 

cellular RNAs. Second, in standard RNA-seq application, 

specific altered NGS patterns might well be miscalled as 

mutations in biological samples, when instead the altered 

patterns are caused by base modifications. Having baseline 

data for modifications could be useful in clarifying whether 

mutations are correctly called or are instead better explained 

by base modifications in the biological sample. In the latter 

case, this might lead to improved accuracy in clinical analysis 

of polymorphisms in patient specimens.
28-30

  

    Here we report experiments aimed at using ultra-deep 

sequencing information to identify and differentiate modified 

RNA bases. We used a pool of small synthetic RNA 

oligonucleotides carrying 10 epitranscriptomic modifications 

to identify their miscoding fingerprints. Statistical analysis of 

unique reverse transcriptase miscoding profiles of each 

modified base allowed us to distinguish them from each other, 

and from canonical bases as well. We show potential 

applications of our method in identification and quantification 

of several modified bases in RNA samples. 

RESULTS  

    Our study is based on the hypothesis that alterations of 

molecular shapes and structures could result in differences in 

the deep sequencing data – patterns of mutations, deletions, 

insertions, and truncations – and thus act as a fingerprint of a 

given modification. For this initial study, we chose a range of 

ten base modifications that are known in noncoding RNAs 

(Fig. 1), 
1-10

 including methylation of adenine (m6A, m26A, 

m1A); methylation of guanine (m6G, m1G); methylation of 

uracil (m5U, m3U); methylation of cytosine (m5C); as well as 

hypoxanthine (the base of inosine, I) and pseudouracil (Ψ). 

Some of the modifications clearly are expected to interfere 

with Watson-Crick pairing and geometry during reverse 

transcription (e.g. m1A, m1G, m26A, m3U), while others are 

expected to be reverse transcribed normally (e.g. m5U, m5C, 

Ψ). To show the maximum signals in pure form, we 

incorporated single modified bases in synthetic 20 nt RNAs. 

As controls, we used RNAs with unmodified bases in the same 

contexts. Sequence contexts were chosen from known sites of 

these modifications in human RNAs (Table 1).  

Table 1. RNA sequences used in RNA-seq library preparation, 

with biological origins of the sequence context in which that 

modification is known. 

# Sequence (5'->3') Biological origin  

1 GAG UUC CCC AGU CCU GAC UC 
snRNA & mRNA 

2 GAG UUC CCC AGU CCU Gm6AC UC 

3 ACG ACG AUU GUA CGG CUC CG 
mRNA 

4 ACG ACG AUU GΨA CGG CUC CG  

5 AGG CCA UUA UCG CGC GAU CG 
tRNA 

6 AGG CCA UUI UCG CGC GAU CG 

7 GCA CGC CCA UGU GUA AUC GC 
tRNA 

8 GCA CGC CCA Um1GU GUA AUC GC 

9 CGC AUG UGC UUA GCG AUC CG 
NA 

10 CGC AUG Um6GC UUA GCG AUC CG 

11 GCC GUC UUG AAA CGC UAG GC 
28S rRNA 

12 GCC GUC UUG m1AAA CGC UAG GC 

13 CCG UAG GUG AAC CUC CGG AA 
18S rRNA 

14 CCG UAG GUG m26AAC CUC CGG AA 

15 AUC GGC UGG GUU UAG ACC GC 
18S rRNA 

16 AUC GGC UGG Gm3UU UAG ACC GC 

17 GCC GUU AAG GUA GCC AAC GC 
tRNA & rRNA  

18 GCC GUU AAG GUA GCm5C AAC GC 

19 GCA AUG CUG GUU CGC CAU GC 
28S rRNA 

20 GCA AUG CUG Gm5UU CGC CAU GC 

 

    Next, we used these synthetic RNAs to prepare a library for 

ultra-deep sequencing on a common commercial platform 

(Illumina MiSeq), which can provide up to 15 million reads. 

We used a popular commercial kit for library preparation, 

including 20 indices for the twenty test and control RNAs, and 

we chose Super Script IV reverse transcriptase (Fig. 1) for 

conversion of RNAs to DNA amplicons. Polyacrylamide gels 

were used to check the performance of the reverse 

transcriptase, which after PCR revealed, not surprisingly, 

qualitative variations in reading success with different 

modifications (Fig. S3), indicating pausing and truncations for 

some of the modifications. All amplicons were combined for 

the sequencing, which was performed in a single run. Details 

of the preparation and analysis are given in the SI file. 

