Physica C 470 (2010) S408-S410

Contents lists available at ScienceDirect

Physica C

journal homepage: www.elsevier.com/locate/physc

Doping dependence of magnetic and transport properties in single crystalline Co-doped $BaFe_2As_2$

Yasuyuki Nakajima^{a,b,*}, Toshihiro Taen^a, Tsuyoshi Tamegai^{a,b}

^a Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
^b JST, Transformative Research-Project on Iron Pnictides (TRIP), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

ARTICLE INFO

Article history: Accepted 24 October 2009 Available online 30 October 2009

Keywords: Iron pnictides Transport properties Magnetic properties

ABSTRACT

We report the doping dependence of transport and magnetic properties in Co-doped BaFe₂As₂. With increasing Co concentration *x*, structural and magnetic transitions are suppressed and superconductivity emerges in the range of 0.3 < x < 0.15. *T*-linear resistivity is observed at the optimally doped composition x = 0.075 and the temperature exponent of the resistivity increases with *x*. Critical current density J_c at low temperatures and low fields obtained from bulk magnetization is reasonably large and the doping dependence shows a maximum at $x \sim 0.075$ similar to T_c . The values of J_c at low temperatures reach about 1×10^6 A/cm² around the optimally doped region, which is potentially attractive for technological applications.

© 2009 Published by Elsevier B.V.

1. Introduction

Since the discovery of the high- T_c iron-based oxypnictide superconductor LaFeAsO_{1-x} F_x with $T_c \sim 26$ K [1], other iron-based superconductors have attracted great interest. Following this discovery, oxygen-free iron-arsenide $AFe_2As_2(A = Ba, Sr, Ca)$ was discovered. These materials show superconductivity with the substitution of alkali metals, such as Na, K, and Cs, for A resulting in the introduction of holes in the (FeAs)⁻ layers [2], or Co for Fe resulting in the introduction of electrons [3]. Among them, Codoped BaFe₂As₂ has attracted much attention because the superconductivity induced by the substitution in the conducting layers strongly compares well with a drastic suppression of T_c in cuprates [4] and may suggest a possibility of novel superconducting state. We report here the doping dependence of transport and magnetic properties in Co-doped BaFe₂As₂ in order to investigate normal and superconducting properties. With increasing Co concentration x, structural and magnetic transitions are suppressed and superconductivity occurs in the range of 0.03 < x < 0.15. *T*-linear resistivity is observed at the optimally doped composition near x = 0.075 and temperature exponent of resistivity crosses over to T^2 in the overdoped region. Critical current density I_c at low temperatures and low field obtained from bulk magnetization is relatively large and shows a doping dependence similar to T_c . The values of I_c reach about 1×10^6 A/cm² at 2 K around the optimally doped region.

* Corresponding author. Address: Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. Tel.: +81 3 5841 6848; fax: +81 3 5841 6848.

E-mail address: yasuyuki@ap.t.u-tokyo.ac.jp (Y. Nakajima).

2. Experiments

Single-crystalline samples of Ba $(Fe_{1-x}Co_x)_2As_2$ were grown by the FeAs/CoAs self-flux method. FeAs and CoAs were prepared by placing mixtures of As pieces and Fe/Co powder in a silica tube and reacting them at 1065 °C for 10 h after heating at 700 °C for 6 h. A mixture with a ratio of Ba: FeAs/CoAs = 1:5 was placed in an alumina crucible. The whole assembly was sealed in a large silica tube, and heated up to 1150 °C for 10 h followed by slow cooling down to 800 °C at a rate of 5 °C/h, which is slightly different from the synthesis reported before [5]. After cleaving, we can obtain shiny samples. The typical dimensions of the resulting crystals is $4 \times 4 \times 0.1$ mm³. Co concentrations were determined by energy dispersive X-ray spectroscopy measurements. Magnetization was measured by a commercial SQUID magnetometer (Quantum Design MPMS–XL5) and resistivity measurement was performed by a four-contact method.

3. Results and discussion

Fig. 1 shows the temperature dependence of in-plane resistivity ρ_{ab} for Ba(Fe_{1-x}Co_x)₂As₂. For BaFe₂As₂, x = 0, the sharp decrease of ρ_{ab} associated with the structural and magnetic transition [2,6] is observed at 134 K. With increasing x, temperature of the resistive anomaly is suppressed monotonically. For $x \ge 0.038$, superconductivity is observed and disappear at $x \ge 0.15$. At x = 0.075, T_c shows a maximum of ~24 K and very sharp transition within $\Delta T_c < 1$ K is observed in the resistivity and magnetization as shown in the right inset of Fig. 1. We find *T*-linear resistivity at the optimally doped composition x = 0.075 and the temperature

^{0921-4534/\$ -} see front matter \circledcirc 2009 Published by Elsevier B.V. doi:10.1016/j.physc.2009.10.074

Fig. 1. Temperature dependence of the in-plane resistivity ρ_{ab} for Ba(Fe_{1-x}Co_x)₂As₂, x = 0, 0.023, 0.038, 0.06, 0.075, 0.113, and 0.15. The right inset shows the temperature dependence of ρ_{ab} and zero-field-cooled (ZFC) and field-cooled (FC) magnetization for x = 0.075. The left inset shows the phase diagram for Ba(Fe_{1-x}Co_x)₂As₂. T_s and T_{SDW} were by the temperature derivative of resistive anomaly and T_c is determined by the onset of diamagnetism. Dashed lines are guides for the eye.

