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Understanding the complex interactions of retroviral proteases with their ligands is an important scien-
tific challenge in efforts to achieve control of retroviral infections. Development of drug resistance
because of high mutation rates and extensive polymorphisms causes major problems in treating the
deadly diseases these viruses cause, and prompts efforts to identify new strategies. Here we report a com-
prehensive analysis of the interaction of 63 retroviral proteases from nine different viral species with
their substrates and inhibitors based on publicly available data from the past 17 years of retroviral
research. By correlating physico-chemical descriptions of retroviral proteases and substrates to their bio-
logical activities we constructed a highly statistically valid ‘proteochemometric’ model for the interac-
tome of retroviral proteases. Analysis of the model indicated amino acid positions in retroviral
proteases with the highest influence on ligand activity and revealed general physicochemical properties
essential for tight binding of substrates across multiple retroviral proteases. Hexapeptide inhibitors
developed based on the discovered general properties effectively inhibited HIV-1 proteases in vitro,
and some exhibited uniformly high inhibitory activity against all HIV-1 proteases mutants evaluated. A
generalized proteochemometric model for retroviral proteases interactome has been created and ana-
lysed in this study. Our results demonstrate the feasibility of using the developed general strategy in
the design of inhibitory peptides that can potentially serve as templates for drug resistance-improved
HIV retardants.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The ability of HIV to evade antiviral drugs remains a major
problem in its control. Proteases play key roles in the life cycles
of retroviruses by processing the viral polyproteins into the struc-
tural and functional elements that assemble into the infectious
virions.1 Inhibition of a retroviral protease arrests production of
mature infectious viral particles and prevents infection of new host
cells.1 Retroviral proteases have therefore become important tar-
gets for drugs aimed at treating diseases caused by retroviruses,
such as AIDS, leukemia, and myelopathy.2,3 In particular, many
anti-HIV drugs have been developed, but the fast emergence of
drug-resistant variants heavily compromises their effectiveness.1

Because of the extremely high mutation rate in HIV-1, its protease
exhibits amino acid polymorphisms even in the absence of the
selective pressure of antiretroviral therapy.1,4 These polymor-
phisms are found in at least 49 positions of the 99 residues in
the HIV-1 protease sequence,1,4 and even mutations associated
with drug resistance are prevalent in drug-naïve strains.5–7 The
ll rights reserved.
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sequence differences for subtypes of HIV-1 proteases can be as
high as 30%5 and range from 10% to 70% among the proteases from
the entire retroviral class.8 All of these genetic polymorphisms and
the diversity of the retroviral proteases affect their properties and
their ability to bind inhibitors.8

Most of the currently used HIV-1 protease inhibitors were
developed based on the lock-and-key paradigm to fit tightly into
the binding cavity of a ‘wild-type’ (such as the HXB2 strain) HIV-
1 protease.4 The majority of these inhibitors can be generically
classified as peptidomimetics in structure, sharing a common
hydroxyethylene or hydroxyethylamine core element in place of
a normal scissile peptide bond.9 Because such inhibitors are quite
constrained, they lack adaptability to target variations; therefore,
it is not surprising that they do not perform well against many of
the variants of HIV proteases.4,10 Substrates for the retroviral pro-
teases, on the other hand, are flexible molecules that can adapt and
bind to many protease mutants. Protease substrates with low
Michaelis constants, Km, over multiple retroviral proteases might
serve as templates for the design of adaptive peptidomimetic
inhibitors that show inhibitory activity across multiple resistance
mutations.11 However, understanding the interactions of sub-
strates with HIV proteases is a complex issue, and it is difficult
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indeed to predict which sequence of amino acids would produce a
substrate with low Km values over multiple protease mutants.

In the present study we used a powerful chemo-bioinformatics
approach for protein–ligand interaction space analysis, proteo-
chemometrics,12–19 to model substrate affinity across multiple ret-
roviral proteases using substrate Km values. We subsequently used
the developed model in the design of inhibitory peptides with
affinity for both drug-sensitive and drug-resistant HIV-1 protease
variants, and we can now report that the approach successfully
produced inhibitory peptides with simultaneous, uniformly high
inhibitory activity against drug-sensitive and drug-resistant HIV-
1 proteases.

2. Results

2.1. Generalized Km model for retroviral proteases

To construct a generalized Km model (GKM) for retroviral prote-
ases, we combined the publicly available assay data for multiple
proteases from the last 17 years of retrovirus research into a single
data set (Supplementary Table 1). Because retroviral proteases are
intrinsically dynamic proteins that change their structures with
binding of the substrates, we described each structurally aligned
amino acid of the 63 retroviral proteases by their principal physi-
cochemical properties using so called z-scales (termed here ‘ordin-
ary protease descriptors’), rather than using fixed protein 3D
structures for description.20,21 In the same way, we described the
substrates by considering the principal physicochemical properties
of every amino acid of the octapeptide sequence spanning the P4 to
P04 position (termed here ‘ordinary peptide descriptors’). The ordin-
ary descriptors of the retroviral protease and substrates were then
correlated to the experimentally determined Km values using par-
tial least squares (PLS) regression modeling (model M1 in Table 1).
The kinetics of retroviral proteases is dependent on the experimen-
tal assay constituents, such as pH and salt concentration.22 To ac-
count for differences in assay conditions, we introduced assay
descriptors into the modeling, which significantly improved the
model’s predictability according to cross-validation (Q 2

mean in-
creased by 0.03 in model M2, Table 1; Wilcoxon signed-rank test
for model M1 Q2

mean versus model M2 Q2
mean yielded p < 0.0001).

To capture the complex processes of substrate recognition
involving specific covalent and non-covalent interactions, we
introduced ‘interaction’ terms into the multivariate modeling.
Table 1
Validation of generalized Km and HIV-1 single-target protease models

Models R2 Q2
mean ± SE RMSEE, log (Km) iR

M1 0.59 0.47 ± 0.01 0.49 0.
M2 0.60 0.50 ± 0.01 0.47 0.
M3 0.64 0.52 ± 0.01 0.44 0.
M4 0.63 0.52 ± 0.01 0.44 0.
M5 0.69 0.55 ± 0.01 0.41 0.
M6 0.58 0.48 ± 0.01 0.47 0.
M7 0.59 0.47 ± 0.01 0.47 0.
M8 0.61 0.49 ± 0.01 0.46 0.
GKM 0.85 0.62 ± 0.02 0.29 0.
STM1 0.44 0.36 ± 0.01 0.53 0.
STM2 0.49 0.38 ± 0.01 0.50 0.
STM3 0.59 0.44 ± 0.01 0.45 0.
STM4 0.64 0.43 ± 0.02 0.42 0.
STM5 0.46 0.35 ± 0.01 0.52 0.
STM6 0.82 0.51 ± 0.02 0.30 0.

