Different Z / E-Selectivity Depending upon the Length of the Acyl Side Chain in the Formation of 2,2'-Diacyl-9,9'-bifluorenylidene

Atsushi Oota, Toshinobu Imai, Ayumi Yamazaki, Toru Oba, Michinori Karikomi, and Masahiro Minabe*

Department of Applied Chemistry, Faculty of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585

Received July 19, 2005; E-mail: minabe@cc.utsunomiya-u. ac.jp

Abstract

We studied the formation of $2,2^{\prime}$-diacyl- $9,9^{\prime}$-bifluorenylidene from 2-acyl-9-bromofluorene via the corresponding intermediate 9-bromo-9, 9^{\prime}-bifluorenyl. It was found that dehydrobromination of the 9-bromo-9, 9^{\prime}-bifluorenyl derivatives occurred through the E2 elimination sequence, suggesting that the configuration of 9 -bromo- $9,9^{\prime}$-bifluorenyl isomers determined the stereochemistry of the product. Facile isomerization of the formed $9,9^{\prime}$-bifluorenylidenes may give the observed stereo-selectivity depending upon the length of the acyl side chain.

9, 9^{\prime}-Bifluorenylidene ($\mathbf{1 a}, \mathrm{R}=\mathrm{H}$; Scheme 1) has one of the partial structural motifs of fullerenes, ${ }^{1}$ and may be a novel starting material for the bottom-up synthesis of elaborate fullerene derivatives. A conventional procedure to prepare $\mathbf{1}$ is the reaction of the corresponding 9 -bromofluorene (2) with methanolic potassium hydroxide in acetone. ${ }^{2,3}$ Bethell et al. have proposed that the reaction of $\mathbf{2 a}(\mathrm{R}=\mathrm{H})$ to $\mathbf{1 a}$ in t-butyl alcohol proceeds via the intermediate 9 -bromo-9,9'-bifluorenyl $(\mathbf{3 a}, \mathrm{R}=\mathrm{H}) .{ }^{4}$ They concluded that the reaction of 3a to $\mathbf{1 a}$ followed the E2 reaction sequence with base. ${ }^{5}$ When starting with 2, which possessed an electron-withdrawing moiety ($\mathrm{R}=\mathrm{Br}$, Cl, CN, and NO_{2}) at the C_{2}-position, the conversion obeyed first-order kinetics. ${ }^{6}$ They did, however, not examine possible

Scheme 1.
isomerism of the corresponding 1.
We have reported that the reaction of 2-acetyl- (2b) and 2-stearoyl-9-bromofluorene ($\mathbf{2 c}$) gave both (Z)- and (E)-2,2' ${ }^{\prime}$-di-acyl-9, 9^{\prime}-bifluorenylidenes, $\mathbf{1 b}$ and $\mathbf{1 c}$, respectively: ${ }^{7} \mathbf{2 b}$ mainly gave E-isomer, while 2c gave Z-isomer predominantly. 2-Nonanoyl-9-bromofluorene (2d) afforded 1d in a Z / E ratio between the cases of $\mathbf{1 b}$ and $\mathbf{1 c}$ (Scheme 1$).(E) \mathbf{- 1 b}$ is a little more stable than $(Z) \mathbf{- 1 b}$; the side chains situate to decrease each other's steric repulsion. On the other hand, $(Z)-\mathbf{1 c}$ is more stable than $(E)-\mathbf{1 c}$; we attribute it to the increment of aggregative intra-molecular interaction between side chains. ${ }^{7}$ The mechanism of the stereo-selectivity has not yet been clarified. Here, we briefly report the kinetics of the formation of $\mathbf{1 b}$ and $\mathbf{1 c}$ from $\mathbf{2 b}$ and $\mathbf{2 c}$, respectively. The results suggest that facile isomerization of formed $\mathbf{1}(\mathrm{R}=\mathrm{Ac}$ or St$)$ follows the conventional conversion of $\mathbf{2}$ to $\mathbf{1}$.

First, we examined the reaction of $\mathbf{2 a}$ to $\mathbf{1 a}$ in the presence of cyclohexene (4), to verify the possibility of the carbene mechanism. ${ }^{8}$ The ${ }^{1}$ HNMR spectra of the products showed no signal attributable to a cyclopropane adduct that could have been formed via the carbene species: Only the peaks due to 1a, ${ }^{2}$ oxirane 5a $(\mathrm{R}=\mathrm{H})$, and fluorenone ${ }^{9}(\mathbf{6 a}, \mathrm{R}=\mathrm{H})$ were recognized (Scheme 2 and Table 1). ${ }^{10}$ The finding indicates that $\mathbf{1}$ forms predominantly through the carbanion sequence via the intermediate 3 .

