

Available online at www.sciencedirect.com

Carbohydrate RESEARCH

Carbohydrate Research 342 (2007) 2705-2715

Synthesis, cytotoxicity, and hemolytic activity of 6'-O-substituted dioscin derivatives

Wei Li,^a Zaozao Qiu,^a Yibing Wang,^a Yichun Zhang,^a Ming Li,^a Jia Yu,^a Lihong Zhang,^a Ziyan Zhu^b and Biao Yu^{a,*}

^aState Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China ^bShanghai Blood Center, Shanghai 200051, China

> Received 5 July 2007; received in revised form 10 September 2007; accepted 12 September 2007 Available online 19 September 2007

Abstract—Dioscin derivatives (1-12) with a variety of substitutions at the 6'-OH of the chacotriosyl residue and the 3',6'-anhydrosaponin derivatives (26, 30, and 32) were synthesized. All these derivatives showed much lower cytotoxicity than that of the parent dioscin, while their hemolytic activities were partially retained depending on the various 6'-O-substitutions. © 2007 Elsevier Ltd. All rights reserved.

Keywords: Steroid saponins; Synthesis; Hemolytic activity; Cytotoxicity; Dioscin

1. Introduction

Two quite common features of the spirostan saponins, which occur widely and abundantly in plants, are their hemolytic activity toward erythrocytes and their inhibitory activity against the growth of tumor cells.¹ The potency of these two activities is highly dependent on the sugar residues of the saponins.^{2,3} Dioscin, diosgenin-3-yl α -L-rhamnopyranosyl-(1 \rightarrow 2)-[α -L-rhamnopyranosyl- $(1\rightarrow 4)$]- β -D-glucopyranoside (chacotrioside), which represents one of the most common plant spirostan saponins, is among the most potent ones in both hemolytic and cytotoxic activities.^{2,3} In addition, facile synthetic approaches toward dioscin have been well developed.⁴ Therefore, we have been trying to employ dioscin as a lead structure to decipher the structureactivity relationships and mechanism of action of spirostan saponins.^{3,5} To this end, all the eight possible monomethylated derivatives of dioscin were synthesized. It was found that only the 6'-O-methyl derivative (1) and the 4'''-O-methyl derivative could retain the cytotoxicity of dioscin partially, but other mono-*O*methyl isomers were nearly inactive.^{5a} Further studies confirmed that substitution on the 4^{*m*}-OH of dioscin with a variety of groups hardly altered their hemolytic and cytotoxic potencies.^{5d} Attempts to prepare the corresponding 6'-O-substituted-dioscin derivatives have been problematic. Alternatively, the 6'-*N*-acyl-6'deoxy-dioscin derivatives were readily prepared, but these derivatives were found largely inactive.^{5d} Herein we report how we solved the problems in the synthesis

Figure 1. Dioscin and its 6'-O-substituted derivatives 1-12.

^{*} Corresponding author. Tel.: +86 21 54925132; fax: +86 21 64166128; e-mail: byu@mail.sioc.ac.cn

^{0008-6215/\$ -} see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.carres.2007.09.004

of the desired 6'-O-substituted-dioscin derivatives (e.g., 1-12, Fig. 1) and the hemolytic and cytotoxic activities of these compounds.

2. Results and discussion

The previous approach to the synthesis of the 6'-Omethyl-dioscin (1) employed a tin-mediated selective methylation of the primary 6'-OH on the triol derivative 14 (Scheme 1). The yield for this step of conversion $(14\rightarrow 15)$ was very low (29%).^{5a} After modification of the reaction conditions, the methylation yield was improved to 52%. However, substitution with iodoethane under similar conditions provided the corresponding 6'-O-ethyl derivative 16 in a very low 8% yield. Allylation (with the more electrophilic allyl bromide) gave the 6'-O-allyl product 17 in a better 37% yield. The 6'-O-benzyl derivative 18 was prepared, also in low yield (19%), via a reductive opening of the 4', 6'-Obenzylidene on 13; however, no attempt was made to improve this transformation. Glycosylation of the resulting 2',4'-diols (15-18) with 2,3,4-tri-O-benzoyl-Lrhamnopyranosyl trichloroacetimidate $(19)^5$ under the promotion of TMSOTf provided the corresponding trisaccharides 20-23 in yields of 80-94%. Final removal of the benzoyl and pivaloyl groups with LiOH furnished the desired 6'-O-alkyl dioscin derivatives 1-4 in good yield.