Generalized Km (M1–M8 and GKM) and single-target HIV-1 protease (STM1–STM6) mo
nations. The descriptor blocks were as follows: A, assay constituents descriptor block;
Sub � A, Sub � Sub, Sub � PR, and PR � PR represent the interaction term blocks form
constructed using all data for retroviral proteases, and single-target models (STM1–STM
the Q2

mean. NC indicates the number of significant PLS components used in the model co
Interaction terms are produced by multiplication of any two
descriptors and represent approximations of the non-linear parts
of molecular interaction effects. The model M2 was then improved
by adding different interaction term descriptor blocks, one at a
time (models M3–M8, Table 1). Addition of the substrate � sub-
strate, substrate � assay, or substrate � protease descriptor blocks
significantly increased the model predictability (Q 2

mean difference is
statistically significant for models M3, M4, and M5 versus M2 at
p < 0.0001, according to Wilcoxon signed-rank test). Therefore
these descriptor blocks were finally merged with the descriptors
used in the M2 model, which resulted in a statistically valid gener-
alized Km model, GKM, for retroviral proteases (Table 1; see also
Eq. 1 in Methods).

The capacity of GKM to predict Km values for different retroviral
proteases and their mutants was then assessed by ‘leave-one-pro-
tease-out’ validation. This evaluation was done by excluding data
for one type of virus at a time, creating new models based on the
remaining data, and then predicting the excluded data from the
new models created (Fig. 1; see Section 4 for details). According
to the validation, the log (Km) values for the excluded proteases
and mutants were predicted with reasonable accuracy; the root
mean square error of prediction (RMSEP) ranged from 0.41 to
0.62 log (Km) units, which is similar to the root mean square error
of estimation (RMSEE) of GKM itself (Fig. 1; Table 1). In particular,
GKM predicted accurately the activities for HIV-1 protease mu-
tants associated with drug-resistance, as well as activities for the
HIV-2 protease (Fig. 1A and B). Thus, the leave-one-protease-out
validation demonstrated the capacity of the GKM to perform activ-
ity predictions for interaction of new proteases with substrates.

The validity of GKM was further probed by independent exter-
nal validation. The external dataset comprised experimentally
determined Km values for 15 substrates with diverse amino acid se-
quences tested on four HIV-1 proteases (HXB2 strain protease and
three drug-resistant mutants, I84V, L90M, and I84V+L90M) (Sup-
plementary Table 2, numbers 4–18). The results from the external
validation clearly demonstrated that the GKM accurately predicted
log (Km) values for the new substrates and proteases (Fig. 2; Sup-
plementary Table 2).

Quantitative structure–activity relationships (QSAR) modeling
is a commonly used modeling approach that aims to correlate
descriptors of molecules to their biological activities, and which
can consider activities at only one target at a time.23,24 We here
compared the generalized modeling approach, proteochemometrics,
2 iQ2 NC Descriptor blocks

05 �0.23 6 Sub, PR
06 �0.25 7 Sub, PR, A
16 �0.21 7 Sub, PR, A, Sub � PR
14 �0.21 6 Sub, PR, A, Sub � Sub
15 �0.36 8 Sub, PR, A, Sub � A
06 �0.21 6 Sub, PR, A, PR � PR
06 �0.24 6 Sub, PR, A, PR � A
07 �0.34 8 Sub, PR, A, A � A
37 �0.77 12 Sub, PR, A, Sub PR, Sub A, Sub � Sub
08 �0.13 2 Sub
11 �0.16 3 Sub, A
24 �0.09 3 Sub, A, Sub � Sub
25 �0.25 4 Sub, A, Sub � A
09 �0.20 3 Sub, A, A � A
50 �0.42 6 Sub, A, Sub � Sub, Sub � A

dels were developed by inclusion of different descriptor blocks in various combi-
PR, protease descriptor block; Sub, substrate descriptor block; and A � A, PR � A,
ed from respective ordinary descriptor blocks. Models M1–M8 and GKM were

6) used only data for a ‘wild-type’ HXB2 strain HIV-1 protease. SE, standard error of
nstruction.



Figure 2. Experimental validation of the generalized Km model. Red bullets
represent a priori predictions of Km constants for 15 peptides with diverse
structures for HXB2 HIV-1 protease and three mutant HIV-1 proteases (I84V,
L90M, and I84V + L90M) by GKM, (r = 0.63, p < 0.0001, RMSEP = 0.36) (Supplemen-
tary Table 2, Nr. 4–18). Black triangles show the fit of GKM for all model-building
data.
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to a single-target quantitative structure–activity relationship mod-
eling approach using the data for the HXB2 HIV-1 protease among
the collected data only. However, the QSAR models for HXB2 HIV-1
protease were statistically invalid or overfitted (i.e., R2 < 0.7 or
Q2 < 0.4 for models STM1–STM5 and iR2 > 0.4 for the model
STM6; Table 1). Thus, the inclusion of many proteases in one uni-
form proteochemometric model markedly improves GKM perfor-
mance and provides essential information about the interaction
space of retroviral proteases, that is, the information that the single
target modeling approach is entirely lacking.