Second, the reaction of $\mathbf{2}$ to $\mathbf{3}$ requires a stoichiometrically 0.5 molar amount of potassium hydroxide on the basis of $\mathbf{2}$, and the dehydrobromination of $\mathbf{3}$ to $\mathbf{1}$ consumes 1 molar amount (or 0.5 mol amount based on 2) of the base. Then, the reaction of $\mathbf{2 b}$ and $\mathbf{2 c}$ was carried out with a small amount of potassium hydroxide, in order to confirm the formation of $\mathbf{3}$ as an intermediate (Table 2). Shortage of potassium hydroxide left a larger amount of $\mathbf{3 b}$, and the yield of $\mathbf{1 b}$ and the ratio of $(E) \mathbf{- 1 b}$ increased with an increasing amount of base (Runs 13). Formed 3b was roughly a $1: 1$ mixture of threo- and erythro-isomers, ${ }^{11}$ and the Z / E ratios of $\mathbf{1 b}$ and $\mathbf{1 c}$ were also $1: 1$ when the amount of base was insufficient (Runs 1 and 4). The yield of $\mathbf{1 c}$ and the ratio of (Z) - $\mathbf{1 c}$ increased with an increasing amount of base (Runs 4-6), in accordance with our previous paper. ${ }^{7}$ These results suggest, at least, no stereoselectivity at the initial stage of the reaction.

Third, we examined the apparent rate constants for the for-

Scheme 2.
Table 1. Reaction of $\mathbf{2 a}$ in the Presence of $\mathbf{4}$

Run	Molar ratio of $\mathbf{4} / \mathbf{2 a}$	Products/\%		
	2	$\mathbf{1 a}$	$\mathbf{5 a}$	$\mathbf{6 a}$
1	20	60	28	8
$2^{\text {a) }}$	0	5	43	29
3	0	71	24	5

a) $\mathbf{2 a}(16 \%)$ was recovered.

Table 2. Reaction of $2(\mathrm{R}=\mathrm{Ac}, \mathrm{St})$

Run	Reactant$(\mathrm{R}=)$	Molar ratio of $\mathrm{KOH} / \mathbf{2}$	Ratio of solvent $(\mathrm{mL}) / \mathbf{2}(\mathrm{mmol})$	1		3		5/\%	6/\%	Recvd.$2 / \%$
				\%	Z / E	\%	threo/erythro			
1 ${ }^{\text {a) }}$	2b (Ac)	0.4	100	6	48/52	52	46/54	-	17	26
$2^{\text {a) }}$	2b (Ac)	0.8	100	46	29/71	11	40/60	-	25	-
$3^{\text {a) }}$	2b (Ac)	1.8	100	67	15/85	-		-	19	-
4	2c (St)	0.4	100	20	57/43	-		2	22	50
5	2c (St)	0.8	100	28	58/42	-		10	27	26
6	2c (St)	1.8	100	32	86/14	-		42	16	9
7	2c (St)	1.8	200	38	82/18	-		33	15	14

a) Small amounts $(<2 \%)$ of 2,2 -diacetyl-9, 9^{\prime}-bifluorenyl-9-ol and 2-acetyl-9-fluorenol were confirmed.

Table 3. Apparent Rate Constants of the Formation of $\mathbf{1 b}, \mathbf{c}$ from $\mathbf{2 b}, \mathbf{c}$ and from $\mathbf{3 b}, \mathbf{c}\left(\mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}\right)$

$\mathbf{1}$	From 2	From $\mathbf{3}$
$\mathbf{b}(\mathrm{Ac})$	7.1	9.1×10
$\mathbf{c}(\mathrm{St})$	9.5	2.8×10^{2}