    The results of the sequencing showed strong variations in 

data patterns for the different modified RNAs. Total numbers 

of successful reads ranged from 8,158-568,504 reads for 

unmodified RNAs, while those with modified bases yielded a 

considerably narrower range of full-length read numbers 

(range 9,684-288,262). Based on the numbers of reads in each 

of the twenty data sets, we were able to use multinomial 

analysis with Gamma-Poisson distribution to generate 

statistical measures of confidence intervals in variations.
31

 An 

overview of the data (Fig. S4) revealed that virtually all 

alterations in polymerase sequencing behavior in association 

with a modified base occurred within 2 nt of the modification, 

which is consistent with the structural footprint of a reverse 

transcriptase bound to an RNA-DNA template-primer.
32-33

 For 

in-depth analysis, we focused on positions -2, -1, 0, +1, +2, 

where “0” is the site of modification (see Fig. 2). We 

quantified the following frequencies for each modification: 

A/C/T/G frequency at position 0; frequency and positions of 

truncations; frequency and position of single-nt deletion; 

frequency, position, and identity of single-nt insertion. 

Selected data are shown in Figs. 2, 3, with full data given in 

Figure S4. 
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Figure 2. Fingerprint of m6G modification observed in RNA-seq 

data from a synthetic 20 nt RNA, analyzed from >42,000 reads. 

Modified position is numbered “0” (see Table 1 for full 

sequence). (a) Probability of occurrence of each nucleotide 

replacing m6G shows high miscoding frequency, coding as 

A>G>C>T. (b) Frequency of insertions of nucleotides (color 

coded), and single deletions (black) normalized per 10,000 reads. 

(c) Frequency of truncation (blue) normalized per 10,000 reads. 

    An overview of the results showed that some modifications 

yielded strong patterns that were distinct from the parent 

unmodified base, while a few (as expected) yielded little if any 

measurable difference (Figs. 3, S4). In the latter class were 

modifications that were statistically indistinguishable from 

unmodified bases, at least with this enzyme and protocol. 

These included m5C, which was not discernible from C (Fig. 

S4, compare miR9 and miR9m5C), and m5U, which yielded 

the same pattern as U (Fig. S4, compare miR10 and 

miR10m5U). Neither of these modifications yielded 

truncations or insertions or deletions (indels) above the normal 

background levels seen for the unmodified RNA, and they 

both coded for their complementary bases at the same fidelity, 

within error limits, as the unmodified bases. Similarly, 

pseudouridine (Ψ) showed no distinguishable differences in 

fidelity, indels or truncations relative to U (Fig. S4, compare 

miR2 and miR2Ψ). None of these are surprising, since 5-

methylation of pyrimidines is known not to be detrimental to 

polymerase efficiency,
34

 and Ψ is also documented to be 

replicated essentially the same as U.
35

 The fourth case that 

showed little or no measurable difference with respect to 

modification was m6A, which coded as adenine with the same 

fidelity as adenine, and had the same frequency of indels and 

truncations within error limits (Fig. S4, compare miR1 and 

miR1m6A). An earlier survey of reverse transcriptases showed 

that most had little hindrance in replicating past m6A,
25

 which 

can pair normally with T if the methyl group rotates away 

from the Watson-Crick face.
36  

 

Figure 3. Varied mutation profiles of six modified bases in ultra-

deep RNA sequencing. Shown are the coding mutational profiles 

at position 0, the position of modification. Note that some 

modifications yield low levels of miscoding (e.g. m1G (8.9% 

miscoding as T, 1.5% miscoding as C); while others give high 

degrees of miscoding (e.g. m6G (65.4% miscoding as A)). 