2.2. Analysis and interpretation of the generalized Km model

We analyzed the model’s regression coefficients to assess the
relative importance of descriptors and cross-terms in GKM
explaining the Michaelis constant Km for any protease-substrate-
assay combination (see Eq. 1 in Methods). We first determined
the non-conserved protease positions having the largest influence
on Km. This determination was made by comparing sums of abso-
lute values of z1–z5 regression coefficients for ordinary protease
amino acid descriptors of each aligned amino acid position. The
positions corresponding to amino acids R8, V32, L33, I64, P81,
V82, N83, and I84 in the HXB2 HIV-1 protease showed the largest
sums, suggesting that these are the positions playing major roles in
protease influence on the Km values of the native substrates (Table
2). These amino acids overlap between the positions we found
Figure 1. External validation of the generalized Km model (GKM). Each panel shows
the predictions of a model created based on the data collected in the current work,
but excluding all data for proteases of one retroviral strain and using the model
created on the remaining data to predict the excluded data. Red bullets represent
observed versus predicted Km for the excluded proteases. Black triangles represent
observed versus computed Km for the respective GKM model-building data. Panels
A–F represent ‘leave-one-protease-out’ predictions for wild-type, naturally occur-
ring, and artificially mutated proteases as follows: (A) HIV-1 (r = 0.85, p < 0.0001,
RMSEP = 0.45); (B) HIV-2 (r = 0.77, p < 0.0001, RMSEP = 0.55); (C) HTLV-1 (r = 0.44,
p = 0.0017, RMSEP = 0.41); (D) AMV (r = 0.65, p < 0.0001, RMSEP = 0.56); (E) RSV
(r = 0.57, p < 0.0001, RMSEP = 0.54), and (F) Mo-MuLV (r = 0.77, p < 0.0001,
RMSEP = 0.62) proteases. For panel A the data excluded were 23 HIV-1 proteases
holding mutations associated with drug resistance.
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Table 2
Descriptors of highest importance in the GKM model

Descriptor block Important descriptors and positions

Substrate P3z1, P02z1, P03z1, P2z1, P01z5, P2z3, P01z3

Protease R8, I84, V32, L33, P81, V82, I64, N83
Assay Dimethyl sulfoxide, pH, sodium chloride
Substrate � substrate P3z2 � P01z5, P3z5 � P1z1, P3z2 � P1z1, P4z1 � P01z5,

P3z5 � P1z4

Substrate � protease P3 � T31, P2 � L90, P3 � I13, P3 � I85, P3 � K20, P3 � 72,
P3 � V32, P3 � L33, P03 V32, P2 � P81

Shown are the descriptors with the largest influence on Km within each descriptor
block, in decreasing order of importance. Amino acid positions for proteases cor-
respond to amino acid positions in the HXB2 HIV-1 protease.
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earlier to be associated with the maintenance of high cleavage
rates (kcat/Km) of substrates among the aspartyl proteases (that is,
R8, V32, V82, I64, P81, N83, and I84).19 Mutations in these posi-
tions are also known to be associated with resistance to HIV-1 pro-
tease inhibitors.25,26 Although some other conserved amino acids
in the active sites of the retroviral proteases may have utmost
importance for substrate cleavage and binding, the lack of varia-
tions in these positions in the present data-set prohibited us to
evaluate their importance relatively to other non-conserved amino
acid positions.

Substrate–protease interaction terms were then analyzed in a
similar way to uncover the substrate–protease inter-dependencies
having the highest impact on Km (see Section 4 for details). The re-
sults suggested that substrate P3 residues establish important di-
rect or indirect interactions with many protease amino acids
(Table 2). This finding is in alignment with earlier reports charac-
terizing the S3 and S03 sub-sites in the retroviral proteases as being
large and able to tolerate amino acids of different types and
sizes.6,27 Our result suggests that mutations or polymorphic
changes directed to these protease positions (Table 2) can be asso-
ciated with a compensatory change in substrate P3 position to re-
store a reduced fitness to the enzyme. Additionally, we found
that the substrate P2 position shows important cross-dependencies
with L90 and P81 protease positions, while the P03 position shows
an important cross-dependency with the V32 position (Table 2).

The GKM model achieves further high impact from the assay
descriptors representing pH, salt, and dimethyl sulfoxide concen-
trations (Table 2), results that also are in agreement with earlier
findings.28–32

The coefficients for ordinary substrate descriptors were finally
analyzed to reveal the physicochemical properties of the substrates
Figure 3. PLS coefficients of the substrate principal physicochemical properties
determined by the GKM in color coding. The intensity of the color indicates the
value and the direction of the coefficient according to the spectrum. The figure
demonstrates the physicochemical requirements that a substrate should possess to
afford low Km over retroviral proteases in general.
of general importance for maintaining Km among the retroviral
protease class (see Fig. 3 and Eq. 1 and associated text in Section
4). As seen from Figure 3, the coefficients for the z1-scale descrip-
tors were the largest and most positive for amino acids at substrate
positions P3, P2, P02, and P03, suggesting that hydrophobicity is a crit-
ical feature at these positions for affording tight binding of pep-
tides with many retroviral proteases; that is, hydrophobic amino
acids have large negative values for their z1-scales and the product
coeff � z1 will then be large and negative, reducing the overall Km

value for a peptide according to the model’s prediction (Eq. 1 in
Section 4).

Moreover, the model predicts that amino acids with large neg-
ative z3-scales (reflecting polarizability) are also favorable at posi-
tions P2 and P01. Additionally, electronic effects by amino acids at
the P01 position significantly influence Km because of the large coef-
ficient for the P01z5 descriptor (Fig. 3). The results further suggest
that hydrophobicity (z1-scale) at the P1 and P01 positions has only
a minor impact on Km, whereas it substantially influences cleavage
rate kcat/Km of the substrates.11,19 The result is particularly interest-
ing because flexible neutral or hydrophilic amino acids could be
placed at the peptide P1 and P01 positions, and the peptides could
possibly maintain their ability to bind efficiently to multiple prote-
ases while at the same time themselves becoming uncleavable;
thus, they would be multiple protease selective inhibitors (see
Eq. 2 under Section 4). Further analysis indicates that amino acids
in the P4 and P04 positions only slightly affect substrate Km; the PLS
coefficients of the GKM at these positions were small. This finding
suggests that the length of the active octapeptides might be re-
duced to six amino acids without significantly affecting peptide
binding.