Scheme 3.
mation of $\mathbf{1 b}$ and $\mathbf{1 c}$ (as a Z - and E-mixture) from $\mathbf{2 b}$ and $\mathbf{2 c}$, and from $\mathbf{3 b}$ and $\mathbf{3 c}$ (threo- and erythro-mixture), respectively, using absorbance changes of $\mathbf{1}$ at $466 \mathrm{~nm} .{ }^{12}$ Here, $\mathbf{3 b}$ and 3c were synthesized by the reaction of $2,2^{\prime}$-diacyl-9,9'-bifluorenyl (7a; $\mathrm{R}=\mathrm{Ac}, 7 \mathbf{b} ; \mathrm{R}=\mathrm{St}$) with N-bromosuccinimide. The rate of formation of $\mathbf{1}$ was proportional to the concentrations of the reactant ($\mathbf{2}$ or $\mathbf{3}$) and the base (Table 3). The reaction of $\mathbf{3 c}$ was faster than that of $\mathbf{3 b}$ under the conditions where all the species were soluble. ${ }^{13}$ Table 3 shows that the reaction of $\mathbf{2}$ to $\mathbf{1}$ was slower than that of $\mathbf{3}$ to $\mathbf{1}$, indicating that the rate-determining step of $\mathbf{2}$ to $\mathbf{1}$ is involved in the step of $\mathbf{2}$ to $\mathbf{3}$. The kinetics suggest that dehydrobromination ($\mathbf{3}$ to $\mathbf{1}$) can proceed via the E2 or E1cB mechanism, and the latter has been excluded by Bethell. ${ }^{5}$ Based on the above results, we suggest the reaction pathway of $\mathbf{2 b}$ and $\mathbf{2 c}$ to $\mathbf{1 b}$ and $\mathbf{1 c}$, respectively, as in Scheme 3. ${ }^{4}$

Finally, we examined the isomerization of $\mathbf{1}$ in the presence of base as a preliminary experiment. Conversion of $(Z)-\mathbf{1 b}$ to $(E) \mathbf{- 1 b}$ and that of $(E)-\mathbf{1} \mathbf{c}$ to $(Z)-\mathbf{1 c}$ were observed under similar conditions of those of the reaction of $\mathbf{2}$ to $\mathbf{1}$.

As a conclusion, it is confirmed that the reaction of $\mathbf{2 b}$ and 2c gives diastereomeric 3b and 3c, respectively, and that the configuration of $\mathbf{3}$ influences the diastereomeric ratio of $\mathbf{1}$ formed by the E2 sequence. This mechanism is inconsistent with the observed stereo-selectivity of $\mathbf{1}$ from $\mathbf{2} .^{7}$ We thus tentatively assume that the stereo-selectivity is given by facile isomerization of the formed $\mathbf{1}$ in the presence of base during
the reaction. Further studies on the dependence of the length of the acyl side chain upon the rate of possible isomerization of $\mathbf{1}$ are now underway.

Experimental

Melting points are uncorrected. NMR $\left(\mathrm{CDCl}_{3}\right)$, IR (KBr pellets), and mass spectra were recorded with a Varian VXR-300, JASCO FT/IR-430, and JMX-AX 500 (JEOL, 70 eV), respectively. UV-vis spectra were obtained with a JASCO V-550DS at $19^{\circ} \mathrm{C}$.

Reaction of 2a in the Presence of $\mathbf{4}$. To a mixture of 2a $(590 \mathrm{mg}, 2.4 \mathrm{mmol})$ and $4(0.49 \mathrm{~mL}, 4.8 \mathrm{mmol})$ in acetone (3 mL) was added KOH (purity $83 \% ; 297 \mathrm{mg}, 4.4 \mathrm{mmol}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$ at $9-10^{\circ} \mathrm{C}$ for 5 min . After stirring for 1 h , the mixture was added to water. The composition of the precipitate was estimated by comparison of the characteristic peaks on the ${ }^{1} \mathrm{HNMR}$ spectra; $\delta 8.39$ for 1a $\left(\mathrm{H}_{1,1^{\prime}}\right), 6.00$ for 2a $\left(\mathrm{H}_{9}\right), 7.73$ for $\mathbf{5 a}\left(\mathrm{H}_{4,5}\right)$, and 7.64 for $\mathbf{6 a}\left(\mathrm{H}_{4,5}\right)$.

The residual portion was chromatographed on silica gel with toluene giving 5a: $\mathrm{mp} 92-93^{\circ} \mathrm{C}$ (from aqueous EtOH); IR 1192 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.70(6 \mathrm{H}, \mathrm{s}), 7.25(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.35-7.42$ $(4 \mathrm{H}, \mathrm{m}), 7.73(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 22.1,64.3,72.3$, 120.2, 124.7, 126.5, 128.6, 141.1, 142.0; ms m/z $222\left(\mathrm{M}^{+}\right)$, 207, 180, 164.

