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Abstract: A series of luotonin A analogues 7a–d with the N-14
atom moved to position 18 was prepared using an intramolecular
aza-hetero-Diels–Alder reaction.
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Camptothecin (1), a natural product isolated from Chinese
tree Camptotheca acuminate in 1966,1 is one of the lead
molecules for the development of clinically effective an-
ticancer drugs. It exerts its biological effects by stabilizing
the covalent binary complex formed between DNA and
topoisomerase I during DNA relaxations.2 It has been
long accepted that the E-lactone ring, although not physi-
cochemically stable, is a key structural determinant for
camptothecin’s topoisomerase I inhibition and its antineo-
plastic properties. In this regard, the majority of the struc-
ture–activity relationship studies of 1 have been focused
on the optimization of rings A–C in the last two decades,3–

5 leading to two drugs (topotecan6 and irinotecan7) which
have reached the market and with dozens still remain in
clinical trials.8–10 Such strategy has changed since another
natural product, luotonin A (3)11–13 with an aromatic E-
ring, was identified and possessed a similar cellular
activity14 by interacting with DNA and topoisomerase I.
Although slightly lower than 1 in activity, luotonin A (3)
opens a new avenue for the development of clinically ef-
fective, chemically stable anticancer drugs.15

In our recent studies, we have successfully established a
method16 for the construction of the 2,7-naphthyridine
scaffold and synthesized several 2,7-naphthyridine-con-
taining natural products, for example, lophocladine A (4)
which was reported to possess anticancer activities.17 As a
continuation of this study, we decided to develop hybrid-
ized compounds by incorporation of the 2,7-naphthyri-
dine core into luotonin A, resulting in a class of new
analogues 7 (Figure 1). Such a design strategy can be
viewed as a N-walking approach through which the N-14
atom moves to C-18 in luotonin A.

A search of the literature disclosed that two compounds
(5,18 619) have been reported as camptothecin analogues
with a 2,7-naphthyridine fragment. Although no biologi-
cal data have been reported for these E-ring-modified
compounds of luotonin A, a 1,7-naphthyridine analogue
(2) has been described with slightly higher activity than 1
in the topoisomerase I cleavable complex assay.20 In addi-
tion, the reported synthesis of the 2,7-naphthyridine ana-
logues (5, 6) was primarily based on the key intermediate
naphthyridine-fused 3-pyrrolidinone 8 (Scheme 1, path
a), which was highly unstable.18,19 Therefore, it would be

Figure 1 Camptothecin, luotonin A, and their analogues
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Scheme 1 Retrosynthesis of naphthyridine analogues 7
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of great importance to develop a versatile methodology to
efficiently construct such N-walking analogues 7 of
luotonin A.

Our synthesis was based on a modified intramolecular
imino hetero-Diels–Alder (DA) reaction (Scheme 1, path
b) which was validated recently by Nagarajan21 on the
synthesis of indolopyrroloquinolines. This approach is
also similar to the intramolecular aza-DA reaction initial-
ly developed by Fortunak22a and Batey,22b and further im-
proved by Yao23 recently in the synthesis of 1 and 3
(Scheme 2). In this regard, the key step in our synthesis is
to prepare the intermediate 10 where the allyl moiety acts
as the dienophile, and the N-aryl-amido moiety serves as
the diene.

To validate the proposed intramolecular aza-hetero-DA
reaction on the 2,7-naphthyridine model, we synthesized
3-ethoxycarbonyl-2,7-naphthyridin-1-one (11) from 4-
methyl-3-cyanopyridine by using a similar procedure to
the one we reported recently.16 N-Allylation of 11 with
allyl bromide and K2CO3 yielded naphthyridone 12 in
90% yield (Scheme 3). Saponification with LiOH fol-
lowed by treating with oxalyl chloride and then an appro-
priate aniline gave the key precursor 13 in 50–60% overall

yield. However, the proposed intramolecular aza-DA cy-
clization of 13a (Ar = Ph) did not occur by using Nagara-
jan’s catalytic conditions [La(OTf)3, dioxane, 140 °C].21

Extending the reaction time, elevating the temperature, or
increasing catalyst loading of Lewis acid [La(OTf)3] did
not trigger this reaction. Fortunately, after several trials,
we found that bis(triphenyl)oxodiphosphonium trifluo-
romethanesulfonate, formed in situ from Ph3PO and Tf2O
(reported by Yao),23 could readily initiate this reaction at
0 °C and yielded a major product in 78% yield. However,
the spectroscopic data24 of this cycloadduct did not sup-
port the structure of 14a (R = H), instead the 6,7-dehydro
product – quinoline 7a – was obtained. The formation of
compound 7a can be rationalized by the stability of aro-
matic system of 7a, which was driven by the acidity of the
catalytic system. Similarly, cyclization of compound 13b
under the same catalytic conditions gave compound 7b in
64% yield.24,25

It is of interest to note that using the same catalytic condi-
tions, cyclization of N-propargyl-2,7-naphthyridines
gave the same products. Thus, cyclization of 16
(Ar = 4-MeO2CC6H4) provided 7c in 45% yield. Similar
yield of 7a was obtained for cyclization of 16 (Ar = Ph).

Scheme 2 Nagarajan’s and Fortunak’s intramolecular hetero-Diels–Alder reactions
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This result was in complete agreement with Yao’s report
on isoquinolin-1-one.23 The somewhat lower yields of the
cycloadducts 7a–c were probably due to the lower reactiv-
ity of the 2,7-naphthyridine core compared to that of iso-
quinolin-1-ones.

To examine the selectivity of the intramolecular aza-DA
reaction, we prepared compound 18 using a similar proce-
dure,16 and then converted it to the cyclization precursor
19 in 20% overall yield. The low yield of this conversion
may be ascribed to the contamination of bis-O-alkylation
product. Since both N- or O-propargyl moiety in 19 can
serve as the dienophile, two cycloadducts 7d and 20 could
be produced through intramolecular aza-DA reaction
(path a or path b) as described in Scheme 4. However, us-
ing the catalyst formed in situ from Ph3PO and Tf2O, only
one compound 7d26 was isolated in 30% yield, and com-
pound 20 was not observed. The production of compound
7d may be due to the less ring strain in forming the five-
membered C-ring in 7d than that in forming six-mem-
bered pyran ring in 20.

In summary, we have demonstrated a procedure of in-
tramolecular aza-hetero-Diels–Alder reaction on the
3-(N-aryl-amido)-2-allyl-2,7-naphthyridin-1-ones as the
substrate, by combining Nagarajan’s and Yao’s reaction
conditions. A small series of luotonin A analogues 7a–d,
where the N-14 atom walked to position 18, was prepared
in moderate yields.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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