2.3. Use of GKM for design of inhibitory peptides

The above results provide general insights into the physico-
chemical determinants affecting the binding of substrates to retro-
viral proteases. These determinants are of direct use for selecting
coding and non-coding amino acids for each substrate position to
result in a peptide that would likely bind tightly to multiple prote-
ases. Thus, for example, the amino acids Lys, Glu, or Thr have neg-
ative values for their z3 and z5 scales and would thus be favorable
selections for the P01 position (see a full table of z-scales for coding
and non-coding amino acids in Ref. 20). The P2 position should favor
amino acids such as Ile, Val, Met, or cyclohexylalanine because
their z1 and z3-scales are negative (Fig. 3).20 We elected to con-
struct a virtual hexapeptide library based on sets of amino acids
for each position, those sets that the GKM indicated should be
favorable as a low-Km peptide for retroviral proteases (see Section
4). To ascertain that chosen peptides were uncleavable, the library
was first virtually screened on the cleavability model developed for
the retroviral substrates in Ref. 19. The peptides were then virtually
screened on GKM to find peptides with a predicted Km < 3 lM. Of
the total 4154 sequences these virtual screenings identified, we se-
lected 10 (Table 3, numbers 1–10) according to set diversity crite-
ria (see Section 4), synthesized them, and tested their inhibitory
activity on the HXB2 HIV-1 protease and three drug-resistant
HIV-1 protease mutants (I84V, L90M, and I84V+L90M) which were
available in our lab. We also evaluated 10 other hexapeptides (Ta-
ble 3, numbers 11–20) available from earlier, unrelated studies
(unpublished data). Our results demonstrated that all 10 of the
GKM-predicted peptides with Km values in the low micromolar
range also inhibited the HXB2 HIV-1 protease in the low micromo-
lar Ki range. Moreover, the majority of these hexapeptides also
inhibited the mutant proteases with Ki values in the low micromo-
lar range (Table 3). On the other hand, the 10 hexapeptides
with GKM-predicted Km values in the high micromolar range
showed no inhibition activity against HIV-1 proteases (Table 3).



Table 3
Experimentally determined Ki values for HIV-1 protease inhibitors

No. Hexapeptide sequences Observed Ki, lM ± SD GKM predicted Km (lM)

Wild-type L90M I84V I84V + L90M Wild-type L90M I84V I84V + L90M

1 Nal-Cha-Met-Glu-Phg-Cha 5.5 ± 1.4 2.4 ± 0.5 3.9 ± 0.4 2.7 ± 0.4 0.64 0.58 0.86 0.77
2 Nal-Val-Met-Har-Tyr-Nva 5.4 ± 0.6 6.9 ± 2.0 19.9 ± 6.9 7.5 ± 0.3 1.87 1.57 2.33 1.97
3 Hph-Nva-Dap-Har-Nal-Nva 5.2 ± 2.0 23.6 ± 8.8 13.3 ± 5.0 15.7 ± 6.0 0.40 0.35 0.54 0.47
4 Nal-Cha-Dap-Glu-Nal-Nva 12.0 ± 2.5 9.7 ± 0.4 20.7 ± 0.8 20.8 ± 4.1 0.23 0.21 0.32 0.29
5 Cph-Cha-Dap-Glu-Bph-Leu 5.5 ± 1.4 15.7 ± 5.9 37.7 ± 2.0 34.6 ± 4.2 0.66 0.59 0.89 0.79
6 Nal-Cha-Lys-Aph-Btr-Nle 24.1 ± 8.9 9.2 ± 2.9 31.6 ± 4.6 56.0 ± 11.5 0.90 0.73 1.15 0.94
7 Nal-Nle-Dab-Glu-Hph-Nva 22.0 ± 4.1 16.7 ± 6.5 NI NI 0.80 0.72 1.06 0.96
8 Cph-Cha-Dab-Glu-Phe-Cha 3.8 ± 0.1 31.1 ± 1.9 NI NI 1.68 1.52 2.24 2.03
9 Hph-Cha-Dap-Har-Phe-Leu 4.6 ± 1.1 26.5 ± 2.7 NI NI 0.80 0.70 1.06 0.93

10 Hph-Cha-Dab-Arg-Hph-Cha 2.0 ± 0.5 47.4 ± 0.4 NI NI 0.59 0.51 0.79 0.69
11 Thr-Ala-Ala-Gly-Arg-Thr NI NI NI NI 124 108 158 138
12 Tyr-Ala-Thr-Pro-Gly-Thr NI NI NI NI 70 60 93 80
13 Ser-Val-Arg-Cys-Ser-Trp NI NI NI NI 143 129 191 172
14 Gly-Thr-Ala-Tyr-Ser-Cys NI NI NI NI 676 608 930 838
15 Asp-Gly-Gly-Ala-Leu-Ser NI NI NI NI 57 53 75 69
16 Pro-Tyr-Ala-Gly-Ala-Gln NI NI NI NI 67 66 87 86
17 Val-Arg-Ser-Ala-His-Ile NI NI NI NI 63 64 89 91
18 Thr-Asn-Thr-Thr-Ala-Asp NI NI NI NI 108 95 141 124
19 Ala-His-Tyr-Ala-Thr-His NI NI NI NI 72 79 94 102
20 Ser-Pro-Ala-Thr-Glu-Ala NI NI NI NI 81 76 106 100

Wild-type denotes HXB2 HIV-1 protease; I84V, L90M, and I84V + L90M are the corresponding mutant HXB2 forms. Under ‘Observed’ are the experimentally determined Ki

values of hexapeptides towards these proteases. Under ‘GKM predicted’ are the corresponding Km values predicted by GKM. Peptides 1–10 were unacetylated in their N-
terminus while peptides 11–20 were acetylated. All peptides had an amide group in their peptide C-terminus. SD, standard deviation. NI, no inhibition observed at 100 lM of
the hexapeptide. (For abbreviations of artificial amino acids see Section 4).

A. Kontijevskis et al. / Bioorg. Med. Chem. 17 (2009) 5229–5237 5233
Furthermore, our results clearly indicated a strong, statistically sig-
nificant correlation between GKM-predicted log (Km) and the ob-
served log (Ki) for all 20 hexapeptides tested (r = 0.75, p < 0.0001;
Table 3).

3. Discussion and conclusion

There are many nonlinear intramolecular interactions in the
protease enzymes and in their substrates, as well as intermolecular
interactions of the enzymes and substrates. This complexity makes
it difficult to comprehensively understand all features governing
the interactions of proteases with their substrates, in particular
when we consider the very large mutational capabilities of retrovi-
ral proteases. Understanding all of these particulars and using
them to design inhibitors with high inhibitory activity across mul-
tiple proteases accordingly is a daunting task. In fact, it appears
technically untenable to use any of the current, commonly applied
approaches in drug discovery to cover all the mutations known for
targets of HIV.

