ChemComm

This article is part of the

Glycochemistry & glycobiology web themed issue

Guest Editors are Professor Peter H. Seeberger and Dr Daniel B. Werz

Please visit the website to access the other articles in this issue:http://www.rsc.org/chemcomm/glycochemistry

Cite this: Chem. Commun., 2011, 47, 9906-9908

COMMUNICATION

Propargyl/methyl furanosides as potential glycosyl donors†‡

Srinivasa Rao Vidadala,^a Gaddamannugu Gayatri,^b G. Narahari Sastry^{*b} and Srinivas Hotha^{*c}

Received 27th May 2011, Accepted 5th July 2011 DOI: 10.1039/c1cc13134f

Transfuranosylations are not well studied though many similar studies exist for transpyranosylation; herein, we report that propargyl/methyl D-ribf- and D-lyxf- give only 1,2-*trans* glycosides whereas D-araf- and D-xylf- result in a mixture of 1,2-*trans* and 1,2-*cis* glycosides; observed facts are rationalised by computational studies.

Complex carbohydrate components of glycoproteins and glycolipids are undoubtedly shown to be powerful in a variety of biochemical and physiological processes in animals, yeast, cellcell adhesion, cytolysis, fertilization and hormone action.¹ Synthesis of complex oligosaccharides is still a formidable task in spite of several elegant approaches and as a consequence superior methods for glycosidation need to be discovered.² Ironically, most of the pioneering efforts are dedicated to methods for the synthesis of pyranosides either because of their more frequent occurrence in nature than furanosides or due to the complexity in synthesizing them.³ However, recent identification of oligofuranosides in many natural products alerted synthetic chemists to develop novel furanosylation methods which are mild, stereoselective and catalytic from easily available starting monosaccharides.⁴ Glycosyl phosphatidyl inositol,^{5a,b} arabinogalactan (AG),^{5c} lipoarabinomannan (LAM)^{5c} and helminothosporium toxins^{5d} are some of the examples that contain complex oligofuranosides with immense biological importance.⁵

From our laboratory, we identified propargyl and methyl glycopyranosides as glycosyl donors by the use of gold(III) halides.^{6a,b} The methodology is unique as it requires only a catalytic amount of gold(III) salts and is traceless (no side product from the leaving group) with a large substrate scope.⁶

The ability of methyl glycosides to behave as glycosyl donors was linked to the Lewis and Brønsted acidity of $AuBr_3$ in the presence of aglycons. In addition, recently, the gold(III) activation protocol has been found to be excellent for the

- *E-mail: gnsastry@gmail.com; Tel: +91-40-27193016*
- ^c Department of Chemistry, Indian Institute of Science Education & Research, Pune-411 021, India. E-mail: s.hotha@iiserpune.ac.in; Fax: +91 20 2589 9790; Tel: +91 20 2590 8015

synthesis of transglycosylated products from 2-C nitromethylcontaining methyl glycosides,7a glyco-amino acid building blocks,^{7b} glycopolymers^{7c} and glycopolypeptides.^{7d} The foregoing discussion enticed us to probe the gold activation procedure for furanosylations with an eventual goal to synthesize antigenic motifs of LAM and AG present in Mycobacterium tuberculosis.^{5b} Accordingly, D-ribf (1a), D-xylf (1b), D-araf (1c) and D-lyx f (1d) were synthesized from the corresponding aldoses by simple Fischer glycosidation⁸ as the key step followed by per-O-benzylation. Initially, propargyl ribofuranoside 1a was allowed to react with aglycon 2a in the presence of AuBr₃ in CH₃CN at room temperature for more than 3 days to observe formation of the transglycosylated disaccharide 3a in 40% yield in 1.2-trans (B-) fashion only (Scheme 1). The overall yield could be improved to 72% without compromising on the 1,2-trans stereoselectivity by the addition of 8 mol% each of AuBr₃ and AgOTf.⁹ Encouraged by the observed 1.2-*trans* stereoselectivity. xylf 1b was subjected to same reaction conditions with aglycon 2a to observe the 5:1 diastereomeric mixture of the 1,2-trans (β -) and 1,2-cis (α -) disaccharides 4a in 67% yield. Similar experiments with araf derivative 1c gave again diastereomeric mixture of 10:11,2-trans (α -) and 1,2-cis (β -) disaccharides 5a in 66% yield whereas D-lyxf derivative 1d resulted in 1,2-trans (α -) isomer **6a** only in 69% yield (Scheme 1).⁹

To better understand the reasons for the observed experimental trends, molecular modelling calculations have been performed. Initially conformational searches for the reactants, in their ionic forms, and products were carried-out by employing the OPLS_2005 force field, using the ConfGen module of the Schrödinger program package.¹⁰ This was followed by quantum chemical calculations on all the conformations generated, with

Scheme 1 Propargyl furanosides as glycosyl donors.