Given the difficulty in the selective alkylation of the 6'-OH of the saponin derivatives, we attempted to syn-

thesize the desired 6'-O-substituted-dioscin derivatives via a $S_N 2$ substitution of a 6'-O-tosylate derivative (Scheme 2). Thus, diosgenin-3-yl β-D-glucopyranoside $(24, trillin)^6$ was subjected to selective sulforylation at the primary 6'-OH with p-toluenesulfonyl chloride in pyridine; the desired 6'-O-tosyl derivative 25 was obtained in a satisfactory 69% yield. Although substitution of the 6'-O-tosylate with NaN₃ successfully led to the corresponding 6'-azide derivative in excellent yield.^{5d} treatment of 25 with methanol (and other alcohols as well) under basic conditions provided 3',6'-anhydride 26 as the predominant product.⁷ Acyl protection of the hydroxyl groups on 25 could not survive in the subsequent substitution reaction, leading again to the 3',6'-anhydro-derivatives. Attempts to protect the 2',3',4'-OHs on 25 with benzyl or silvl groups under mild basic conditions also led to the 3',6'-anhydride formation.

Glycosylation of the resulting 2',4'-diol 26 with rhamnopyranosyl trichloroacetimidate 19 under the promotion of TMSOTf provided the expected trisaccharide 29 in a moderate 33% yield. This result reflected the steric hindrance of the two axial hydroxyl groups in 26. Treatment of 26 with 1.5 equiv of TBDPSCl in the presence of imidazole provided the monosilylated products 27 and 28 in equal amounts. Glycosidic coupling of 27 with rhamnopyranosyl trichloroacetimidate 19 led to disaccharide 31 in 65% yield. In comparison, glycosylation of 28 with 19 did not give any of the coupling product, implying the 2'-OH in saponin derivative 28 is more difficult to access than the 4'-OH in 27. Removal

Scheme 1. Synthesis of the 6'-O-alkyl-dioscin derivatives 1–4. Reagents and conditions: (a) p-TsOH·H₂O, MeOH, 40 °C, >76%; (b) (Bn₃Sn)₂O, MeI (EtI, or AllBr), TBAI, DMF, 52% (for 15), 8% (for 16), 37% (for 17); (c) Et₃SiH, BF₃·Et₂O, CH₂Cl₂, ~19%; (d) TMSOTf, 4 Å MS, CH₂Cl₂, 0 °C \rightarrow rt, 80–94%; (e) LiOH·H₂O, 1:3 THF–MeOH, 55–83%.

Scheme 2. Synthesis of the 3',6'-anhydrodioscin derivative (30). Reagents and conditions: (a) TsCl, pyridine, $0 \circ C \rightarrow rt$, 69%; (b) NaOH, MeOH, 60 $\circ C$, 92%; (c) TBDPSCl, imidazole, CH₂Cl₂, 45% (for 27), 45% (for 28); (d) TMSOTf, 4 Å MS, CH₂Cl₂, $0 \circ C \rightarrow rt$, 33% (for 29); 65% (for 31); (e) NaOMe, MeOH–CH₂Cl₂, 43%; (f) TBAF, THF, then NaOMe, MeOH, rt, 94%.

of the silyl and acyl protecting groups on **29** and **31** furnished the novel saponin derivatives **30** and **32** bearing a 3',6'-anhydroglucose residue.

To prevent the 3',6'-anhydro formation in the substitution reaction of the 6'-O-tosyl-glucopyranoside derivatives (i.e., 25), acidic conditions shall be firstly applied to block the 2,3,4-OHs with a protecting group, that is, inert toward the subsequent basic conditions. Thus, triol 25 was treated with ethyl vinyl ether in the presence of pyridinium *p*-toluenesulfonate (PPTS) to afford a complex mixture of the corresponding 2,3,4-tri-O-EE (ethoxyethyl) derivatives, where the complexity is raised by the nascent chiral center in the ethoxyethyl group (Scheme 3). Subjection of the resulting mixture to alcohols (e.g., EtOH, AllOH, and 2-azidoethanol) in the presence of sodium in THF,⁸ followed by removal of the ethoxyethyl group with 50% AcOH, provided the desired 6'-O-alkylated products (**33–35**) in good yields (56– 71%) over three steps. Triols **33–35** were then subjected to selective protection with a pivaloyl group at the 3'-OH, giving 2',4'-diol derivatives **16**, **17**, and **36** in good yields (73–82%). Finally, glycosylation of the diols with rhamnopyranosyl trichloroacetimidate **19**, followed by removal of the acyl protection, furnished, as expected, the target 6'-O-substituted dioscins **2**, **3**, and **5**.