    In contrast, six of the modified bases studied here revealed 

clear differences in sequencing behavior relative to the 

unmodified congeners (Figs. 3, 4, S4, S7, S10). Among 

modified adenine derivatives, m26A, m1A and I (which is 

formed from deamination of A) all gave sequencing profiles 

quite distinct from adenine. The dimethylated base m26A gave 

frequent miscoding as U and G, indicating mispairing with A 

and C, respectively (Fig. 3). It also showed elevated levels of 

truncations at positions +1 and +2. This suggests that the 

polymerase may read it in Hoogsteen pairing mode, with the 

base flipped to syn conformation. The modification m1A also 

yielded miscoding as U and G, as previously seen by 

Hauenschild et al., 
27

 but at statistically different frequencies 

and ratios relative to m26A (Fig. S4, compare miR6 and 

miR6m1A). Hypoxanthine was easily distinguished from 

these, not surprisingly coding essentially as G,
37

 with 

occurrence of deletion at 0 and truncations at -2 position (Fig. 

S4 miR3 and miR3I). Thus, the deep sequencing analysis can 

readily distinguish adenine from three modified forms of the 

base. Although inosine has been well studied by sequencing,
37-

38
 and one study has been reported for m1A,

27
 we are unaware 

of prior direct deep sequencing data for m26A in RNA. 

    Notably, the sequencing data were also able to distinguish 

the two modifications of guanine studied, m1G and m6G. We 

found that m1G miscoded as U with a frequency 8.9%, and 

also yielded relatively frequent truncations at -2 and deletion 

at 0 position (Figs. 3, S4). The miscoding may be explained by 

Hoogsteen pairing of m1G with C.
39

 In contrast, m6G often 

miscoded as A (65.4%) (Figs. 2, 3), but yielded deletions at 0 

position and statistically few truncations. The known tendency 

of m6G to pair with U can explain the miscoding seen here.
40

 

The current data show that the m6G modification in standard 

low-to-medium depth NGS would simply be assigned as A, 

yielding an incorrect call. In contrast, our data, obtained at 

much greater depth, allows us to distinguish this modification 

from both A and G. Polymerase experiments have previously 

studied m6G in DNA, and show similar mutation frequencies 

as seen here in RNA.
41

 To our knowledge, no NGS sequencing 

data have been published before on either of these 

modifications in RNA. 

    Lastly, m3U also gave a clear signature of its presence. It 

yielded frequent miscoding as A (indicating U-T mispairing 

by the polymerase) and G, and an elevated frequency of 
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deletion at position +2 (Figs. 3, S4). An early study of a DNA 

polymerase with this modification in rRNA showed stops prior 

to the modification but was not analyzed for mispairing.
42

 We 

know of no previous polymerase studies of this modification 

in RNA, nor any studies of its effect in deep sequencing. 

    We proceeded to perform a statistical comparison of 

polymerase responses to evaluate the ability of NGS to 

distinguish all the modifications together. We used principal 

component analysis (PCA) to plot the multidimensional data 

for each modification, and we used numbers of reads to 

generate 95% confidence ellipsoids about each modification 

(Figs. S7, S10). Use of the full data set of mutations, 

truncations and indels over five positions near the 

modification separated not only most of these modifications 

from one another, but also separated most of the identical 

bases from one another in their different contexts (Fig. S7). 

For example, our input RNAs contained modified adenine in 

four different sequence contexts, and we observed that there 

were context-dependent truncations and indels that arise from 

context alone.
27

 While this impressively showed the power of 

ultra-deep NGS to differentiate bases, it also adds considerable 

complexity to the analysis of modification, by reflecting the 

effects of varied context. Thus, we sought to simplify the 

analysis further by reducing the complexity of the input data. 

    Varying the amount of input data in our statistical analysis 

revealed that use only of mutational profiles at position 0 

yielded nearly as good separation of modified bases from 

unmodified ones, but also erased the context-dependent 

differences of the unmodified bases (compare Figs. S7 and 

S10). Figure 4 shows a scatter plot of six modifications 

reduced to the two most dominant dimensional components. 

The plot shows clearly that six of the modified bases are 

distinguished from the four unmodified ones in the deep 

sequencing, with I overlapping with G as expected. The most 

readily distinguished modification is m6G, which lies far from 

all unmodified bases. Three others, m3U, m1G and I, also are 

easily distinguished from their unmodified parents. Other 

modifications that lie closer to their unmodified congeners are 

m26A, m1A and m6G, but all three can still be distinguished 

clearly at the depth obtained here (~10K or more reads). 

However, with smaller numbers of reads, as with standard 

NGS, they would very likely begin to overlap (due to lower 

confidence) and become indistinguishable. The other four 

modifications (m5U, m5C, Ψ, m6A) overlap extensively with 

the unmodified variants (Fig. S10) and thus cannot be 

distinguished, at least with this enzyme and at this depth of 

reads. 