^a Division of Organic Chemistry, National Chemical Laboratory, Pune-411 008, India

^b Molecular Modelling Group, Indian Institute of Chemical Technology, Hyderabad 500 008, India.

[†] This article is part of the *ChemComm* 'Glycochemistry and glycobiology' web themed issue.

[‡] Electronic supplementary information (ESI) available. See DOI: 10.1039/c1cc13134f

 Table 1 Furanosides as glycosyl donors

 Glycosyl donor
 R₅OH
 Product
 Time, %Yield α : β ratio

 rib/-Series

 1a
 2b
 3b
 12 h, 77, β only

 1a
 2c
 3c
 16 h, 73, β only

2b	3b	12 h, 77, β only
2c	3c	16 h, 73, β only
2d	3d	48 h, 60, β only
2e	3e	24 h, 68, β only
2b	4b	12 h, 90, 0.2:1
2c	4c	18 h, 75, 0.4:1
2d	4d	24 h, 68, 0.5:1
2b	5b	12 h, 86, 1:0.2
2c	5c	12 h, 72, 1:0.1
2d	5d	24 h, 65, 1:0.1
2b	6b	12 h, 85, α only
2c	6c	12 h, 75, α only
2d	6d	24 h, 61, α only
2e	6e	24 h, 62, α only
	2b 2c 2d 2e 2b 2c 2d 2b 2c 2d 2b 2c 2d 2b 2c 2d 2b 2c 2d 2b 2c 2d 2b 2c 2d 2c 2d 2c 2d 2c 2d 2c 2d 2c 2d 2c 2d 2c 2d 2c 2d 2c 2d 2c 2d 2c 2d 2c 2d 2c 2d 2c 2d 2c 2d 2c 2d 2c 2d 2d 2c 2d 2d 2c 2d 2d 2c 2d 2d 2c 2d 2d 2c 2d 2d 2c 2d 2d 2c 2d 2d 2c 2d 2d 2c 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

the semi-empirical AM1 method. Various conformations of the products generated, along with the relative energies obtained at AM1 level, are illustrated in Table 1 in the supporting information[‡]. This enabled us to systematically sample the conformational space and take the most stable conformation to be subjected to geometry optimizations with the more reliable B3LYP method with the 6-31G(d) basis set. The relative reaction energies at the B3LYP/6-31G(d) level of theory are depicted in Fig. 1.

From Fig. 1, it can be observed that the difference in the relative reaction energies of α and β isomers of D-ribf is -10.3 kcal mol⁻¹ which suggests that the β isomer is preferred over the α isomer. In contrast to these results the difference in the relative reaction energies of the α and β isomers of D-lyxf is about 15.0 kcal mol⁻¹ which in turn suggests the formation of the α isomer over the β isomer. The differences in the relative reaction energies of α and β isomers for D-araf and D-xylf derivatives are 3.42 and -0.8 kcal mol⁻¹, respectively, which indicates that while the α isomer is more preferred in the case of D-araf, the β isomer is preferred for D-xylf. However such small differences in the reaction energies between the two isomers suggest the feasibility of the formation of both the products. Thus the computational results corroborate well with the observed experimental trends. All the DFT and

Fig. 1 Optimized structures of the products along with the relative reaction energies (in kcal mol^{-1}) at B3LYP/6-31G(d) level.

