

Available online at www.sciencedirect.com

Chinese Chemical Letters 21 (2010) 584-586

CHINESE CHEMICAL ETTERS

www.elsevier.com/locate/cclet

A new benzophenone C-glycoside from Polygala telephioides Willd.

Ting Jun Ma^a, Xi Cheng Shi^b, Chang Xi Jia^{a,*}

^a Department of Food Science, Beijing Agricultural College, Beijing 102206, China ^bResearch Insitute of Chemical Defense, Beijing 100083, China Received 10 June 2009

Abstract

A new benzophenone C-glucoside, 3'-C-[4-O-(5-hydroxyferuloyl)-β-D-glucopyranosyl]-2',4',6'-trihydroxy-3,4-dimethoxybenzophenone, named telephenone D, was isolated from the whole plants of Polygala telephioides, and its structure was determined by analysis of spectroscopic data.

© 2010 Chang Xi Jia. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

Keywords: Polygala telephioides; Benzophenone C-glucoside; Telephenone D

Polygala telephioides Willd. is widely distributed in southern China and has been used as a detoxification agent for heroin poisoning in China. It was reported to contain oligosaccharide esters, benzophenone C-glucosides and the flavone C-glucoside, telephioidin in the above mentioned plant [1-3]. Here, we report the isolation and structure elucidation of a new benzophenone C-glucoside, telephenone D (1), from the whole plants of P. telephioides. Naturally occurring benzophenone C-glucosides are very rare, and to our knowledge, only five compounds with this skeleton have been reported from the plants of the genus *Polygala* [1,2,4,5].

The dried whole plants (18 kg) of P. telephioides were extracted twice with hot 95% ethanol for 2 h each time under reflux. After removal of the solvent under reduced pressure at 60 $^{\circ}$ C, the residue (1.15 kg) was suspended in water and defatted with petroleum ether. The aqueous layer was further extracted with ethyl acetate and n-butanol successively to obtain the EtOAc extract (120 g) and n-butanol extract (680 g). A portion of n-butanol extract (600 g) was subjected to D101 porous polymer resin and eluted with H_2O , 20%, 50% and 70% aqueous EtOH successively. The 50% aqueous EtOH eluate (140 g) was chromatographed on a silica gel (200-300 mesh, 1 kg) column using CHCl₃-MeOH in a gradient manner (10:1 \rightarrow 1:1) to afford nine fractions (A–I) on the basis of TLC analyses. Subfraction D (12.0 g) was applied to a silica gel (200–300 mesh, 100 g) column, eluted with CHCl₃–MeOH–H₂O (20:1:0.1 \rightarrow 3:1:0.1) to give six fractions based on TLC. Among them, Fr. 5 (20.3 g) was first subjected to silica gel CC using CHCl₃/MeOH $(20:1 \rightarrow 1:1)$ as eluent, then purified by Sephadex LH-20 column chromatography to yield compound 1 (18 mg).

Compound 1 was obtained as a pale vellow powder, and its positive-ion ESI-TOF-MS exhibited quasi-molecular ion peaks $[M+H]^+$, $[M+Na]^+$ and $[M+K]^+$ at m/z 645.1, 667.0 and 683.0, respectively, indicating the molecular formula to be $C_{31}H_{32}O_{15}$. HRESIMS: m/z 645.1609[M+H]⁺ (Cacld. for $C_{31}H_{33}O_{15}$, 645.1602). IR spectrum showed

* Corresponding author.

E-mail address: jcxbac@sohu.com (C.X. Jia).

^{1001-8417/\$ -} see front matter © 2010 Chang Xi Jia. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved. doi:10.1016/j.cclet.2010.01.035

Table 1 ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) data for compound 1 (in DMSO- d_6).

