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Cyclopheophorbides are often major chlorophyll-a degradation products in biogeochemical situations.
Authentic standards are unavailable and facile generation of pure compounds is required. 132,173-Cycl-
omesopheophorbide-a-enol (mesoCYCLO) was prepared in moderate yields via a known Dieckmann-like
condensation of mesopyropheophorbide-a methyl ester (mpPBIDaME). MesoCYCLO was purified by flash
chromatography over a polymeric reversed phase (PRP-1™) material, negating the requirement for a
crystallization step. Structural verification included ultraviolet-visible spectrometry, high resolution
matrix (sulfur/CS2) assisted laser desorption mass spectrometry, and nuclear magnetic resonance.

� 2011 Elsevier Ltd. All rights reserved.
Cyclopheophorbides-a-enol (CYCLO, 2a) is a well known bio-
geochemical degradation product of chlorophyll-a.1,2 Several re-
ports reveal the generation of CYCLO from chlorophyll-a (CHLa)
in filter feeding marine organisms, such as sponges3 and mol-
lusks.4–6 Geochemically, CYCLO is reported from a variety of sedi-
ments1,7 and has been observed to form directly from
pyropheophorbide-a (pPBIDa, 1a1) in a downhole sequence of sul-
fidic carbonates.8 The exocyclic seven-membered ring forms via a
dehydration–cyclization of pyropheophorbide-a free acid (1a1).
Interest in the cyclopheophorbides also arises from their apparent
direct relationship as diagenetic precursors to a variety of bicy-
cloalkylporphyrins (BiCAP) in oil shales and petroleum
crudes.2,7,9,10

CYCLO (2a) has been synthesized (Scheme 1) in vitro by Dieck-
mann-like (intramolecular Claisen)11–13 cyclizations of pyropheo-
phorbide-a methyl ester (1a2). Though a wide variety of 132,173-
cyclopheophorbide-enols were synthesized by Falk et al.,11 as far
as we could find, mesoCYCLO has not been formed in vitro until
the present Letter.

The title compound of the present study, 132,173-cyclomes-
opheophorbide-a-enol (mesoCYCLO, 2b), has been identified by
LC–PDA–MS as a minor constituent of sedimentary organic matter
in Peru margin sediments.8 In that Letter, the authors identified
mesoCYCLO (2b) as cyclopheophorbide-518 (CPP518), indicating
the nominal mass of the pigment. Previously, our group2 has also
termed CYCLO (2a) as phorbide686 and mesoCYCLO (2b) as chlo-
rin678, indicating the wavelengths (nm) of their band I absorptions
in ethyl ether.
ll rights reserved.

: +1 561 297 2759.
The cyclopheophorbides have been found to be extremely
unstable and often oxidatively rearrange to 132-(S/R)-hydroxychlo-
rophyllones (3), 132-oxopheo-phorbide-a (4), and/or chlorophyl-
lonic acid-a (5) and are therefore often referred to as anti-
oxidants.4,5,14–17 However, to date, there is no proof that these
compounds are physiologically active as such in nature. The struc-
tures of these compounds are given in Figure 1.

In this Letter, we report the hemisynthesis of CYCLO (2a) and
describe the analogous generation of mesoCYCLO (2b) from meso-
pyropheophorbide-a methyl ester (mpPBIDaME, 1b). Each proce-
dure followed the more recently modified methodology of
Ocampo et al.13;cf11,15 Additionally, we present proof (UV/Vis, 1H
NMR, HR-MALDI-TOF) of the structure of mesoCYCLO (2b) and
add to the NMR data on CYCLO (2a). Significant analytical develop-
ment was required and we describe the successful and facile puri-
fication of this and other cyclopheophorbides, as well as providing
UV/Vis, mass and NMR spectra of the highly purified pigments.

All procedures were performed either in the dark or subdued
yellow light and solutions were kept cold/frozen and under argon
whenever possible.mpPBIDaME (1b) was prepared from hydroge-
nation of the vinyl group of pPBIDaME18 (1a2) as follows; pPBIDa-
ME(100 mg, 0.18 mmol) was dissolved in 99.9% anhydrous
tetrahydrofuran (THF, 25 mL) and added to 4 mg (10%) palladium
on charcoal catalyst.19 This follows the procedure outlined by Jean-
don et al.20 Hydrogenation was performed under 1 atmosphere
pressure (relative) for 200 min in a Parr hydrogenator using an
ACE glass reaction vessel. The catalyst was removed by filtering
the mixture through Celite and the solvent was removed in vacuo.

