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Abstract: An a-deprotonation of carbonyl compounds with phos-
phazene bases in the presence of the internal quenching reagent,
nonafluorobutane-1-sulfonyl fluoride furnishes the corresponding
alkenyl nonaflates. The new general method provides high yields of
alkenyl nonaflates from aldehydes and cyclic ketones. However, it
is not applicable to acyclic ketones whose nonaflate derivatives un-
dergo fast E2 elimination to give alkynes. Successful synthesis of
nonaflates from aldehydes requires carefully controlled reaction
conditions to avoid the subsequent elimination to alkynes. A kinetic
control enables high regioselectivities in favor of least substituted
nonaflate regioisomers derived from cyclic ketones and modest Z-
selectivities of alkenyl nonaflates derived from aldehydes. A new
efficient protocol for highly selective removal of perfluorosulfolane
admixture from technical nonafluorobutane-1-sulfonyl fluoride by
basic hydrolysis is described.

Key words: chemoselectivity, nonafluorobutane-1-sulfonyl fluo-
ride, ketones, regioselectivity, alkenyl nonaflates

Sulfonic acid enol esters (alkenyl sulfonates) constitute a
synthetically important link that enables the extension of
the transition-metal-catalyzed cross-coupling methodolo-
gy to enolizable carbonyl compounds, one of the most
abundant and ubiquitous pools of organic substrates. So
far, alkenyl triflates proved to be the enol derivatives most
frequently used in Pd(0)-catalyzed cross-coupling reac-
tions.1 However, alkenyl nonaflates (nonafluorobutane-
sulfonates) represent a useful alternative2–6 to the triflates
not least owing to the advantageous properties of the
nonafluorobutane-1-sulfonyl fluoride (1, NfF),7 a sulfo-
nylating reagent routinely used for the preparation of the
nonaflates from carbonyl derivatives.7b,8,9 The compound
1 is a technical product obtained in 90–94% purity by the
electrochemical fluorination of inexpensive 2,5-dihy-
drothiophene 1,1-dioxide, with perfluorosulfolane (2) be-
ing the admixture (6–10 mol%, see Scheme 1, left).
Although the presence of the sulfolane 2 apparently does
not affect the performance of alkenyl nonaflates in one-
pot cross-coupling protocols,2a,d,f,6c it may lead to the

formation of side products7b or deteriorate analytical char-
acteristics of isolated nonaflates.

Herein, we would like to report on efficient purification of
the technical quality nonafluorobutane-1-sulfonyl fluo-
ride (1) and its application in combination with phos-
phazene bases for a new high-yielding synthesis of
alkenyl nonaflates from enolizable carbonyl compounds.

We have found that a vigorous stirring of the technical
product consisting of the perfluorinated compounds 1 and
2 with the concentrated aqueous buffer solution of
K2HPO4 and K3PO4 (pH 12–13) for 96 hours at r.t. led to
highly selective nucleophilic ring opening of the per-
fluorosulfolane (2) to give potassium 1,1,2,2,3,3,4,4-
octafluorobutanesulfonate10 with NfF (1) remaining
essentially intact (Scheme 1). Phase separation followed
by distillation over P2O5 furnished NfF (1; 92% yield) of
>99% purity according to 19F NMR.

Scheme 1 Purification of NfF by basic treatment with aqueous
phosphate buffer solution

High stability of NfF (1) towards nucleophilic (basic)
treatment (Scheme 1) prompted us to investigate a possi-
bility of applying this pure reagent in combination with
metal-free nitrogen bases11 to obtain alkenyl nonaflates
from ketones or aldehydes. After the extensive experi-
mentation,12 we were rewarded by finding out that (tert-
butylimino)tris(1-pyrrolidinyl)phosphorane13 (hereinafter
called P1-base) and 1-(tert-butylimino)-1,1,3,3,3-penta-
kis(dimethylamino)-1l5,3l5-diphosphazene (hereinafter
called P2-base14), commercially available representatives
of the family of phosphazene bases (Figure 1), advanta-
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geously introduced and developed by Schwesinger et al.,
are fully compatible with NfF.

This enabled us to develop a novel synthesis of alkenyl
nonaflates achieved in a single operation step by having
the electrophilic component NfF present during the depro-
tonation of the carbonyl compound15 by the phosphazene
base (Scheme 2).