 

Figure 4. Principal component analysis of miscoding data for six 

RNA base modifications. Plot is reduced to two most dominant 

principal components for display. Each cluster represents eleven 

data points. Confidence ellipses are included for 95% confidence 

level; their sizes are smaller than the displayed data points. 

 

    Thus, our data show clearly that deep sequencing can 

distinguish several RNA base modifications in a single 

sequencing run. We also considered whether modifications of 

these six bases at levels below 100% occupancy would remain 

distinguishable, and at what point (with reduced fraction) they 

would overlap with unmodified bases and become 

undetectable. This could be analyzed by mixing in 

combinations of sequencing patterns of unmodified and 

modified bases in the same context. The result is to move the 

modification pattern progressively closer to that of the natural 

base (see examples in Fig. 5). Thus, of the six distinguishable 

modifications, m6G would be the most readily distinguishable 

at lower occupancy, since it lies furthest from unmodified G 

and A (Fig. 5). Indeed, it is clearly distinguished even at as 

low as 10% abundance (Fig. 5c). Conversely, the base m26A 

lies closest in the pattern to its unmodified variant, and thus 

would be less easy to distinguish if, say, only 10% of this 

position in a given RNA were modified (Fig. 5a). Lying in 

between is m3U, which (in the simulated mixing data (Fig. 5d) 

could be detected at ~15% or greater occupancy. Similarly, 

m1G could also be distinguished from G when it occurs at the 

level ~15% and higher (Fig. 5b). Overall, the results show that 

is should be possible to distinguish some of these 

modifications in RNA from biological samples even at less 

than 100% frequency, as long as sufficient numbers of reads 

are available to increase confidence and lower error margins. 
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Figure 5. PCA plots showing the ability to distinguish 

modifications at less than 100% occupancy. Plot uses calculations 

for 4 variables (M0A, M0T, M0C, M0G); only pertinent local 

sections of the full PCA plot are shown. (A) Plotting m1A at 50% 

and 10% occupancy relative to unmodified A and m26A, shows 

overlap with m26A and A, respectively; (B) Plotting m1G at 50% 

and 10% occupancy relative to unmodified G/I, shows the ability 

to distinguish this modification at above the 10% level; (C) 

Plotting m6G at 50% and 10% occupancy relative to unmodified 

G/I and m1G, showing complete resolution even at as low as 10% 

m1G; (D) Plotting m3U at 50% and 10% occupancy relative to 

unmodified U, showing discrimination at 50% occupancy but 

overlap at 10%. 

    Finally, we employed the data to test whether RNA base 

modifications might be misassigned as mutations. We used 

PCA plots of hypothetical mixtures of two unmodified bases 

(G+A and U+C), to investigate whether modifications might 

be confused with varied levels of mutations or deamination 

damage. In Figure 6a we show that as little as 10% of C 

deamination may be easily mapped in the PCA plot and 

distinguished from other bases and modifications. Similarly, 

varied amounts of A to G mutation can also be differentiated 

from modified residues (Fig. 6b). 

 
Figure 6. PCA plots discriminating cytosine deamination damage 

and partial mutations by deep sequencing. Plot uses calculations 

for 4 variables (M0A, M0T, M0C, M0G); only pertinent local 

sections of the full PCA plot are shown. (A) Cytosine deamination 

to U is plotted at 10% and 50% deamination, showing complete 

discrimination from both C and U. (B) Mixing of A-to-G 

mutation, showing 10% G and 50% G, with complete 

discrimination from pure A or G. 

 

DISCUSSION  

    Our experiments show that it is possible to use high-depth 

RNA sequencing to directly determine the positions and 

identities of several different RNA base modifications, based 

on the varied response of reverse transcriptase to the altered 

structure and pairing of the modifications. Reverse 

transcriptase enzymes are known to introduce biases into 

sequencing experiments by their varied fidelity and 

processivity.
43-44

 In the current strategy, we take advantage of 

reverse transcription step and use the enzyme’s biases in 

nucleotide incorporation to provide information about 

noncanonical bases present in the RNA being copied (Fig. 2). 