CYCLO (2a) or mesoCYCLO (2b) was prepared from pPBIDaME
(1a2) or mpPBIDaME (1b), respectively, following a reported proce-
dure13 according to Scheme 1. For example, in the case of mesoCY-
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Figure 1. Structures14–16 of oxidatively generated degradation products of (2a) CYCLO: (3) 132(S/R)-hydroxychlorophyllones, (4) 132-oxopheophorbide-a, (5) chlorophyllonic
acid-a.
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Scheme 1. Structural comparisons and cyclization reaction forming the cyclopheophorbide-a-enols.
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CLO (2b), mpPBIDaME (1b, 55.07 mg, 1.09 mmol) was added to
6 mL tetrahydrofuran (THF; 99.9% anhydrous inhibited with
250 ppm BHT) under a stream of ultra-high purity (UHP)-argon.
Ten milliliters (1.0 mmol) of sodium bis(trimethylsilyl)-amide21

in THF was added to that solution and stirred for about 8 min.
The reaction mixture was quenched in an Ar-sparged deoxygen-
ated mixture of CH2Cl2 (80 mL), saturated NaH2PO4 (20 mL) and
degassed deionized ice (20 g). Following liquid:liquid extraction,
the organic (CH2Cl2) layer was dried over anhydrous Na2SO4, fil-
tered and evaporated in vacuo.

The crude product was then flash chromatographed over poly-
meric reversed phase (PRP-1™) using an isocratic solvent (90% ace-
tonitrile) as we detailed previously.22 This rapid and mild
purification also negated the need for crystallization/recrystalliza-
tion procedures. As we were interested in only the pure product,
we did not trace yield, which would be difficult as we ‘heart cut’
the main fraction of the target compound (2b). A very gentle puri-
fication method was required since cyclopheophorbide-a-enols
have been found to be very unstable compounds that can be easily
oxidized to a variety of alternate cyclic pheophorbides. CYCLO (2a)
is routinely altered to different oxidative artifacts, mainly 132(S/R)-
hydroxychlorophyllones-a (3), during chromatographic and other
isolation/purification procedures.14–16,22 As with CYCLO (2a), when
mesoCYCLO (2b) is chromatographed over normal phase silica or
alumina in conventional column chromatography or analytical
HPLC, it is mainly oxidized to artifacts and becomes barely detect-
able. The main artifacts compared to CYCLO (2a) analog have been
found to be highly polar and are presumed to be the meso-chloro-
phyllonic acids (cf compd 22 in Ref. 15). To prevent undesirable
oxidations, and due to successful purification using PRP-1™ as
packing material,22 a PRP-1™ analytical or semi-prep column
was used for HPLC analysis. The HPLC (PRP-1™) chromatogram
for the purification of mesoCYCLO (2b) is presented in Figure 2.
The two peaks immediately following the solvent front are the arti-
facts generated over the column. To confirm this hypothesis, we
collected a ‘heart cut’ of the mesoCYCLO (2b) peak between
�23–27 min and reinjected it. This was repeated several times
and each time a new pair of these artifacts was generated from a
previous run’s heart cut. The reappearance of these two peaks on
the chromatogram supported our hypothesis of artifact formation
being directly related to injectate preparation and injection into
the HPLC system. This occurred regardless of continual He sparging
of solvents and/or the addition of anti-oxidants such as butylated-
hydroxytoluene (BHT) or ascorbic acid to the injectate and devel-
oping solvent.

Like cyclopheophorbide-a-enol (CYCLO, 2a), the Soret Band in
the UV/Vis spectrum of pure mesoCYCLO (2b) is complex and con-
sists of at least 4 overlapping individual bands. Additionally, the
spectrum contains an intense band I appearing at 676 nm
(Fig. 3a), which exhibits a bathochromic shift compared to the par-
ent compound mesopyropheophorbide-a methyl ester (1b;
k1 = 666 nm). Both band I and the Soret band exhibit hypsochromic
shifts when compared to the main maxima of the CYCLO analog
(Fig. 3b). This is expected and occurs as a consequence of reduction
of the vinyl to ethyl at position 3 of the macrocycle.8,23 The UV/Vis
spectrum, an overall characteristic of the cyclopheophorbides, has
broad split Soret(S) bands. Absorption maxima recorded in the
HPLC eluant and relative intensities are given in brackets:
kS = 358 [1.000], (407) [0.796], 423 [0.907], 449 [0.593], kIV = 528
[0.065], kIII = 572 [0.093], kII = 619 [0.139], kI = 676 [0.426] nm.
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Figure 2. HPLC chromatogram of pure mesoCYCLO (2b) on analytical PRP-1™.
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Figure 5. Structure of 132,173-cyclomesopheophorbide-a (mesoCYCLO, 2b) with
proton containing carbons numbered. CYCLO (2a) has a double bond between 31

and 32 (vinyl in place of ethyl).
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Electronic absorption spectra ( Fig. 3a and b) were recorded in
CH2Cl2 with a Perkin–Elmer Model Lambda-2 Spectrometer which
is routinely standardized versus holmium oxide.