exponent of the resistivity increases with *x*. At x = 0.15, T^2 -behavior is observed below 40 K, which indicates the non-Fermi-liquid to Fermi-liquid crossover with increasing *x*. The doping dependence of resistivity for Ba(Fe_{1-x}Co_x)₂As₂ are very similar to those reported

by Refs. [7,9]. The Left inset of Fig. 1 shows the phase diagram of $Ba(Fe_{1-x}Co_x)_2As_2$ obtained from the transport and magnetization measurements, where structural transition temperature T_s and spin-density wave transition temperature T_{SDW} were determined by the temperature derivative of resistive anomaly and T_c is determined by the onset of diamagnetism, which is consistent with the previous study reported in Ref. [8].

The inset of Fig. 2 shows the field dependence of magnetization for x = 0.045, 0.06, 0.075, and 0.113 at several temperatures. For x = 0.045 and 0.113, corresponding to under- and over-doped region, respectively, a maximum at zero field is very sharp. By contrast, for x = 0.06 and 0.075 near the optimally doped region, a peak at zero field is broadened and the irreversible magnetization is much larger than those for x = 0.045 and 0.113. For x = 0.075, prominent fish-tail magnetization is observed at 15 K [5] while for x = 0.045, 0.06, and 0.113, the fish-tail effect is not observed in the present temperature and field range.

Fig. 2 shows the field dependence of critical current density J_c for x = 0.045, 0.06, 0.075, and 0.113. J_c is obtained from hysteresis loop in the magnetization shown in each inset using the Bean model,

$$J_c = 20 \frac{\Delta M}{a(1-a/3b)},\tag{1}$$

where ΔM is $M_{down} - M_{up}, M_{up}$ and M_{down} are the magnetization when sweeping fields up and down, respectively, and *a* and *b* are the sample widths (*a* < *b*). For *x* = 0.075, non-monotonious field dependence of J_c at high temperatures above 10 K reflecting the fish-tail magnetization is observed. On the other hand, for

Fig. 2. Field dependence of critical current density for $Ba(Fe_{1-x}Co_x)_2As_2$, (a) $x = 0.045(330 \times 415 \times 30 \ \mu m^3)$, (b) $0.06 (410 \times 520 \times 35 \ \mu m^3)$, (c) $0.075 (600 \times 1200 \times 20 \ \mu m^3)$ and (d) $0.113 (410 \times 540 \times 10 \ \mu m^3)$ obtained from magnetization using the Bean model. Inset shows the field dependence of magnetization at several temperatures.

x = 0.045, 0.06, and 0.113, J_c decreases monotonically with increasing field. The values of J_c at 2 K reach about 1×10^6 A/cm² for x = 0.06 and 0.075 around optimally-doped region, which is relatively high and potentially attractive for technological applications. It should be noted that further enhancement of J_c by heavy-iron irradiation has been demonstrated [10].

In summary, we study the doping dependence of transport and magnetic properties in Co-doped BaFe₂As₂. With increasing Co concentration, structural and magnetic transitions are suppressed and superconductivity emerges in the range 0.03 < x < 0.15. *T*-linear resistivity is observed only near the optimally doped composition x = 0.075 and the temperature exponent of the resistivity increases with *x*. J_c at low temperatures and fields reaches about 1×10^6 A/cm² around optimally doped region, which is potentially attractive for technological applications.

References

- [1] Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130 (2008) 3296.
- [2] M. Rotter, M. Tegel, D. Johrendt, Phys. Rev. Lett. 101 (2008) 107006.
- [3] A.S. Sefat, R. Jin, M.A. McGuire, B.C. Sales, D.J. Singh, D. Mandrus, Phys. Rev. Lett. 101 (2008) 117004.
- [4] H. Fujishita, M. Sato, Solid State Commun. 72 (1989) 529.
- [5] Y. Nakajima, T. Taen, T. Tamegai, J. Phys. Soc. Jpn. 78 (2009) 023702.
- [6] Q. Huang, Y. Qiu, Wei Bao, M.A. Green, J.W. Lynn, Y.C. Gasparovic, T. Wu, G. Wu, X.H. Chen, Phys. Rev. Lett. 101 (2008) 257003.
- [7] L. Fang, H. Luo, P. Cheng, Z. Wang, Y. Jia, G. Mu, B. Shen, I.I. Mazin, L. Shan, C. Ren, H.H. Wen, Phy. Rev. B 80 (2009) 140508.
- [8] N. Ni, M.E. Tillman, J.-Q. Yan, A. Kracher, S.T. Hannahs, S.L. Bud'ko, P.C. Canfield, Phys. Rev. B 78 (2008) 214515.
- [9] F. Rullier-Albenque, D. Colson, A. Forget, H. Alloul, Phys. Rev. Lett. 103 (2009) 057001.
- [10] Y. Nakajima, Y. Tsuchiya, T. Taen, T. Tamegai, S. Okayasu, M. Sasase, Phys. Rev. B 80 (2009) 012510.