We expect that the current data can be useful as a calibration 

set for employing a specific RT in identifying base 

modifications in biologically derived RNAs. In our analysis, 

we chose Super Script IV because of its high fidelity and 

processivity; it is likely that other reverse transcriptases may 

well show differential responses and biases to these same 

modifications (see Fig. S2). Indeed, we expect that use of a 

different RT with altered base response profiles used parallel 

to the current one would likely enhance discrimination of 

modifications. Because the reverse transcription step is the 

crucial source of the profiles seen here, reaction conditions for 

that step are important. It is possible that changes in the 

reaction conditions (e.g. time of reaction, ion concentrations, 

pH) may substantially change coding patterns.
45

 For the 

current experiments, we chose standardized buffer and 

conditions optimized by the manufacturer. Using the current 

protocol, the enzyme enabled us to obtain readily 

distinguishable coding fingerprints for six distinct base 

modifications, some of which have not been readily detectable 

previously. 

    Amplification by PCR is known to introduce errors in 

sequencing,
46

 and it is a potential source of error and 

variability in the current approach. For example, a replication 

error in a PCR template could be amplified alongside a correct 

template and misinterpreted as a partial mutation. While our 

data show that base modifications can be distinguished from 

partial mutations (Fig. 6), it is prudent to minimize this source 

of uncertainty. To this end, we employed a high-fidelity 

enzyme, and we limited PCR amplification to 12 cycles or 

fewer. We note that for small biological samples with limited 

quantity of cells, it is common to increase numbers of PCR 

cycles to compensate for a low quantity of RNA. We suggest 

caution in employing the current methods with large numbers 

of PCR cycles, and suggest the use of sufficient quantities of 

input RNA that high amplification can be avoided.  

    One important source of potential bias in RNA sequencing 

is differential responses of reverse transcriptase in different 

sequence contexts. Indeed, our data clearly detect polymerase 

responses that vary with sequence context (Fig. S7). In 

particular, we note varied tendencies toward deletions and 

truncations in different contexts regardless of whether base 

modifications are present. For example, we have detailed 

truncation, indel, and miscoding data for canonical adenine in 

four different contexts, and find frequency of deletions as high 

as 10% of reads in some contexts, with varied position. Our 

observations are consistent with previous reports of context-

dependent RT responses.
27,47

 In the current study, the sequence 

context of a base changes the frequencies of indels and 

truncations, but these phenomena are observed both for 

modified and unmodified bases. Given the high depth and 
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statistical discriminating power of the current experiments, we 

were able to discriminate even canonical bases from one 

another since they arise in different contexts. While this 

discrimination power is impressive, it could confound the 

utility in distinguishing modified bases, since every new 

context could yield a different data fingerprint. Analysis of all 

possible contexts would be costly in time and resources in 

actual practice. Thus, we narrowed the data analysis, 

eliminating variables to find the minimal variables that as 

much as possible remove context-dependent differences, and 

focus only on the base modification. We found that limiting 

the analysis to the miscoding frequencies at the position of 

modification enables reliable discrimination of modifications, 

and largely eliminates the influence of sequence context (Fig. 

4). In future applications of the method to unknown RNAs, 

one can in principle simply analyze coding at each position 

with sufficient sequencing depth to discriminate small 

miscoding biases that can be assigned to specific base 

modifications. Spiking in RNAs with known modifications 

(such as the current ones) may well be helpful for internal 

calibration in applications with biologically derived 

specimens. 

    Our current methods employed ten different common RNA 

modifications, including all those currently known in 

messenger RNAs. Since over 100 different modifications are 

known in cellular RNAs,
4
 it is possible that some of the 

current modification-dependent patterns may overlap with 

those from other, currently untested, base modifications. 

Future experiments with more modifications will shed light on 

this, and offer the prospect of expanding the range of 

distinguishable modifications. However, in the meantime it 

seems prudent to limit the current approach to cellular RNAs 

(such as mRNAs) that contain a smaller diversity of 

modifications, rather than to those (such as tRNAs) that 

contain highly diverse modifications. Another possible source 

of uncertainty when analyzing cellular RNAs by the current 

approach is incomplete occupancy of the modification at a 

specific RNA position. Because our data contained 

unmodified bases as well as modified ones in the same 

contexts, we are able to calculate the effects of lowered 

occupancy (see Fig. 5). In most cases, the base modifications 

were distinguishable at levels as low as 10-15% occupancy. 