The 6'-O-(2-azidoethyl)dioscin derivative **5** was expected to serve as a precursor to the facile access to a variety of the congeners via a selective acylation of the releasing amino group (Scheme 4).^{5d} Thus, reduction of the azido group (in **5**) to the amino group with PPh₃

Scheme 3. Improved synthesis of the 6'-O-alkyldioscin derivatives. Reagents and conditions: (a) ethyl vinyl ether, PPTS, CH_2Cl_2 , rt; (b) Na, EtOH (or AllOH, or 2-azidoethanol), THF, reflux; (c) 50% aq AcOH, 67% (for 33, three steps), 71% (for 34, three steps), 56% (for 35, three steps); (d) PivCl, 1:1 pyridine– CH_2Cl_2 , $-10^{\circ}C \rightarrow -4^{\circ}C$, 73–82%; (e) TMSOTf, 4 Å MS, CH_2Cl_2 , $0^{\circ}C \rightarrow rt$, 84–97%; (f) LiOH·H₂O, 1:3 THF–MeOH, 40 °C, 79–83%.

Scheme 4. Synthesis of the 6'-O-(2-acyl-N-ethyl)dioscin derivatives (6–12). Reagents and conditions: (a) PPh₃, 4:1 THF–H₂O, 60 °C, 94%; (b) AcCl (or (CF₃CO)₂O, or BzCl), Et₃N, MeOH, 82–96% (for two steps); (c) dansyl chloride, NaHCO₃, MeOH, 77% (for two steps); (d) tetradecanoic acid (or sorbic acid), (COCl)₂, DMF, CH₂Cl₂; then Et₃N, MeOH, 87–93% (for two steps).

provided 6'-O-(2-aminoethyl)dioscin **6** in an excellent 94% yield. Otherwise, direct treatment of crude **6** with a variety of acyl chlorides (i.e., acetyl, benzoyl, dansyl, tetradecanoyl, or (2E,4E)-hexa-2,4-dienoyl chloride) or anhydride [(CF₃CO)₂O] in the presence of Et₃N (or NaHCO₃) in methanol furnished the desired 6'-O-(2-acylaminoethyl)dioscin derivatives **7–12** in excellent yields (77–96%).

The inhibitory activity of the synthesized 6'-O-substituted dioscin derivatives (1–12) and the 3',6'-anhydrosaponins (26, 30, and 32) against the growth of three tumor cell lines, that is, HGC-27 (human gastric carcinoma cell), A549 (human lung carcinoma cell), and BGC-823 (human gastric cancer cell) were evaluated following a standard MTT assay with dioscin as a positive control.⁹ The hemolytic activity of these saponin derivatives, expressed as the concentrations that cause 50% hemolysis of human erythrocytes (HD₅₀), were measured according to a slightly modified literature protocol as described before.^{3,11} The results are listed in Table 1.

Table 1. Hemolytic and cytotoxic activities of dioscin derivatives 1–12, 26, 30, and 32^{a}

Compound	Hemolytic	Inhibition rate at 10 µM		
	activity HD ₅₀ (µM)	HGC-27	A549	BGC-823
1	≫50	21%	10%	16%
2	44.4 ± 1.1	25%	13%	11%
3	55.1 ± 1.0	ND	20%	32%
4	>50	17%	12%	15%
5	$\gg 100$	50%	21%	37%
6	32.9 ± 1.0	18%	29%	23%
7	16.6 ± 0.6	16%	15%	NI
8	8.8 ± 0.1	17%	14%	13%
9	9.3 ± 0.6	ND	ND	ND
10	14.1 ± 0.2	22%	15%	16%
11	$\gg 50$	11%	16%	14%
12	7.3 ± 0.8	15%	13%	14%
26	≫100	33%	37%	31%
30	ND	NI	NI	NI
32	56.5 ± 0.7	NI	NI	NI
Dioscin	3.2 ± 0.2	76% at	88% at	67% at
		5 μΜ	5 μΜ	5 μΜ

^a ND = Not detected; precipitation of the compound was found during measurement. NI = No inhibition was detected.

