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A fully phosphorylated GPI anchor (1) of the CD52 antigen was synthesized by a highly convergent strategy. After a trimannose and a
phospholipidated pseudodisaccharide were prepared separately, they were coupled together to form the GPI core, which was then phosphorylated
to introduce two phosphoethanolamine moieties in one step to afford CD52 GPI in its fully protected form. Finally, global deprotection of the
product resulted in 1.

Glycosylphosphatidylinositol (GPI) anchors are a class of Recently, we became especially interested in the CD52
natural glycolipids which are expressed by all eukaryotic antigen, a GPIl-anchored glycopeptide antigen involved in
cells! These compounds have many important biological the human reproduction and human immune recognition
functions, of which anchoring proteins and glycoproteins to processe&.!! Because of its simple structure and evident
cell membranes is the most obviou8. GPIs share a  bioactivity, the CD52 antigen can be a useful model for
remarkably conserved core structure, which is composed ofstudying the functions of GPI anchors. In this regard,
a tetrasaccharide, a phosphoethanolamine group and amomogeneous GPIs and GPl-anchored molecules, which are
inositol residue at the nonreducing and reducing ends of thedifficult to obtain from nature, are critical.

glycan, respectively, and a phosphatidyl moiety that is  This paper reports the chemical synthesis of a fully
attached to the inositol ring. Owing to the interesting and phosphoryated GPI anchérof CD52 (Scheme 1) having a
complex structures and important biological functions of long acyl chain attached to the inositok®position.

GPIs and related molecules, their chemical synthesis has aAs shown in Scheme 1, our overall synthetic plan was to

attracted great attention in the past decade. first assemble the phospholipidated cor® @nd then
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Scheme 1. Retrosynthesis of Target GPI Anchbr
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core glycan would be to prepare fragme8snd4 first and

then couple them together through a relatively easy glyco-

sylation reaction.

The synthesis of pseudodisaccharidieas well as its
phospholipidated derivative, is outlined in Scheme 2. First,
an optically pure inositol derivative@ was prepared according
to a reported methot.Next, an acetyl group was introduced
to temporarily protect the inositol 2-OH, followed by
deallylation to affordB, which was ready for installation of
the glucosamine moiety by glycosylation. To establish
reliable conditions to achieve this difficuitlinkage, we have

an unsaturated palmitoleoyl chain was introduced because,
before global deprotection, its<€C bond could be modified

to produce some reactive intermediates, e.g., oxidative
cleavage of the double bond to form carbonyl compoufids,
which are useful for the preparation of various GPI conju-
gates. On the other hand, during the reductive debenzylation
at the final step, the palmitoleoyl group could be readily
reduced to form a palmitoyl groufthe natural acyl chain

of the CD52 GPI anchor. Based on the lessons that we had
learned from the synthesis of another CD52 GPI an¢hor,
we decided to introduce the bulky phospholipid moiety to
the inositol 10-position at this stage, because the presence
of a large acyl group at the inositol@-position might render
late-stage phospholipidation impossible. Oxidative removal
of the 4-methoxybenzyl (PMB) group on the inositol ring
was achieved with ceric ammonium nitrate (CAN), which
was followed by phospholipidation employirtigin a two-
step, one-pot procedure to give a diastereomeric mixture
(1:1.1) of 13 that was fully characterized b\H NMR, 3P
NMR, and MS. Finally, theert-butyldimethylsilyl (TBS)
group in13 was removed to afford4, which was ready to

be coupled with the trimannose fragm@&for the assembly

of the final synthetic target.

Trimannosel5 was prepared according to a procedure
developed for similar structuré%but the 20-position of
mannose-l was protected by a PMB group. Glycosylation
of 14 using 15 as glycosyl donor andN-iodosuccinamide
and silver triflate (NIS/AgOTf) as promoter would affect the
double bond in the palmitoleoyl group, whereas the reaction
of 14 and 15 with dimethyl(methylthio)sulfonium triflate
(DMTST) or methyl triflate (MeOTf) as promoter could not
yield the desired product either. Therefold was trans-

prepared and tested several glucosamine derivatives agormed into3 following oxidative hydrolysis of the reducing
potential glycosyl donors, such as glycosyl halides, glycosyl end by reaction with NIS/TfOH and water and then trichlo-
trichloroacetimidate, and thioglycosides of 2-azido-2-deoxy- roacetimidation of resultant hemiacetal. Glycosylatiod4f

glucose. We found that glycosylation reactions under Le-

mieux conditions? i.e., using glucosyl bromid® as the
glycosyl donor and tetrabutylammonium bromide (TBAB)
as the promoter, gave theglycosidel0 stereospecifically
in a good yield (56%). The inositol @-position in10 was

using a large excess 8f(3 equiv) with trimethylsilyl triflate
(TMSOTf) as promoter went well, but the isolation b6
was complicated by the hydrolytic products derived frdm
Therefore, afterl6 was purified briefly on a silica gel
column, it was directly subjected to treatment by;E%0

then deprotected to expose a free hydroxyl group, to which in CH,ClI, to remove the TBS and PMB groups and give

was introduced a palmitoleoyl group employing dicyclo-

17, of which the two diastereomers could be separated

hexylcarbodiimide (DCC) as the condensation reagent. Here,through careful silica gel column chromatography. Both

Scheme 2. Synthesis of the Phospholipidated Pseudodisaccharide Segment
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Scheme 3. Final Assembly of the Target GPI Anchar
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stereoisomers were individually characterizeddyand3!P which shows the highest/z peak at 893 [M+ 2HT]. The
NMR and MS. Then, one isomety/b, was phosphorylated  MS result further indicates thatwas obtained as a sodium
employing18 by the two-step, one-pot procedure described salt and that its free amino groups were easily protonated to
above to introduce two phosphoethanolamine groups simul-give rise to the observem/z peak at the positive ionization
taneously, giving fully protected GPI anchd®. Global mode of MALDI MS.

deprotection of19 was realized in two steps. First, the In summary, a highly convergent synthesis of the fully
2-cyanoethyl group protecting the phospholipid moiety was functionalized GPI anchodj of the CD52 antigen has been
removed by DBU treatment for a short period (ca. 5 min) to described in this paper. Our collaborator, Professor Xianggqun
give 20, and the product was fully characterized by NMR Zeng at Oakland University, has shown that the synthetic
and MS. The NMR signals of the anomeric protons and GPIl anchorl could interact strongly with GPI-binding
carbons (500 and 125 MHz, respectively, in CE)Clvhich proteins. Our two laboratories are currently studying the
were clearly identifiable in the HMQC spectrum, suggested biological activities ofl in detail, and the results will be
a-configurations of all glycosidic bonds. Finally, the benzyl reported in due course.

and benzyloxycarbonyl (CBz) groups were removed by ]
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