We expect that yet higher levels of sensitivity could be 

achieved with further increases in depth of sequencing to 

provide more precision in the data. 

    Another source of non-homogeneous base coding in 

biologically derived RNAs is single nucleotide variations that 

arise from heterozygous alleles and from inhomogeneity in 

tissues. In the current four-dimensional data, such mixed 

RNAs fall on an axis between the two unmodified bases (Fig. 

6), and are clearly distinguishable at a level at least as small as 

10%. Importantly, our data show that such a base mixture does 

not overlap with the pattern of the modifications tested. For 

example, we find that partial replacement C by U does not 

confound the detection of m3U (Fig. 6a), and mixing of 

canonical A with G does not interfere with detection of m6G, 

m1G, m6A, or m26A (Fig. 6b). This is possible because the 

RT fingerprint of the modified residues characterizes the 

miscoding profile of all four nucleotides, while partial 

mutations yield substantial differences in only two 

nucleotides. This fact should enable the differentiation not 

only of modified bases in biological samples, but also 

heterozygous alleles and variations from tissue heterogeneity. 

Conversely, our data suggest that the assignment of single 

nucleotide variations in standard-depth RNA seq is likely to be 

confounded by base modifications, providing a caution for 

researchers in the field. 

    Our approach makes use of great sequencing depth to 

provide the precision to differentiate between canonical and 

modified bases. While simple sequencing of the transcriptome 

is possible using only 20× depth of coverage of sequence,
48-49

 

such a low depth would miss nearly all of the current 

modifications, and would assign them as the unmodified 

congener. For some modifications, such a low sequencing 

coverage would lead to base miscalls. For example,  

hypoxanthine (I) would be called as G rather than A, and 

would be missed unless a comparison to the chromosomal 

DNA sequence was made.
50

 Similarly, our data show that 

m6G could well be miscalled as A at 20× coverage. Higher 

depths (typically on the order of ca. 100×) are sometimes used 

in RNA-seq for identification of splicing events.
49,51

 Our 

experiments suggest that of the modifications tested, most 

would still not be distinguishable at this depth. One exception 

is m6G, since its miscoding rate is high, but it would likely 

only be distinguishable at high levels of occupancy. Our data 

suggest that a depth of 1000× begins to yield sufficient 

discriminating power to begin to reliably differentiate some of 

these modifications, and we recommend employing a baseline 

level of at least 5000×. Fortunately, new ultra-high-throughput 

instruments can enable such levels of coverage and beyond, 

given access to sufficient input RNA. According to our data, at 

depths higher than 8000× we were able to not only identify 

and differentiate several base modifications, but also 

distinguish them at relatively low levels of occupancy. It is 

clear that changes in depth of sequencing will critically 

influence statistical significance and resolution of the obtained 

data. 

CONCLUSIONS  

    In summary, our data show that multiple modifications of 

RNA bases are readily detectable by ultra-deep sequencing 

patterns in a single sequencing run. This strategy greatly 

expands the ability to locate and identify several modifications 

for which current methods are nonexistent or highly laborious. 

Future experiments are planned to test this approach with 

biologically derived RNAs. It will also be of interest in the 

future to test other modifications for their deep sequencing 

patterns: since over 100 modifications are known, a broader 

set of data patterns could well be useful in future searches for 

previously unknown sites of modified bases. In addition, use 

of varied reverse transcriptase enzymes may well give 

differences in response patterns, thus possibly providing yet 

broader discriminating power. New sequencing instruments 

that are designed to yield great depth of sequencing will also 

facilitate such studies in the future. 

    Significantly, our experiments also suggest the possibility 

that existing biological and clinical sequencing data might be 

susceptible to error in sequence and mutation calling, due to 

patterns that were caused not by mutations, but rather by base 

modification. For example, we have shown that a m6G or 

m1A posttranscriptional modification could easily be misread 

as a mutation (A and T respectively). We conclude that 

researchers and clinicians in the future who make use of low-

depth NGS data from RNA should proceed with caution, since 

base modifications can clearly alter outcomes substantially.  
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EXPERIMENTAL METHODS  

Synthesis of modified RNAs. RNA (Table 1) and DNA (Table 

S2) oligonucleotides were obtained from the Stanford Protein 

and Nucleic Acid Facility (PAN), Integrated DNA 

Technologies (IDT) or GE Dharmacon. Oligoribonucleotide 

‘miRm6G’ was synthesized in the laboratory as described in 

detail in the SI file. RNA sequences were purified by 

polyacrylamide gel electrophoresis (PAGE) in denaturing 20% 

gels and analyzed by MALDI-TOF.  