None of the dioscin derivatives with a 6'-O-substitution (1–12, 26, 30, and 32) showed appreciable inhibition activity at a concentration of 10 μ M toward the three tumor cell lines, while the parent dioscin showed significant activity at 5 μ M. Precipitation was found for most of these compounds at higher concentrations (>25 μ M) during cell tests, therefore, the IC₅₀ values could not be determined. The 6'-O-substitution also significantly lowered the hemolytic activity of dioscin; however, this influence is highly dependent on the substituted groups. It is noteworthy that compounds (e.g., **8**, **9**, and **12**) could retain a large part of the hemolytic activities of dioscin, but their cytotoxicities are only marginal. These results prove again that the hemolytic activity and cytotoxicity of saponins are not correlated.³

In summary, we have developed an effective approach to the synthesis of the 6'-O-alkylated dioscin derivatives in which the ready formation of the corresponding 3',6'anhydride is avoided. Interestingly, the 6'-O-monosubstitution significantly lowers the hemolytic and cytotoxic activities of the parent saponin.

3. Experimental

3.1. General methods

General methods for synthesis: see Ref. 10.

General methods for MTT assay of the cytotoxicity: see Ref. 9.

General methods for assay of the hemolytic activity: see Ref. 3.

3.2. Preparation of diosgenyl-*O*-methyl 2,4-di-*O*-α-Lrhamnopyranosyl-6-*O*-methyl-β-D-glucopyranoside (1)

3.2.1. Preparation of diosgenyl 6-*O*-methyl-3-*O*-pivaloyl- β -D-glucopyranoside (15). A mixture of triol 14 (132 mg, 0.20 mmol), (Bn₃Sn)₂O (0.18 mL, 0.35 mmol), and 4 Å MS in anhyd DMF (2.5 mL) was stirred under N₂ for 20 min at rt and then warmed up to 80 °C for 5 h. After cooling down to room temperature, MeI (2.0 mL, 32 mmol) and TBAI (148 mg, 0.40 mmol) were added, and the stirring was continued for another 10 h at

2709

30 °C. The mixture was then filtered and concentrated. Water and CH_2Cl_2 were added. The organic layer was washed with satd aq NaCl, dried with Na_2SO_4 , and concentrated. The residue was subjected to silica gel column chromatography to provide **15** (70 mg, 52%) as a white solid.^{5a}

3.2.2. Preparation of diosgenyl 6-*O*-methyl-3-*O*-pivaloyl-**2,4-di**-*O*-(**2,3,4-tri**-*O*-benzoyl-α-L-rhamnopyranosyl)-β-Dglucopyranoside (**20**). A mixture of diol **15** (265 mg, 0.39 mmol), imidate 19 (1.46 g, 2.36 mmol), and 4 Å MS (0.3 g) in anhyd CH₂Cl₂ (10 mL) under N₂ was cooled to 0 °C and stirred for 0.5 h. TMSOTf (7.7 µL, 0.040 mmol) was then added. The resulting mixture was stirred for an additional 0.5 h and then warmed up to room temperature for another 0.5 h. Et₃N was then added to quench the reaction. Filtration and concentration led to a residue that was applied to silica gel column chromatography (15:1 petroleum ether– EtOAc) to provide **20** (583 g, 94%) as a white solid.^{5a}

3.2.3. Preparation of diosgenyl 6-*O*-methyl-2,4-di-*O*-α-Lrhamnopyranosyl-β-D-glucopyranoside (1). A solution of **20** (174 mg, 0.11 mmol) and LiOH·H₂O (277 mg, 6.60 mol) in THF (2 mL) and MeOH (6 mL) was stirred at 40 °C overnight. The solvent was removed and H₂O (20 mL) was added to give a white solid that was filtered and purified by silica gel column chromatography (12:1 CH₂Cl₂-MeOH) to afford **1** (53 mg, 55%) as a white solid: $[\alpha]_D^{23}$ –94.8 (*c* 0.59, MeOH).^{5a}