Reaction of 2c with KOH. A solution of $\mathrm{KOH}(83 \%, 28 \mathrm{mg}$, $0.41 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added at $9-10^{\circ} \mathrm{C}$ for 5 min to a mixture of $2 \mathrm{c}(257 \mathrm{mg}, 0.5 \mathrm{mmol})$ in acetone $(50 \mathrm{~mL})$, and the resulting mixture was stirred for an additional 1 h . The deposit was filtered off and the filtrate was added to water. Both precipitates were subjected to ${ }^{1} \mathrm{H}$ NMR in order to determine the composition. The characteristic signals are as follows: $\delta 8.99$ for $(E)-\mathbf{1 b}$, $\mathbf{c}\left(\mathrm{H}_{1,1^{\prime}}\right), 8.95$ for $(\mathrm{Z}) \mathbf{- 1 b}, \mathbf{c}\left(\mathrm{H}_{1,1^{1}}\right), 6.04$ for $\mathbf{2 b}, \mathbf{c}\left(\mathrm{H}_{9}\right), 5.23$ for threo-3b $\left(\mathrm{H}_{9^{\prime}}\right), 5.22$ for erythro- $\mathbf{3 b}\left(\mathrm{H}_{9^{\prime}}\right), 7.96$ for $\mathbf{5 c}\left(\mathrm{H}_{1}\right), 8.20$ for 6b, c $\left(\mathrm{H}_{1}\right), 5.64$ for 2-acetyl-9-fluorenol $\left(\mathrm{H}_{9}\right), 4.90$ and 4.92 for $2,2^{\prime}$-diacetyl-9,9'-bifluorenyl-9-ol ${ }^{11}$ (threo- and erythro-mixture) $\left(\mathrm{H}_{9^{\prime}}\right.$).

The residual parts of the precipitates were chromatographed on silica gel with toluene and $\mathbf{5 c}$ was isolated: mp $78-81^{\circ} \mathrm{C}$ (from EtOH); IR $1681 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.88(3 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 1.25$ $(28 \mathrm{H}, \mathrm{s}), 1.68-1.77(2 \mathrm{H}, \mathrm{m}), 1.71(3 \mathrm{H}, \mathrm{s}), 1.73(3 \mathrm{H}, \mathrm{s}), 2.98(2 \mathrm{H}$, $\mathrm{t}, J=7.4 \mathrm{~Hz}), 7.30-7.47(3 \mathrm{H}, \mathrm{m}), 7.79\left(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{H}_{4,5}\right)$, $7.96\left(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}, \mathrm{H}_{1}\right), 8.04\left(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{H}_{3}\right) ; \mathrm{ms}$ $m / z 488\left(\mathrm{M}^{+}\right), 446,249,222,207,193,179$.

Reaction of $\mathbf{2 b}$ with $\mathbf{K}_{\mathbf{2}} \mathbf{C O}_{3}$. A mixture of $\mathbf{2 b}(87 \mathrm{mg}$, $0.30 \mathrm{mmol})$ in acetone (30 mL) was stirred with $\mathrm{K}_{2} \mathrm{CO}_{3}(41 \mathrm{mg}$, $0.30 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ at $9-10^{\circ} \mathrm{C}$ for 1 h .2 -Acetyl-9-fluorenol (18%) and 2b (64%) were confirmed by ${ }^{1} \mathrm{HNMR}$.

Formation of Diastereomeric 3b. A solution of $\mathbf{2 b}$ (5.74 g , $20 \mathrm{mmol})$ in acetone $(200 \mathrm{~mL})$ was refluxed with a solution of sodium iodide $(6.00 \mathrm{~g}, 40 \mathrm{mmol})$ in acetone $(25 \mathrm{~mL})$ for 5.5 h . Upon usual treatment, 4.1 g of a mixture of meso- and $d l-7 \mathrm{~b}(\mathrm{R}=\mathrm{Ac})$ was obtained. The isomeric ratio of the mixture was accounted to be $51: 49$ by signal strengths at $\delta 4.93$ and 4.92 ppm of ${ }^{1} \mathrm{H} N \mathrm{NR}$, respectively. By fractional recrystallization from ethanol, $d l-7 \mathbf{b}$ was isolated: mp $295-298{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{HNMR} \delta 2.31$ ($6 \mathrm{H}, \mathrm{s}$), 4.92 $(2 \mathrm{H}, \mathrm{s}), 7.08\left(2 \mathrm{H}\right.$, brs, $\left.\mathrm{H}_{8,8^{\prime}}\right), 7.35-7.47(6 \mathrm{H}, \mathrm{m}), 7.62(2 \mathrm{H}, \mathrm{d}, J=$ $\left.7.8 \mathrm{~Hz}, \mathrm{H}_{4,4^{\prime}}\right), 7.76\left(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{5,5^{\prime}}\right), 7.84(2 \mathrm{H}, \mathrm{dd}, J=$ $8.1,1.2 \mathrm{~Hz}, \mathrm{H}_{3,3^{\prime}}$). Anal. Found: C, $87.00 ; \mathrm{H}, 5.39 \%$. Calcd for $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{O}_{2}$: C, 86.93; H, 5.35\%.