Scheme 2 Propargyl furanosides as glycosyl donors.

semiempirical calculations were done using the Gaussian program suite.¹¹

To understand the generality of the observed facts, transfuranosylations of glycosyl donors **1a** to **1d** with other aglycons were studied. Representative aglycons from aliphatic (**2b**), alicyclic (**2c**), carbohydrate (**2d**) and nucleosidic (**2e**) alcohols were considered (Scheme 2). Gratifyingly, D-rib*f* and D-lyx*f* donors **1a** and **1d** resulted in transglycosides **3b–3e** and **6b–6e** respectively in good yields with 1,2-*trans* diastereoselectivity (Table 1).⁹ Similarly, D-xyl*f* and D-ara*f* donors **1b** and **1c** reacted well with aglycons **2b–2d** resulting in a diastereomeric mixture of 1,2-*trans* and 1,2-*cis* glycosides **4b–4d**, **5b–5d** (Table 1).⁹

Owing to the observation that the transfuranosylations occur at room temperature, we anticipated that the chemoselective activation of propargyl containing aglycons could be possible.^{6c} Accordingly, D-ribf donor **1a** was treated with propargyl pyranoside **2f** under the aforementioned conditions to obtain propargyl disaccharide **3f** due to the activation of the propargyl group of the ribf only (Scheme 3).

In continuation, we also explored the utility of methyl furanosides (7-10) as glycosyl donors and aglycons 2a-2c under gold catalysis conditions.^{6b} The initial reaction of methyl furanosides (7-10) with aglycon 2a at room temperature did not afford the desired transglycosylated products (3a, 4a, 5a and 6a) and hence we resorted to optimizing the reaction conditions. The optimum temperature was found to be 65 °C with acetonitrile as the solvent. Here again, we observed the same diastereoselectivities; for example, D-ribf (7) and D-lyxf (10) donors afforded 3a, 6a with 1,2-trans diastereoselectivity whereas D-xylf (8) and D-araf (9) resulted in glycosides 4a and 5a as a mixture of diastereomers.⁹ Similar results were noticed when methyl furanosides (7-10) were reacted with other glycosyl acceptors 2b and 2c to furnish glycosylated products 3b, 3c, 4b, 4c, 5b, 5c, 6b, 6c in good vields (Table 2).9

Scheme 3 Chemoselective activation of propargyl furanosides in the presence of propargyl pyranoside.

In conclusion, we found that propargyl/methyl furanosides can undergo transglycosylation reaction under gold(III) catalysed glycosylations conditions. We observed that D-ribf and D-lyxf give 1,2-*trans* selectivity and D-xylf and D-araf result in mixture of both 1,2-*cis* and 1,2-*trans* glycosides. Computational studies carried out at the B3LYP/6-31G(d) level corroborated well with experimental observations. The use of gold catalysed glycosidations for the synthesis of antigenic fragments of infectious microbes is currently under way.

SRV thanks the financial support from CSIR, New Delhi. SH thanks Department of Science & Technology, New Delhi for SwarnaJayanti Fellowship. We thank CSIR for financial support.

Notes and references

- (a) P. H. Seeberger, Nature, 2005, 437, 1239; (b) P. H. Seeberger and D. B. Werz, Nature, 2007, 446, 1046; (c) P. M. Rudd, T. Elliott, P. Cresswell, I. A. Wilson and R. A. Dwek, Science, 2001, 291, 2370; (d) J. C. McAuliffe and O. Hindsgaul, Front. Mol. Biol., 2000, 30, 249; (e) T. W. Rademacher, Curr. Opin. Biotechnol., 1998, 9, 74; (f) A. Varki, Glycobiology, 1993, 3, 97.
- X. Zhu and R. R. Schmidt, Angew. Chem., Int. Ed., 2009, 48, 1900; (b) J. H. Kim, H. Yang and G.-J. Boons, Angew. Chem., Int. Ed., 2005, 44, 947; (c) P. J. Garegg, Adv. Carbohydr. Chem. Biochem., 1997, 52, 179; (d) S. J. Danishefsky and M. T. Bilodeau, Angew. Chem., Int. Ed. Engl., 1996, 35, 1380; (e) G.-J. Boons, Tetrahedron, 1996, 52, 1095; (f) R. R. Schmidt and W. Kinzy, Adv. Carbohydr. Chem. Biochem., 1994, 50, 21; (g) K. Toshima and K. Tatsuta, Chem. Rev., 1993, 93, 1503; (h) B. Fraser-Reid, U. E. Udodong, Z. Wu, H. Ottosson, J. R. Merritt, C. S. Rao, C. Roberts and R. Madsen, Synlett, 1992, 927; (i) R. R. Schmidt, Angew. Chem., Int. Ed. Engl., 1986, 25, 212; (j) H. Paulsen, Angew. Chem., Int. Ed. Engl., 1982, 21, 155.