3.3. Diosgenyl 6-*O*-ethyl-3-*O*-pivaloyl-β-D-glucopyranoside (16)

A similar procedure used for the preparation of **15** was employed. Thus, treatment of **14** (660 mg, 1.00 mmol) with (Bn₃Sn)₂O (1.0 mL, 2.0 mmol), followed by EtI (0.80 mL, 10 mmol) and TBAI (738 mg, 1.87 mmol), provided **16** (54 mg, 8%) as a white solid: $[\alpha]_D^{27}$ -74.6 (*c* 0.52, 1:1 CHCl₃-MeOH); ¹H NMR (300 MHz, CDCl₃): δ 5.30 (br s, 1H, H-6), 4.84 (t, J = 9.0 Hz, 1H, H-3'), 4.40–4.33 (m, 2H, H-16, H-1'), 3.65–3.64 (m, 2H), 3.58–3.40 (m, 7H), 3.38–3.30 (m, 1H), 2.38– 2.17 (m, 2H), 1.18 (s, 9H, Piv), 1.13 (t, J = 6.9 Hz, 3H, Et-CH₃), 0.95 (s, 3H, H-19), 0.90 (d, J = 6.9 Hz, 3H, H-21), 0.73 (m, 6H, H-18, H-27); HRESIMS: calcd for C₄₀H₆₅O₉ (M+H⁺), 689.4629. Found: 689.4606.

3.4. Diosgenyl 6-*O*-allyl-3-*O*-pivaloyl-β-D-glucopyranoside (17)

A similar procedure used for the preparation of **15** was employed. Thus, treatment of **14** (330 mg, 0.5 mmol) with $(Bn_3Sn)_2O$ (0.5 mL, 1 mmol), followed by allyl bromide (2.6 mL, 3.0 mmol) and TBAI (369 mg, 1.00 mmol), provided **17** (131 mg, 37%) as a white solid: [α]_D²⁷ -73.0 (*c* 0.50, 1:1 CHCl₃-MeOH); ¹H NMR (300 MHz, CDCl₃): δ 5.87–5.76 (m, 1H, All–CH), 5.29 (br s, 1H, H-6), 5.23–5.11 (m, 2H, All–C=CH₂), 4.82 (t, J = 9.3 Hz, 1H, H-3'), 4.39–4.30 (m, 2H, H-16, H-1'), 3.98 (d, J = 5.7 Hz, 2H, All–CH₂), 3.69–3.66 (m, 2H), 3.65–3.38 (m, 5H), 3.34–3.27 (m, 1H), 2.34–2.13 (m, 2H), 1.18 (s, 9H, Piv), 0.95 (s, 3H, H-19), 0.90 (d, J = 6.9 Hz, 3H, H-21), 0.73–0.72 (m, 6H, H-18, H-27); HRESIMS: calcd for C₄₁H₆₅O₉ (M+H⁺), 701.4629. Found: 701.4653.

3.5. Diosgenyl 6-*O-p*-toluenesulfonyl-β-D-glucopyranoside (25)

To a stirred solution of trillin⁶ (1.48 g, 2.57 mmol) in anhyd pyridine (15 mL) at 0 °C was added *p*-toluenesulfonyl chloride (1.48 g, 7.77 mmol) under N₂. The mixture was gradually warmed up to room temperature and stirred overnight. The resulting solution was poured into water (600 mL). The white precipitate was filtered, dried, and then applied to silica gel column chromatography (30:1 CH₂Cl₂–MeOH), affording **25** (1.30 g, 69%) as a while solid: $[\alpha]_D^{25}$ –94.4 (*c* 0.53, 1:1 CHCl₃–MeOH); ¹H NMR (300 MHz, CDCl₃): δ 7.78 (d, J = 7.8 Hz, 2H, Ar–H), 7.31 (dd, J = 8.4 Hz, 2H, Ar–H), 5.32 (br s, 1H, H-6), 4.45–4.20 (m, 4H), 3.51–3.25 (m, 16H), 2.42 (s, 3H, Ts–CH₃), 2.36–2.17 (m, 2H), 0.99–0.97 (m, 6H, H-19, H-21), 0.79 (br s, 6H, H-18, H-27); HRESIMS: calcd for C₄₀H₅₉O₁₀S (M+H⁺), 731.3829. Found: 731.3742.