The approach presented here, however, provides a general
strategy. By combining a large amount of genetic and biochemical
data for multiple retroviral proteases, we derived a unified prote-
ochemometric model that simultaneously encompasses the ability
of retroviral proteases and their mutants from many different spe-
cies to interact with different substrates. This general approach for
inclusion of multiviral species-proteases is highly advantageous for
exploration and coverage of the HIV-1 proteases, interaction space.
Other retroviral proteases are structurally and functionally very
similar to the HIV-1 proteases, and the same amino acid residues
in HIV-1 protease mutants that contribute to drug resistance can
frequently be found in equivalent positions in other retroviral pro-
teases. Indeed, the model constructed using only ‘wild-type’ HIV-1
protease and retroviral proteases from eight other viral species
could cover the interaction space of HIV-1 protease mutants
reasonably well to produce accurate predictions for many HIV-1
protease mutants; this ability is completely lacking in the struc-
ture–activity models constructed for an individual protein target.

The GKM constructed here markedly outperformed the previ-
ously reported in Ref. 19 cleavage rate model for retroviral prote-
ases. It resulted in a noticeably better correlation of the
physicochemical properties of retroviral proteases and substrates
to the Michaelis constant log(Km) compared to their correlation
with the catalytic rate log (kcat/Km). The statistical validity of
GKM using both new retroviral proteases and external data sets
comprising new substrates was also better. According to Eq. 1
(see Section 4), the Michaelis constant Km is influenced by the
physicochemical properties of a substrate, a protease, experimen-
tal conditions, and their various interaction terms. However, sub-
strate ordinary descriptors have the most significant influence on
Km because their regression coefficients are the largest according
to the GKM model. Therefore, the physicochemical properties of
the substrate amino acids have a major impact on the Km constant,
not including the fact that a particular protease may prefer a par-
ticular substrate (see explanation under Eq. 2 in Section 4). This
generalization of the principal physicochemical properties of sub-
strate amino acids allows selection of appropriate natural and arti-
ficial amino acids bearing suitable z-scales, based on identified PLS
coefficients; these can then be used to construct libraries of pep-
tides with potential low Km values with many proteases. However,
a cumulative effect of all other, less-important descriptors and
interaction terms used in the GKM model may also considerably
affect Km value (see Eq. 1 in Section 4). Virtual screening of the pep-
tide libraries to multiple wild-type and drug-resistant mutant pro-
teases using GKM offers a simple solution to this problem; it
captures the overall effect of the descriptors and interaction terms
and accurately estimates substrate Km to various retroviral prote-
ases included in the screening process. As we demonstrate here,
our approach was highly successful and resulted in peptides with
inhibitory activity on the tested HIV-1 proteases. Some of these
peptides did, indeed, also show highly uniform inhibitory activity
against drug-resistant forms as well as a drug-sensitive form of
the HIV-1 protease.

The approach presented here could, in principle, be continued.
Based on the new data obtained from tests of the newly synthe-
sized inhibitors, new proteochemometric models might be created.
Based on these new models, further inhibitors with an improved
ability to inhibit broadly across many resistance mutations could
be designed. This type of process has the potential to be iterated
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many times using any number of drug-sensitive and drug-resistant
proteases until identification of a compound with the desired prop-
erties. A compound that could broadly inhibit many mutated forms
of a protease might more broadly arrest genetically fit proteases
and thus reduce the targets for the evolution of a virus into resis-
tant strains. Therefore, such a compound might reduce the prob-
lem of resistance development in HIV.

Proteochemometrics has no intrinsic limitations in terms of how
many proteases can be analyzed at the same time. This feature places
it in a special position compared to other contemporary methods
in drug design, which are generally directed at one target at a time.
The proteochemometrics approach should have wide-ranging
implications in facilitating studies of interaction space and the resis-
tance mechanisms of HIV, as well as of other pathogens exhibiting
resistance to drugs because of target protein heterogeneity.
4. Experimental

4.1. Data

The data set, collected in a survey covering publicly available
data from 17 years of retroviral protease research, is available in
Supplementary Table 1 and includes Km data for 9 different retro-
viruses, that is, HIV-1, HIV-2, AMV (avian myeloblastosis virus),
RSV (Rous sarcoma virus), HTLV-1 (human T-cell leukemia virus
type 1), BLV (bovine leukemia virus), Mo-MuLV (Moloney murine
leukemia virus), EIAV (equine infectious anemia virus) and FIV (fe-
line immunodeficiency virus). The data set included a total of 654
Michaelis constants (Km) observations for retroviral protease sub-
strates. In some cases the Km constant was reported as an inequal-
ity, for example: ‘Km < 0.01 mM’ or ‘Km > 10 mM’. In these cases we
assumed the Km to be equal to the value shown. Some of the data
was generated in house (Supplementary Table 2).

4.2. Data pre-processing

4.2.1. Description of proteases
The 63 ‘wild-type’ and mutated retroviral protease sequences

included in the study (Supplementary Table 3) were structurally
aligned as reported earlier.19 According to this alignment, 94 ami-
no acids could be fully aligned over all proteases and without using
any ‘gaps’ (9 conserved and 85 non-conserved positions). We se-
lected the non-conserved 85 amino acid positions and described
each of them by their five principal physicochemical properties
‘z-scales’.20 These z-scales are orthogonal to each other and repre-
sent roughly hydrophobicity (z1), steric properties (z2), polarizabil-
ity (z3), polarity and electronic effects of amino acids (z4, z5).
Accordingly, 85 protease positions were described by 85 � 5=425
descriptors (also termed ordinary protease descriptors) which thus
comprised the physicochemical property space information of the
series of proteases used herein.

4.2.2. Description of substrates
The length of retroviral substrates was restricted to octapep-

tides (P4–P3–P2–P1–P01–P02–P03–P04, where P4 denotes substrate N-
terminus amino acid and P04—C-terminus substrate amino acid;
the scissile bond being located between the P1 and P01 amino acids).
This approach was elected because eight substrate amino acid res-
idues are considered to interact with eight corresponding retroviral
protease subsites (S4–S3–S2–S1–S01–S02–S03–S04). We described each
of the eight amino acids of the substrates by the same five z-scales
as above, which thus yielded in total 8 � 5 = 40 descriptors per
substrate. These descriptors (herein also termed ordinary substrate
descriptors) thus encompassed the physicochemical space infor-
mation of the series of substrates used herein.
4.2.3. Description of assay conditions and kinetics of
experimental data

In addition to protease and substrate descriptors, we also in-
cluded eight descriptors for the assays, that is, pH, sodium chloride,
2-mercaptoethanol, EDTA, DMSO, dithiothreitol, nonidet-P40, and
glycerol concentrations. Michaelis constants (Km) were converted
to lM units for all experiments, followed by their decimal logarith-
mic transformation, log (Km).