NGS library preparation and sequencing. In the first step, the 

3’ end adapter was ligated to 200 ng of all RNA sequences. 

The reaction mixture was incubated for 1 hour at 28˚C, and 

immediately loaded and separated in a denaturing 15% 

polyacrylamide gel, next to a 10bp DNA Ladder. Bands of 

ligated RNA/DNA were cut out and eluted for 2 h at room 

temperature in 350 µL of Elution buffer (0.3 M NaOAc, pH 

5.2, glycogen 0.18 mg/ml). The mixture was decanted, and 

precipitated overnight. Ligated RNA/DNA was reverse 

transcribed using Super Script IV and. cDNA was purified in a 

denaturing 12% polyacrylamide gel, next to a 10bp DNA 

Ladder. Bands of cDNA were cut out and eluted from gel and 

precipitated overnight. Next, cDNA was circularized by 

CircLigase™II ssDNA Ligase. The reaction mixture was 

incubated for 1 h at 60˚C, then 10 min at 80˚C. Mini Elute 

columns, and PB Buffer were used to clean up circular cDNA 

samples as described in the manufacturer’s instructions. Eluted 

circular cDNA template was amplified by PCR (98 ˚C for 2 

min; 8-12 times: 98 ˚C for 15 s, 60 ˚C for 30 s, 72 ˚C for 45 s; 

72 ˚C for 5 min, 4 ˚C forever) using Phusion High-Fidelity 

PCR Master Mix according to the NEB’s protocol. Reaction 

products were separated in a 10% polyacrylamide gel to 

investigate the optimal number of PCR cycles for each sample. 

Then 17 µL of ccDNA was amplified in 50 µL reaction 

volume containing: 25 µL of Phusion High-Fidelity PCR 

Master Mix. The reaction was stopped, and loaded on a native 

10% polyacrylamide gel, next to CRL, and HRL DNA 

Ladders. Bands of dsDNA were cut out, eluted and 

precipitated overnight. The DNA pellet resuspended in 

nuclease-free water and its concentration measured by 

NanoDrop and Qubit Bioanalyzer. Libraries were pooled by 

mixing 4.5 µg to a final amount of 90 µg dsDNA. The quality 

and concentration of the sample was determined by High 

Sensitivity DNA Assay on an Agilent 2100 Bioanalyzer. 

Sequencing was run using MiSeq Reagent Kits v2 (50cycles, 

Illumina), MiSeq Instrument with method Single Index by 

Illumina (1×50 MiSeq with Index). 

Sequencing data analysis. RNA-seq reads were filtered 

according to their indices to 20 groups. Inside each group, 

only sequences containing the correct sequence of the first 6 

nucleotides from a small RNA sequence were taken to further 

analysis. Inside this group, sequences were separated into 6 

bins: i) full length sequences (20 nt length), ii) sequences with 

one deletion (19 nt), iii) sequences containing 2 deletions (18 

nt), iv) truncated sequences (at least 6 nt-long), v) sequences 

with single insertion (21 nt). We focused on 2 positions 

forward (+2) and backward (-2) in sequence relative to the 

modified residue (position 0). Data were normalized to 10,000 

reads and plotted as frequencies of indels, truncations and 

ATCG content. These data values were subject to PCA 

analysis. Raw sequencing data filtration was performed by 

Genesis Data Solutions, Omaha, NB. 

PCA analysis. The principal components were calculated 

using standard algorithms from the R software. Varied subsets 

of the data were used to identify the combinations of variables 

that would best discriminate between the modifications 

considered in the experiment. Variables normalized to 10,000 

reads were transformed by standardizing the data to a common 

standard deviation (each variable has a variance of 1). We 

performed principal components analysis. To investigate the 

data confidence levels (0.95) Gamma-Poisson distributions for 

each variable were simulated. Unknown sample simulations 

were done by the assumption that the sample is a mixture of 

10% or 50% modified oligonucleotide with unmodified.  
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