3.6. Diosgenyl 3,6-anhydro-β-D-glucopyranoside (26)

Compound 25 (584 mg, 0.80 mmol) was added to a stirred solution of sodium (276 mg, 12 mmol) in MeOH (15 mL). After stirring at 60 °C for 1 h, the mixture was concentrated. The residue was applied to silica gel column chromatography, providing 26 (409 mg, 92%) as a white solid: $[\alpha]_{D}^{23}$ -159.6 (*c* 0.91, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 5.35 (br s, 1H, H-6), 5.25 (s, 1H, H-1'), 4.86 (t, J = 5.7 Hz, 1H, H-3'), 4.45–4.38 (m, 2H), 4.25-4.19 (m, 2H), 3.83 (d, J = 6.0 Hz, 2H), 3.57-3.45 (m, 2H), 3.40-3.33 (m, 1H), 2.42-2.36 (m, 1H), 2.30-2.21 (m, 1H), 1.01 (s, 3H, H-19), 0.97 (d, J = 6.9 Hz, 3H, H-21), 0.80–0.78 (m, 6H, H-18, H-27); ¹³C NMR (75 MHz, CDCl₃): δ 140.0, 122.1, 109.4, 109.2, 87.8, 83.9, 80.8, 80.7, 78.7, 73.7, 71.4, 66.8, 62.0, 56.4, 50.0, 41.6, 40.2, 39.7, 38.7, 37.1, 36.9, 32.1, 31.8, 31.4, 31.3, 30.2, 29.2, 28.7, 20.8, 19.3, 17.1, 16.3, 14.5; HRESIMS: calcd for $C_{33}H_{51}O_7$ (M+H⁺), 559.3635. Found: 559.3673.

3.7. Diosgenyl 3,6-anhydro-2-*O*-(*tert*-butyldiphenylsilyl)β-D-glucopyranoside (27)

To a solution of diol **26** (227 mg, 0.41 mmol) and imidazole (55 mg, 0.81 mmol) in anhyd CH_2Cl_2 (4 mL)

was added *tert*-butylchlorodiphenylsilane (0.16 mL, 0.61 mmol) in anhyd CH₂Cl₂ (1 mL) dropwise under N₂. After stirring at rt for 4 h, the mixture was concentrated. The residue was subjected to silica gel column chromatography (15:1 petroleum ether-EtOAc), affording 27 (147 mg, 45%) as a white solid: $[\alpha]_D^{23}$ -157.5 (c 0.69, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.76 (d, J = 6.6 Hz, 2H, Ar-H, 7.68 (d, J = 6.0 Hz, 2H,Ar-H), 7.48–7.40 (m, 6H, Ar-H), 5.38 (br s, 1H, H-6), 5.11 (s, 1H, H-1'), 4.50-4.38 (m, 2H), 4.30 (d, J = 9.6 Hz, 1H), 4.23–4.20 (m, 1H), 4.15 (br s, 1H), 3.83-3.79 (m, 1H), 3.73 (br s, 1H), 3.67-3.47 (m, 3H), 3.42-3.35 (m, 1H), 2.48-2.43 (m, 1H), 2.27-2.19 (m, 1H), 1.10 (s, 9H, TBDPS-(CH₃)₃), 1.02 (s, 3H, H-19), 0.97 (d, J = 6.9 Hz, 3H, H-21), 0.80 (m, 6H, H-18, H-27); ¹³C NMR (75 MHz, CDCl₃): δ 140.7, 135.8 (2C), 135.5 (2C), 132.0, 131.6, 130.5, 130.4, 128.1 (2C), 128.0 (2C), 121.5, 109.3, 101.3, 80.8, 76.6, 73.4, 73.1, 72.6, 71.5, 70.6, 66.9, 62.2, 56.5, 50.2, 41.6, 40.3, 39.8, 38.3, 37.4, 37.0, 32.1, 31.9, 31.5, 31.4, 30.3, 29.5, 28.8, 26.8 (3C), 20.9, 19.4, 19.1, 17.1, 16.3, 14.5; MALDITOF MS: calcd for $C_{49}H_{68}O_7SiNa$ (M+Na⁺), 819.4626. Found: 819.4637.