4.2.4. Description of inter-dependences of proteases,
substrates, and assays

Interaction term descriptor blocks were constructed by multi-
plying separately each protease descriptor with each other prote-
ase descriptor (protease � protease interaction term descriptors
block), each substrate descriptor with each protease descriptor
(substrate � protease interaction term descriptor block), each sub-
strate descriptor with each other substrate descriptor (sub-
strate � substrate interaction term descriptors block), each
substrate descriptor with each assay descriptor (substrate � assay
interaction term descriptor block), each assay descriptor with each
protease descriptor (assay � protease interaction term descriptor
block) and each assay descriptor with each other assay descriptor
(assay � assay interaction term descriptor block). These interaction
term descriptor blocks were used in the modeling in various com-
binations with the blocks formed from, respectively, ordinary pro-
tease, substrate, and assay descriptors to assess their significance
and find the best combination of the descriptor blocks required
to achieve an optimal model. All ordinary protease, substrate,
and assay block descriptors were mean-centered and scaled to unit
variance prior to computation of interaction terms. In addition we
applied block-scaling for each type of descriptor block in order to
account for differences in number and mutual correlation of
descriptors in each block.33 (Using block-scaling avoids situations
where large blocks of descriptors mask small ones).

4.3. Multivariate modeling and data analysis

All observations listed in Supplementary Table 1 were used for
the construction of generalized retroviral protease Km models,
using ordinary protease, substrate, and assay descriptor blocks as
well as interaction term descriptor blocks in various combinations,
as detailed in Table 1. Models STM1–STM6 used only 200 experi-
ments for the HXB2 HIV-1 protease and were termed ‘single-target
models’ (STM) (Table 1). The preprocessed descriptors were corre-
lated to log (Km) by partial least squares (PLS) regression using
Simca-P+ 11.5 software (http://www.umetrics.com) and validated
as described below. Models were considered acceptable if
R2 > 0.7 and Q2 > 0.4.33,34 We also considered iR2 and iQ2 parame-
ters, which should not exceed 0.4 and 0.05, respectively, for a valid,
not overfitted, PLS model.35

4.4. Validation of the models

The goodness-of-fit of PLS regressions were measured by the
unit-less parameter R2, which can range between 0.0 and 1.0. R2

indicates the fraction of the sum of squares explained by the mod-
el, and a higher R2 values signifies that the model fits the data bet-
ter.33,34 We also used the root mean square error of estimation
(RMSEE) to calculate the internal error within the model.

Cross-validation (CV) is a method for evaluation of the mean
generalization accuracy for a regression model on sets of data. In
CV the data set is randomly divided into k parts (10-fold CV was
used herein) and each one of these parts is then used to test a mod-
el fitted to the remaining k � 1 parts. This results in a cross-vali-
dated regression coefficient, Q2, where a higher Q2 denotes better
predictability.34,36,37 The 10-fold CV was repeated 20 times on

http://www.umetrics.com
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different data set subdivisions in order to estimate the variability
of the mean prediction accuracy (Q 2

mean) for every model.
For permutation validation the dependent variable log (Km) was

repeatedly and randomly permutated, yielding new data set sam-
ples with replacements from the original data set (100 randomly
permutated data sets were used for each model validation).15,38

New models were then built on the permutated data sets and R2,
Q2 and correlation coefficients between original and permutated
response values were estimated. Finally, intercept values for R2

(iR2) and Q2 (iQ2) reflecting R2 and Q2 of the models constructed
on the randomly permutated data sets were computed.15 A small
iR2 value (iR2 < 0.4) signifies that there is little chance-correlation
in the original model, whereas a negative iQ2 indicates that it is
impossible to get predictive models based on randomly permutat-
ed data.35

‘Leave-one-protease-out’ validation of GKM was performed by
entirely excluding all data for the proteases of one retroviral strain
and then predicting the excluded data using the model constructed
from the remaining data. Because of the small number of observa-
tions available for the BLV, FIV, and EIAV proteases, ‘leave-one-pro-
tease-out’ validation was not considered feasible for these. In the
case of HIV-1 proteases, the data for HXB2 HIV-1 protease and
HIV-1 proteases with five artificial stabilizing mutations
(Q7K + L33I + L63I + C67A + C95A) were kept in the model, and
the external predictions were performed for the remaining 23
HIV-1 proteases with drug-resistant mutations.

GKM was also experimentally validated on an independent val-
idation set consisting of the Km data for the HXB2 HIV-1 protease,
its three mutants with drug-resistance mutations (I84V, L90M, and
I84V + L90M), and 15 substrates of diverse structures (Supplemen-
tary Table 2, numbers 4–18). We used the RMSEP to evaluate the
model’s ability to predict the external data.33

4.5. Analysis of the generalized Km model

For the GKM model, the regression equation can be expressed as
follows:

logðKmÞ ¼ logðKmÞ þ
XN
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where logðKmÞ is the average logarithmic Km; N, M, and L the num-
ber of descriptors in substrate, protease, and assay blocks, respec-
tively; ki, kj, kf, kij, kif, and kab the regression coefficients for
substrate descriptors, protease descriptors, assay descriptors, sub-
strate � protease interaction terms, substrate � assay interaction
terms, and substrate � substrate interaction terms, respectively;
and xsub, xPR, and xassay substrate, protease, and assay ordinary
descriptors.

The difference in activities between some proteases PR1 and PR2

for some substrate Z can be expressed as follows:
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According to Eq. 2, the difference in Km between any two prote-
ases PR1 and PR2 for some particular substrate Z depends on
descriptor differences in proteases PR1 and PR2 (i.e., xPR1

j � xPR2
j ),

the size of PLS coefficients for the ordinary protease descriptors
(kj), and protease � substrate interaction term descriptors (kij);
that is, the larger the PLS coefficient, the larger the influence a cor-
responding descriptor has on Km. Analysis of GKM demonstrated
that substrate, assay ordinary descriptor blocks, and a substrate
� substrate interaction term descriptor block have the largest
PLS coefficients in the model, whereas a protease ordinary descrip-
tor block and protease � substrate interaction terms have the
smallest. Therefore, if some substrate Z is designed so that its
descriptors (z-scales) are large and have opposite tokens to corre-
sponding PLS coefficients, as shown in Figure 3, then substrate Z
should demonstrate uniformly low Km against many retroviral pro-
teases because descriptors of retroviral proteases have smaller
coefficients and accordingly a lower impact on Km in general.