- 3 For a summary of furanosylations: T. L. Lowary, in *Glycoscience: Chemistry and Biololgy*, ed. B. Fraser-Reid, K. Tatsuta and J. Thiem, Springer, Heilderberg, 2001, vol. 3, p. 1696.
- (a) T. Mukaiyama, M. Yamada, S. Suda, Y. Yokomizo and S. Kobayashi, Chem. Lett., 1992, 1401; (b) T. Mukaiyama, Y. Hashimoto and S. Shoda, Chem. Lett., 1983, 935; (c) Y. Kawabata, S. Kaneko, I. Kusakabe and Y. Gama, Carbohydr. Res., 1995, 267, 39; (d) X. Ding and F. Kong, Carbohydr. Res., 1996, 286, 161; (e) F. W. D'Souza and T. L. Lowary, Org. Lett., 2000, 2, 1493; (f) F. W. D'Souza, J. D. Ayers, P. R. McCarren and T. L. Lowary, J. Am. Chem. Soc., 2000, 122, 1251; (g) T. Banhaoud, S. Sanchez and J. Prandi, Chem. Commun., 2000, 659; (h) S. Sanchez, T. Banhaoud and J. Prandi, Tetrahedron Lett., 2000, 41, 7447; (i) H. B. Mereyala, S. Hotha and M. K. Gurjar, Chem. Commun., 1998, 685; (j) A. Arasappan and B. Fraser-Reid, Tetrahedron Lett., 1995, 36, 7967; (k) J. Lu and B. Fraser-Reid, Org. Lett., 2004, 6, 3051; (l) D. Hou and T. L. Lowary, Org. Lett., 2007, 9, 4487.
- J. O. Previato, P. A. Gorin, M. Mazurek, M. T. Xavier, B. Fournet, J. M. Wieruszesk and L. Mendoca-Previato, *J. Biol. Chem.*, 1990, **265**, 2518; (*b*) L. Schofield, M. C. Hewitt, K. Evans, M.I. A. Siomos and P. H. Seeberger, *Nature*, 2002, **418**, 785; (*c*) M. L. Schaeffer, K. H. Khoo, G. S. Besra, D. Chatterjee and P. J. Brennan, *J. Biol. Chem.*, 1999, **274**, 31625; (*d*) V. Macho, W. Acklin, C. Hildenbrand, F. Weiber and D. Arigoni, *Experientia*, 1983, **39**, 343.
- 6 (a) S. Hotha and S. Kashyap, J. Am. Chem. Soc., 2006, 128, 9620;
 (b) S. R. Vidadala and S. Hotha, Chem. Commun., 2009, 2505;
 (c) G. Sureshkumar and S. Hotha, Chem. Commun., 2008, 4282.
- 7 (a) S. R. Vidadala, T. Pimpalpalle, T. Linker and S. Hotha, Eur. J. Org. Chem., 2011, 2426; (b) A. Y. Shaikh, G. Sureshkumar, D. Pati, S. S. Gupta and S. Hotha, Org. Biomol Chem., 2011, DOI: 10.1039/C1OB05056G; (c) S. A. Thadke, M. Kar, S. S. Gupta and S. Hotha, Carbohydr. Res., 2011, DOI: 10.1016/ j.carres. 2011.04.018; (d) D. Pati, A. Y. Shaikh, S. Hotha and S. S. Gupta, Polym. Chem., 2011, **2**, 805.
- 8 C. S. Callam and T. L. Lowary, J. Chem. Educ., 2001, 78, 73.
- 9 See supporting information[‡].
- 10 ConfGen, version 2.1, Schrödinger, LLC, New York, NY, 2007.
- 11 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven Jr., K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, C. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Honda, O. Kitao, H. Nakai, M. Klene, X. Knox, J. E. Li, Y. H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, R. Κ. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Cliord, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 03, revision E.1, Gaussian, Inc., Pittsburgh, PA, 2003.