The mother solution afforded meso-7b: mp $244-246^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.44\left(6 \mathrm{H}\right.$, s), $4.93(2 \mathrm{H}, \mathrm{s}), 6.98\left(2 \mathrm{H}\right.$, brs, $\left.\mathrm{H}_{8,8^{\prime}}\right), 7.17$ $\left(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{H}_{7,7^{\prime}}\right), 7.32\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{6,6^{\prime}}\right), 7.53$ $\left(2 \mathrm{H}\right.$, brs, $\left.\mathrm{H}_{1,1^{\prime}}\right), 7.68-7.72(4 \mathrm{H}, \mathrm{m}), 7.94(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}$, $\mathrm{H}_{3,3^{\prime}}$). Anal. Found: C, 86.63; H, 5.28\%.

The HPLC chromatograms of meso- and dl-7b showed one and two peaks, respectively, using a chiral column, Chiralpak-IA.

A mixture of meso- and $d l-7 \mathbf{b}(828 \mathrm{mg}, 2.1 \mathrm{mmol})$ and NBS ($545 \mathrm{mg}, 3.1 \mathrm{mmol}$) in $\mathrm{CCl}_{4}(60 \mathrm{~mL})$ was refluxed for 18 h . The precipitate consisted of threo- and erythro-3b (45:55) by ${ }^{1} \mathrm{H}$ NMR ($\delta 5.23$ and 5.22 ppm , respectively).

A mixture of meso- and $d l-7 \mathrm{c}(\mathrm{R}=\mathrm{St})$ was obtained quantitatively in a ratio of 49:51 by the similar reaction of $\mathbf{2 c}$. The mixture of 7c was converted into a mixture of threo- and erythro-3c (47:53).

Rate Measurement on Formation of 1b from 2b. Typical Procedure: The absorption maxima of $\mathbf{1}$ were observed at 466 nm with the molar absorptivity of $2.5 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$ for $\mathbf{1 b}$ and $2.2 \times 10^{4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$ for $\mathbf{1 c}$, respectively.

To a stirred (800 rpm) acetone solution of $\mathbf{2 b}\left(8.82 \times 10^{-5} \mathbf{M}\right.$, $2 \mathrm{~mL})$ in an optical cell was added $\mathrm{KOH}-\mathrm{MeOH}\left(2.67 \times 10^{-3}\right.$ $\mathrm{M}, 0.1 \mathrm{~mL}$) at once. The solution corresponded to a mixture of $\mathbf{2 b}\left(8.40 \times 10^{-5} \mathrm{M}\right)$ and $\mathrm{KOH}\left(1.27 \times 10^{-4} \mathrm{M}\right)$. The rate of formation of $\mathbf{1 b}$ was estimated to be an increasing absorption at the initial stage of the reaction. The measurement was repeated at different KOH concentrations (1.27, 1.69, 2.11, and $2.53 \times$ $10^{-4} \mathrm{M}$, respectively), and the observed rate was plotted against the concentration of KOH giving a straight line (correlation coefficient $=0.94$) of which the slope was the apparent rate constant, as is indicated in Table 3. Also, similar experiments were carried out at different concentrations of $\mathbf{2 b}(5.04,6.72,8.40$, and $\left.10.1 \times 10^{-5} \mathrm{M}\right)$ and $\mathrm{KOH}\left(1.69 \times 10^{-4} \mathrm{M}\right)$.