The reactions were found to proceed smoothly in common
nonprotogenic solvents, THF or DMF.16

P1-base induced smooth and high-yielding conversion of
cyclic plane-symmetric ketones 3a–e to the desired
nonaflates 4a–e.17 The metal-free noncoordinating nature

of the P1-base provided perfect regioselectivity control in
favor of the deprotonation of the ketone 3h at the position
most remote to the ring nitrogen to give nonaflate 4h as a
single isomer.6c,17 However, the P1-base was found to be
nonregioselective in a-methine vs. a-methylene deproto-
nation of 2-methyl cyclopentanone (3f) and 2-methyl
cyclohexanone (3g). Fortunately, the regioselectivity was
crucially improved when the much stronger P2-base was
employed under kinetically controlled conditions.18 In
both cases, the nonaflates 4f,g bearing the less substituted
double bonds were formed in high yields and regioselec-
tivities.

Nonaflation of the aldehydes 3i–k proceeded appreciably
faster than that of the cyclic ketones apparently owing to
higher acidity of the a-hydrogens of the aldehydes. How-
ever, in the case of 3j,k, the room-temperature reactions
were deteriorated by subsequent base-induced elimination
of NfOH to give terminal alkynes as side products.6c

Gratifyingly, carrying out the reactions at lower tempera-
ture (less than –30 °C) enabled a perfect kinetic discrimi-
nation between nonaflation and elimination steps in favor
of the former resulting in good yields of the desired
nonaflates 4j,k. We believe that the observed moderate Z-
selectivities of 4j,k are owing to the stabilizing anti-
periplanar overlap of the sC–H and the incipient s*C–ONf in
the open-chain transition state. It is noteworthy that the
low-temperature transformation of 6-oxo-heptanal 3k into
the enol nonaflate 4k was successfully accomplished,
with unprotected ketone functionality remaining intact.

Figure 1 Phosphazene bases employed for the synthesis of alkenyl
nonaflates from carbonyl compounds

P

N

N
N N

Me

Me
Me

(Me2N)3P
N

P

NMe2

NMe2

N Me

Me
Me

P2-baseP1-base

Scheme 2  Synthesis of nonaflates 4 using P-bases in combination
with NfF

H

O

R

R1
ONf

R

NfF, P-base

– [P-base]H+F–

3 4

R1
R2

R2

Table 1 Synthesis of Alkenyl Nonaflates 4a

Starting material 3 Reaction conditions Product 4

Isolated yield (%) (isomer ratio) Structure
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Acyclic ketones failed to produce alkenyl nonaflates un-
der our reaction conditions. In a typical example, a treat-
ment of 3-methylbutan-2-one with equimolar amounts of
NfF and P2-base at –78 °C to room temperature produced
a ca. 1:1 mixture of the starting material and isopropyl
acetylene (Scheme 3) suggesting that the reaction rate of
the desired nonaflate formation is far lower than the
following base-induced elimination of NfOH leading to
the alkyne.19

Scheme 3

In conclusion, we have developed a general chemo- and
regioselective synthesis of alkenyl nonaflates20 from
cyclic ketones and aldehydes using phosphazene bases21

combined with nonafluorobutane-1-sulfonyl fluoride. The
latter reagent was obtained in >99% purity by treatment of
the industrial product of technical grade with the basic
aqueous buffer. As compared to previously reported
methods, our synthesis provides broader scope of applica-
tion and higher yields of the requisite nonaflates from car-
bonyl compounds,9 and does not require the intermediacy
of trimethylsilyl enol ethers.7b The efficiency of the syn-
thesis described here along with the earlier observations
of higher reactivity of nonaflates as compared to the cor-
responding triflates in solvolysis22 and Pd-catalyzed
cross-coupling reactions4a,5b,23 should pave the way to
much broader application of the nonaflates24 in organic
synthesis.

3f

P2-base, DMF, –30 °C, 17 h
P1-base, DMF, 21 h

84 (ca. 24:1)c

89 (1.3:1)c
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93e (99:1)c

4g
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P1-base, DMF, 111 h 84 (1:2)c

4g¢

3h

P1-base, DMF, 18 h 75

4h

3i

P1-base, DMF, 4 h 89

4i

3j

P1-base, DMF, –30 °C, 19 h 84 (Z/E = 4.3:1)

4j

3k

P1-base, DMF, –30 °C, 21 h 93 (Z/E = 5:1)

4k
a With P-bases (1.15 equiv) and NfF (1.15 equiv) at r.t. unless otherwise stated.17,18

b Amount of Et3N: 4 equiv.
c In favor of the regioisomer shown.
d An 88% conversion was observed after 24 h.
e P-base (2.0 equiv) and NfF (2.0 equiv) were required in order to achieve a complete conversion of the starting ketone.

Table 1 Synthesis of Alkenyl Nonaflates 4a (continued)

Starting material 3 Reaction conditions Product 4

Isolated yield (%) (isomer ratio) Structure
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