All descriptors used for building the GKM were normalized by
mean-centering and scaling to unit variance, allowing us to com-
pare their coefficients. The largest coefficients indicate the most
important descriptors for the GKM model’s outcome and were in
some cases used directly (Fig. 3). We also identified descriptors
in the substrate � substrate interaction term block with the largest
absolute values of their coefficients. The five largest substrate �
substrate interaction terms are the ones shown in Table 2. In a sim-
ilar way, we analyzed the coefficients for the assay descriptor block
to find the assay constituents that most influenced the Michaelis
constant Km (Table 2).

To localize the most important retroviral protease amino acids
(shown in Table 2), we compared the sums of absolute values of
the 5 z-scale descriptor coefficients for each of the 85 aligned pro-
tease amino acids. This procedure allows capture of combined
physicochemical property effects induced by each of the amino
acids considered. The 8 amino acid positions having the largest
sum of their 5 z-scale coefficients and consequently having large
impacts on Km are shown in Table 2.

We further analyzed the GKM coefficients for the substrate pro-
tease descriptor block. Because every substrate and protease amino
acid was described by 5 z-scale descriptors, every substrate–prote-
ase amino acid pair creates 25 interaction terms (5 � 5). To identify
the most important substrate–protease interactions, we computed
the absolute values sum of the coefficients for each protease–sub-
strate amino acid pair and then compared the sums for each pair.
As a result, the 10 most important substrate–protease inter-depen-
dences were identified (Table 2).

4.6. Hexapeptide library design and in silico screening

The library of hexapeptides was based on a set of amino acids
suitable for each substrate position P3–P03, indicated by the PLS
coefficients of the ordinary descriptors of GKM (Fig. 3). We also in-
cluded artificial amino acids to explore the physicochemical space
of substrates as much as possible, and selected amino acids were as
follows: for the P3 position, they were Hph, Nal, or Cph (for abbre-
viation of artificial amino acids see below); for P2, Val, Nva, Nle, or
Cha; for P1, Lys, Met, Dap, or Dab; for P01, Arg, Glu, Har, or Aph; for
P02, Phe, Tyr, Btr, Nal, Hph, Phg, or Bph; and for the P03 position, Leu,
Nle, Cha, or Nva. The initial constructed virtual library consisted of
3 � 4 � 4 � 4 � 7 � 4 = 5376 hexapeptides. In order to identify
non-cleavable sequences for the HXB2 HIV-1 protease we used
the cleavability model described in Ref. 19 to screen the library.
Since the cleavability model considers octapeptides we placed
Ala at both the P4 and P04 positions to all hexapeptides during the
virtual screening. This resulted in 4469 non-cleavable sequences.
We then used GKM to further virtually screen the library predicted
as non-cleavable and selected peptides having a predicted



5236 A. Kontijevskis et al. / Bioorg. Med. Chem. 17 (2009) 5229–5237
Km < 3 lM for HXB2 HIV-1 protease and its 3 mutants L90 M, I84 V
and I84V + L90M (4154 sequences). (Inhibition assay conditions
used for in silico hexapeptide library screening by the GKM were
pH 5.0 and sodium chloride 1.1 M concentration. All other assay
descriptors were set to 0). From this smaller library we randomly
selected 10 hexapeptides for experimental evaluation, allowing
at most three amino acids to be identical at the corresponding
positions between any two peptides in the chosen test set (Table
3, numbers 1–10).

A set of diverse hexapeptides (Table 3, numbers 11–20) was
available in our lab from various earlier projects (unpublished
data). All of these hexapeptides were predicted by the cleavability
model19 to be uncleavable and were predicted by GKM to have
very large Km values (Table 3). This set of diverse-structure hexa-
peptides was used as a negative control test for the GKM
validation.

4.7. Statistical tests

The Q2 values calculated for 10-fold CVs did not follow a normal
distribution, which was revealed from the samples of 20 repeats. In
order to assess the difference in Q2 between two models we there-
fore used the nonparametric Wilcoxon signed-rank test.39

The Pearson correlation coefficient (r) values for the observed
versus GKM predicted log (Km) was determined and the statistical
significance, p, of the correlation assessed (Figs. 1 and 2). The p-va-
lue obtained is the probability that a correlation (in the positive
direction) would be seen by chance if there was no real linear rela-
tionship between observed and predicted log (Km) values. The sig-
nificance tests were one-sided. The test of correlation and all
significance tests were performed by an in-house add-in to the Ex-
cel program (Microsoft).

4.8. Synthesis of peptides

Hexapeptides numbers 1–20 of Table 3 were synthesized by so-
lid-phase peptide synthesis using an automated multiple peptide
synthesizer (MultiPep; Intavis AG Bioanalitical Instruments,
Germany, http://www.intavis.com). Reagents were purchased
from Fluka (http://www.fluka.org), Applied Biosystem (http://
www.appliedbiosystems.org), Bachem (http://www.bachem.com),
or Novabiochem (http://www.emdbiosciences.com/html/NBC/
home.html). The following amino acid derivatives were used in
the synthesis: Fmoc-Ala-OH,� Fmoc-Arg(Pbf)-OH, Fmoc-Asn(Trt)-
OH, Fmoc-Asp(Ot-Bu)-OH, Fmoc-Cys(Trt)-OH, Fmoc-Gln(Trt)-OH,
Fmoc-Glu(Ot-Bu)-OH, Fmoc-Gly-OH, Fmoc-His(Trt)-OH, Fmoc-Ile-
OH, Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH, Fmoc-Met-OH, Fmoc-Phe-
OH, Fmoc-Pro-OH, Fmoc-Ser(t-Bu)-OH, Fmoc-Thr(t-Bu)-OH, Fmoc-
Trp(Boc)-OH, Fmoc-Tyr(t-Bu)-OH, Fmoc-Val-OH, Fmoc-Aph(Boc)-
OH, Fmoc-Bph-OH, Fmoc-Btr-OH, Fmoc-Cha-OH, Fmoc-Cph-OH,
Fmoc-Dab(Boc)-OH, Fmoc-Dap(Boc)-OH, Fmoc-Har(Pmc)-OH,
Fmoc-Hph-OH, Fmoc-Nal-OH, Fmoc-Nle-OH, Fmoc-Nva-OH and
Fmoc-Phg-OH. PyBOP was used as an activating reagent and Tenta
Gel amide resin (capacity 0.26 mmol/g) as a polymeric support.