The reaction of $\mathbf{2 c}$ with KOH was done using different concentrations of $2 \mathbf{c}\left(4.71,9.43\right.$, and $\left.18.9 \times 10^{-5} \mathrm{M}\right)$ with $\mathrm{KOH}(1.42$, $1.64,2.14$, and $\left.2.86 \times 10^{-4} \mathrm{M}\right)$. Also, the following combinations were measured: $\mathbf{3 b}\left(4.36,7.63,10.9,11.5\right.$, and $\left.14.2 \times 10^{-5} \mathrm{M}\right)$ with $\mathrm{KOH}\left(1.52,2.02,2.53\right.$, and $\left.3.04 \times 10^{-4} \mathrm{M}\right) ; \mathbf{3 c}(4.46,5.57$, $6.69,8.36$, and $11.3 \times 10^{-5} \mathrm{M}$) with $\mathrm{KOH}(1.18,1.47,1.67$,
1.97, and $\left.2.06 \times 10^{-4} \mathrm{M}\right)$.

Isomerization of 1 in the Presence of Base. A mixture of $\mathbf{1 b}$ $(Z / E=73 / 27,23.1 \mathrm{mg}, 56 \mu \mathrm{~mol})$ and $\mathrm{KOH}(25 \mu \mathrm{~mol}$ in MeOH$)$ in acetone $(5 \mathrm{~mL})$ was stirred at room temperature for 1 h , giving $\mathbf{1 b}(Z / E=6 / 94,75 \%)$ and $\mathbf{6 b}(12 \%)$.

A mixture of 1c $(Z / E=54 / 46,43.1 \mathrm{mg}, 50 \mu \mathrm{~mol})$ and KOH $(25 \mu \mathrm{~mol}$ in MeOH$)$ in acetone $(5 \mathrm{~mL})$ was also treated as described above, affording $\mathbf{1 c}(Z / E=82 / 18,82 \%)$ and $\mathbf{6 c}(5 \%)$.

A mixture of 1c $(Z / E=62 / 38,43.1 \mathrm{mg}, 50 \mu \mathrm{~mol})$ in acetone/ methanol $(5 \mathrm{~mL} / 25 \mu \mathrm{~L})$ was stirred for $1 \mathrm{~h}: 1 \mathrm{c}(Z / E=64 / 36$, 89%) was determined by NMR.
T.O. thanks the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government for their financial support (Grants-in-Aid for Scientific Researches on Priority Areas: Area 767, No. 15085208).

References

1 H. E. Bronstein, N. Choi, L. T. Scott, J. Am. Chem. Soc. 2002, 124, 8870.

2 E. Bergmann, J. Hervey, Ber. Dtsch. Chem. Ges. 1929, 62, 893.

3 M. Minabe, K. Suzuki, Bull. Chem. Soc. Jpn. 1975, 48, 586.

4 D. Bethell, J. Chem. Soc. 1963, 666.
5 D. Bethell, A. F. Cockerill, J. Chem. Soc. B 1966, 917.
6 D. Bethell, A. F. Cockerill, D. B. Frankham, J. Chem. Soc. B 1967, 1287.

7 M. Minabe, T. Oba, M. Tanaka, K. Kanno, M. Tsubota, Chem. Lett. 2000, 498.

8 R. Stösser, J.-U. Thurner, G. Tomaschewski, U. Ewert, P. Heblik, W. Schneider, T. Hanke, Z. Naturforsch. A: Phys. Sci. 1982, 37, 1241.

9 J. Schmidt, H. Wagner, Ber. Dtsch. Chem. Ges. 1910, 43, 1797.

10 Ketone $\mathbf{6 a}$ should be formed via air-oxidation of $\mathbf{2 , 3}$, and $\mathbf{1}$ in the presence of base. A large excess of solvent resulted in an increase of the oxidized compound 6 (see Run 2 in Table 1). A part of 6 should be formed via 9-fluorenol that was generated from 2 in the presence of potassium carbonate as a contaminant of potassium hydroxide.

11 Separation and characterization of the pure threo- and erythro-3, and the related compounds are now in progress.
12 Colorless or light yellowish 2, 3, 5, and $\mathbf{6}$ did not give absorption bands at this wavelength region.

13 Although recovered 2 in Table 2 suggests the slower reaction of $\mathbf{2 c}$ than that of $\mathbf{2 b}$, it is attributable to the poor solubility of $\mathbf{2}$ (and $\mathbf{1}$) under the conditions: solubility of $\mathbf{2 b}$ and $\mathbf{2 c}$ are in the orders of magnitudes 10^{-5} and $10^{-6} \mathrm{M}$, respectively.