Position	$\delta_{ m C}$	$\delta_{ m H}$	Position	$\delta_{ m C}$	$\delta_{ m H}$
1	132.4		3-OMe	55.9	3.77 s
2	111.1	7.26 d (2.1)	4-OMe	55.6	3.81 s
3	152.2				
4	148.0		5-Hydroxyferuloyl		
5	110.4	6.98 d (8.1)	1‴	124.4	
6	123.8	7.22 dd (2.1, 8.1)	2‴	103.4	
1'	106.0		3‴	148.5	
2'	158.9		4‴	137.1	
3'	103.6		5‴	144.9	
4'	160.4		6′′′	110.2	
5'	94.9	5.98 s	3‴-OMe	55.4	3.79 s
6'	157.7		α	114.6	6.39 d (15.9)
C=O	195.4		β	145.6	7.46 d (15.9)
Glc-1"	74.4	4.62 d (6.0)	C=0	165.9	
2"	71.4	3.90 m			
3″	76.0	3.47(overlapped)			
4″	71.2	4.80 t (8.0)			
5″	79.0	3.46(overlapped)			
6″	60.7	3.32 m, 3.48 m			

absorptions due to hydroxyl (3305 cm⁻¹), carbonyl (1655 cm⁻¹), aromatic ring (1633, 1604, 1513, 1452 cm⁻¹). UV (MeOH) λ_{max} (log ε): 315 (3.04), 213 (2.54) nm; UV(MeOH + NaOAC) λ_{max} (log ε): 375, 230 nm; acid hydrolysis of compound followed by GC analysis showed the presence of a glucose. We favor its D absolute configuration by comparison of its retention time (t_R = 12.50 min) with that of authentic standard. The ¹H NMR spectrum showed an isolated aromatic proton at δ 5.98 (s, 1H), ABX-system aromatic protons at δ 7.26 (d, 1H, J = 2.1 Hz), 7.22 (dd, 1H, J = 2.1, 8.1 Hz) and 6.98 (d, 1H, J = 8.1 Hz), a pair of *E*-olefinic protons at δ 7.46 (d, 1H, J = 15.9 Hz) and 6.39 (d, 1H, J = 15.9 Hz), two *meta*-aromatic protons at δ 6.90 (d, 1H, J = 1.5 Hz) and 6.71 (d, 1H, J = 1.5 Hz), three methoxyl protons at δ 3.77 (s, 3H), 3.79 (s, 3H) and 3.81 (s, 3H), and a sugar unit with the anomeric H-atom resonated at δ 4.62 (d, 1H, J = 6.0 Hz). The ¹³C NMR (Table 1) spectrum exhibited 31 signals in total, among which were presence of a 5-hydroxyferuloyl in **1**. All the H- and C-atoms were assigned by ¹H, ¹H-COSY, NOESY, HSQC and HMBC

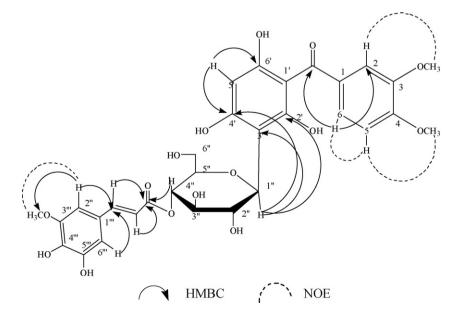


Fig. 1. Key NOE and HMBC correlations of compound 1.

experiments, we deduced that the C-4 position of the Glc in **1** was esterified by a 5-hydroxyferulic acid. The HMBC spectrum, as shown in Fig. 1, revealed that the 5-hydroxyferuloy residue was attached to the C-4 of the glucosyl moiety, which showed a cross-peak between the proton signal at δ 4.80 (H-4 of Glc) and the carbonyl carbon signal at δ 165.9. From the above data, the structure of **1** was established to be 3'-C-[4-O-(5-hydroxyferuloyl)- β -D-glucopyranosyl]-2',4',6'-trihydroxy-3, 4-dimethoxy benzophenone, named telephenone D.

Acknowledgments

This work was supported by the Beijing Nova Program (No. 2007B030) and the program for Agricultural products processing technology and storage engineering in Beijing key construction disciplines (No. PXM2009-014207-078172).

References

- [1] J.C. Li, M. Ono, T. Nohara, Chem. Pharm. Bull. 48 (2000) 1223.
- [2] J.C. Li, T. Nohara, Chem. Pharm. Bull. 48 (2000) 1354.
- [3] J.K. Kumar, M.S. Rao, P.S. Rao, et al. Nat. Prod. Lett. 14 (1999) 35.
- [4] Z.J. Wu, M.A. Ouyang, C.R. Yang, Yunnan Zhiwu Yanjiu 22 (2000) 482.
- [5] Y. Jiang, P.F. TU, Chem. Pharm. Bull. 53 (2005) 1164.