The peptides were synthesized in 5 lmol scale using the auto-
mated standard protocol optimized for Fmoc chemistry provided
� Abbreviations used: Boc, tert-butoxycarbonyl; t-Bu, tert-butyl; DMF, N,N-dimeth-
ylformamide; Fmoc, fluoren-9-yl-methoxycarbonyl; MeCN, acetonitrile; NMM, N-
methylmorpholine; Pbf, 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl; Pmc,
2,2,5,7,8-pentamethylchromane-6-sulfonyl; PyBOP, benzotriazole-1-yl-oxy-tris-pyrr-
olidino-phosphonium hexafluorophosphate; TFA, trifluoroacetic acid; Hph, hom-
ophenylalanine; Nal, 3-(2-naphthyl)alanine; Cph; p-cholophenylalanine; Nva,
norvaline; Cha, cyclohexylalanine; Nle, norleucine; Dab, 2,4-diaminobutyric acid;
Dap, 2,3-diaminopropionic acid; Har, homoarginine; Aph, p-aminophenylalanine;
Phg, phenylglycine; Btr, O-benzyltyrosine; Bph, p-bromophenylalanine. All amino
acids used for synthesis are L-isomers.
with the MultiPep synthesizer. Each cycle included deprotection
of Fmoc group by 20% piperidine in DMF and washing of the sup-
port with DMF; coupling (i.e., the N-deblocked peptidyl-resin was
treated with the solution of Fmoc amino acid derivative, PyBOP
and NMM in DMF for 25 min) and washing of the support with
DMF; capping (i.e., treatment of the polymer with the 2% solution
of acetic anhydride in DMF for 5 min) and washing of the support
with DMF. The final synthetic step on MultiPep included deprotec-
tion by 20% piperidine in DMF (peptides numbers 1–10, Table 3) or
treatment of the polymer with the 2% solution of acetic anhydride
in DMF (peptides numbers 11–20, Table 3), washing of the support
with DMF and CH2Cl2 and drying. The peptide was deprotected and
cleaved from the resin with deprotection mixture (TFA–triisopro-
pylsilane-1,2-ethanedithiol–water, 92.5:2.5:2.5:2.5) for 3 h at
room temperature, triturated with tert-butyl-methyl ether, taken
up in MeCN/water, lyophilized, purified by HPLC and their struc-
tures were confirmed by mass spectrometry. Analytical HPLC was
performed on a Waters (http://www.waters.com) system (Milleni-
um32 workstation, 2690 Separation Module, 996 photodiode array
detector) equipped with Vydac RP C18 90 Å reversed-phase col-
umn (2.1 � 250 mm; http://www.vydac.com).

Small-scale preparative HPLC was carried out on a system con-
sisting of a 2150 HPLC Pump, 2152 LC Controller and 2151 variable
wavelength monitor (LKB, Sweden) and Vydac RP C18 column
(10 mm 250 mm, 90 Å, 201HS1010), with the eluent, being an
appropriate concentration of MeCN in water + 0.1% TFA, a flow rate
5 mL/min, and detection at 280 nm. Freeze-drying was carried out
at 0.01 bar on a Lyovac GT2 Freeze-Dryer (Steric Finn-Aqua; http://
www.steric.com) equipped with a Trivac D4B (Leybold Vacuum;
http://www.oerlikon.com) vacuum pump and a liquid nitrogen
trap.

Peptides were checked by LC/MS using a Perkin Elmer PE SCIEX
API 150EX instrument equipped with a turboionspray ion source
(PerkinElmer Life And Analytical Sciences; http://las.perkinel-
mer.com) and a Dr. Maisch Reprosil-Pur C18-AQ HPLC column
(5 lm, 150 mm � 3 mm; http://wwwdr-maish.com), using a gradi-
ent formed from water and acetonitrile with 5 mM ammonium
acetate additive.

When not otherwise specified chemicals were of reagent grade
from Sigma (http://www.sigmaaldrich.com).
4.9. Enzyme assay of substrates and hexapeptide inhibitors

The HXB2 clone of the HIV-1 protease and its three mutant
(I84V, L90M, and I84V + L90M) clones were available in our labora-
tory and were kind gifts of Prof. Helena Danielson, Uppsala Univer-
sity40. All assays were performed in black 96-well plates (Nunc)
using a PolarstarOptima microplate reader (excitation and emis-
sion waves were 355 nm and 490 nm, respectively). The reaction
buffer contained 0.1 M acetic acid and 1.1 M sodium chloride (pH
5.0 was achieved by titration with a sodium hydroxide solution).
Substrate and inhibitor stock solutions were 1 mM and dissolved
in DMSO/water (1:2). A typical inhibition reaction mixture con-
tained 2.25 lg of the substrate (substrate Nr.1 in Supplementary
Table 2), variable concentrations of hexapeptides and 35 ng of
HXB2 HIV-1 protease or 70 ng of HIV-mutant enzymes (total reac-
tion volume was 100 lL). HIV-1 protease was incubated 10 min at
37 �C with the hexapeptide inhibitor (total solution volume 70 lL).
30 lL of substrate solution were added after the incubation and
reaction continued for further 30 min at 37 �C (cycle time 60 s,
5 s shaking after each cycle). Inhibitor dilution series started at
100 lM of hexapeptide. Each next dilution comprised a factor of
two of the previous dilution and 11 dilutions were used for the
inhibition assay of each hexapeptide. A control test (incubation
of HIV-1 protease with the substrate but without a respective
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hexapeptide inhibitor) was also performed. In total each inhibition
assay experiment comprised of 12 data points.

The kinetic data was analyzed by non-linear fit using GRAFIT pro-
gram and the basic equation for Michaelis-Menten kinetics.41 The
obtained Michaelis constants Km were converted into lM units be-
fore use in the data analyses. The inhibition assay data was fitted
by non-linear regression analysis using GRAFIT program41 and ob-
tained IC50 values were converted into Ki values according to the
equation of Cheng and Prusoff.42 Each experiment was repeated at
least three times, and the average value was taken as a final result.
A Ki value of 200 lM was set for hexapeptides marked as ‘NI’ in Table
3 for the purpose of testing the log (Ki)/log (Km) correlations.
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