We obtained high resolution MALDI-TOF mass spectra24 of mes-
oCYCLO (2b) in 1:1 ratio with a carbon disulfide (CS2)/sulfur ma-
trix, an example being given herein as Figure 4. The matrix
derives from the method of Brune.25 The base peak equates to
the mesoCYCLO (2b) molecular ion (M+ = 518.3068 m/z) and the
other peaks below �m/z = 400 belong to the sulfur matrix
(S8 = 256; Matrix = 256 ± 32 m/z). Constraining elemental composi-
tion to C, H, N and O, the mass spectral software calculated a
molecular formula of C33H34N4O2 with an expected exact mass of
518.6487 Da. Sporadically, the dimer (1,035.0051 m/z; expec-
ted = 1,035.2835 Da) would be present in low (65% of 518 m/z) rel-
ative amounts. MALDI induced dimers are reported with other
compounds as well.26

For the consideration of the NMR data, the structure and carbon
numbering system for CYCLO (2a) and mesoCYCLO (2b) are given
herein as Figure 5.
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0.50

0.40

A
U

 

0.30

0.20

0.10

0.00
350 450 550

λλ,, nm

            650                  750 

Figure 3. UV/Vis absorption spectra of cyclopheophorbides in CH2Cl2. (a) meso
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Figure 4. MALDI-MS spectrum of mesoCYC
Nuclear magnetic resonance (NMR) spectra27 were obtained at
400 MHz for pyropheophorbide-a methyl ester (1a2), CYCLO (2a),
mesopyropheophorbide-a methyl ester (1b) and mesoCYCLO (2b)
in order to compare similarities and differences among this family
of dihydroporphyrins. In most cases, NOESY and gCOSY 2D spectra
were also obtained in order to substantiate assignments.

The 400 MHz 1H NMR spectrum peak assignments for both CY-
CLO (2a) and mesoCYCLO (2b) are summarized in Appendix 1. Peak
assignments were made in concert with previous literature.
cf6,10,12,15 Differences in proton shifts for positions 171, 172 between
CYCLO (2a) and mesoCYCLO (2b) may be related to keto–enol tau-
tomerism effects (compds. 8 and 9 in Ref. 7) as reported to occur by
Ocampo et al.7

In summary, the preparation, rapid purification, and spectro-
metric characterization of 132, 173-cyclomesopheophorbide-a-enol
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(aka mesoCYCLO), a requisite known for comparison to biogeo-
chemical isolates, were described. This compound and its data
add to the growing list of known and fully characterized chloro-
phyll derivatives. In the future, alteration of the pyropheophor-
bide-a precursors (e.g., methyl-desvinyl, H-desvinyl, and others)
used for the cyclization reaction should certainly give additional
novel compounds.
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Appendix 1. 1H NMR assignments of 132,173-mesocyclopheo-
phorbide-a (mesoCYCLO, 2b) as compared to 132,173-cyclopheo-
phorbide-a (CYCLO, 2a: [data in brackets])
Proton
No.
No. of
protons
Multiplicity (COSY)
(coupling constant)
Chemical shift
(ppm)
21
 3 [3]
 s [s]
 3.12 [3.22]

31
 2 [1]
 Q [dd(18.01, 11.650]
 3.97 [7.83]
32 [32
a]
 3 [1]
 t (6.81) [d(11.51)]
 1.64 [6.1]
[32
b]
 — [1]
 [d(17.78)]
 [6.2]
5
 1 [1]
 s [s]
 8.86 [8.91]

71
 3 [3]
 s [s]
 3.16 [3.1]

81
 2 [2]
 q [q(7.89, 7.80)]
 3.52 [3.5]

82
 3 [3]
 t [t(7.68)]
 1.62 [1.59]

10
 1 [1]
 s [s]
 8.97 [8.95]

121
 3 [3]
 s [s]
 3.35 [3.35]

17
 1 [1]
 2nd order [2nd order]
 3.7 [3.66]

171
 2 [2]
 2nd order [2nd order]
 1.75 [2.37,

2.41]

172
 2 [2]
 t (6.74) [2nd order]
 4.27 [2.93,

3.07]

O–H
 1 [1]
 s [s]
 13.44 [13.43]

18
 1 [1]
 2nd order [2nd order]
 3.97 [4.02]

181
 3 [3]
 d (7.13) [d(6.99)]
 1.98 [1.99]

20
 1 [1]
 s [s]
 8.06 [7.98]

N–H
 2 � 1

[2 � 1]

s [s]
 �0.75, 0.093

[0, �0.929]
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