3.8. Diosgenyl 3,6-anhydro-2,4-di-*O*-(2,3,4-tri-*O*-benzoylα-L-rhamnopyranosyl)-β-D-glucopyranoside (29)

To a mixture of 2,3,4-tri-O-benzoyl-L-rhamnopyranosyl trichloroacetimidate 19 (372 mg, 0.60 mmol), diol 26 (112 mg, 0.20 mmol) and 4 Å MS in anhyd CH₂Cl₂ (5 mL) at 0 °C under N₂ was added TMSOTf (3.5 μ L, 0.020 mmol). The mixture was allowed to warm up to room temperature and was stirred for another 0.5 h. Et₃N was added to quench the reaction. The resulting mixture was filtered and concentrated. The residue was applied to silica gel column chromatography (15:1 petroleum ether-EtOAc, 25:1 toluene-EtOAc) to provide **29** (97 mg, 33%) as a white solid: $[\alpha]_D^{23}$ +58.7 (*c* 1.36, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.15– 8.10 (m, 4H, Ar-H), 7.94-7.88 (m, 4H, Ar-H), 7.62-6.82 (m, 22H, Ar-H), 6.04 (br s, 1H, Rha-H-1), 5.92-5.75 (m, 5H), 5.51-5.47 (m, 2H), 5.32 (s, 1H, H-6), 5.28 (s, 1H, H-1'), 4.61-4.52 (m, 3H), 4.45-4.38 (m, 3H), 4.29 (d, J = 9.9Hz, 1H), 4.04 (br s, 1H), 3.99-3.79 (m, 1H), 3.85–3.74 (m, 1H), 3.49–3.45 (m, 1H), 3.37 (t, J = 10.9 Hz, 1H), 2.79–2.70 (m, 1H), 2.35–2.25 (m, 1H), 1.48 (d, J = 6.2 Hz, 3H, Rha–CH₃), 1.43 (d, J = 6.2 Hz, 3H, Rha–CH₃), 0.97 (m, 6H, H-19, H-21), 0.78 (m, 6H, H-18, H-27); ¹³C NMR (100 MHz, CDCl₃): δ 166.1, 165.9, 165.8, 165.7, 165.3, 164.7, 140.6, 133.4-127.6 (36C), 121.7, 109.3, 97.0, 96.9, 96.4, 80.8, 80.5, 73.5, 72.4, 72.3, 71.7, 71.4, 71.3 (2C), 70.8, 70.6, 70.5, 68.0, 67.0, 66.9, 41.6, 40.3, 39.8, 38.4, 37.3, 37.0, 32.1, 31.9, 31.5, 31.4, 30.3, 29.8, 29.7 (3C), 28.8, 20.8, 19.3, 17.8, 17.7, 17.1, 16.2, 14.5, 14.1; MALDITOF MS: calcd for $C_{87}H_{94}O_{21}Na$ (M+Na⁺), 1497.6180. Found: 1497.6164.

3.9. Diosgenyl 3,6-anhydro-2,4-di-O- α -L-rhamnopyranosyl- β -D-glucopyranoside (30)

To a solution of 29 (80 mg, 0.054 mmol) in MeOH (2 mL) and CH₂Cl₂ (2 mL) was added NaOMe portionwise until the pH of the solution was between 10-11. After stirring for 1 h at room temperature, the reaction mixture was neutralized, filtered, and then concentrated. The residue was purified by silica gel column chromatography (5:1 CH₂Cl₂-MeOH) to afford 30 (20 mg, 43%) as a white solid: $[\alpha]_D^{23}$ -95.6 (*c* 0.74, MeOH); ¹H NMR (400 MHz, pyridine- d_5): δ 5.70–5.64 (m, 3H, H-1', Rha-H-1), 5.36 (br s, 1H, H-6), 4.80-4.33 (m, 13H), 4.05 (dd, J = 3.0, 10.0 Hz, 1H), 3.95–3.85 (m, 1H), 3.68-3.59 (m, 2H), 2.82-2.77 (m, 1H), 2.54-2.51 (m, 1H), 1.75 (d, J = 6.1 Hz, 3H, Rha-CH₃), 1.71 (d, J = 6.1 Hz, 3H, Rha–CH₃), 1.23 (d, J = 6.9 Hz, 3H, H-21), 1.07 (s, 3H, H-19), 0.92 (s, 3H, H-18), 0.78 (d, J = 5.6 Hz, 3H, H-27); ¹³C NMR (100 MHz, pyridine d_5): δ 141.0, 121.8, 109.4, 101.5, 101.1, 98.1, 81.2 (2C), 77.4, 74.1, 73.9, 73.8, 73.2, 72.7 (2C), 72.5 (2C), 72.3, 71.5, 70.5, 70.2, 67.0, 63.1, 56.8, 50.5, 42.1, 40.6, 40.0, 39.1, 37.7, 37.3, 32.4, 32.3, 32.0, 31.8, 30.7, 30.4, 29.4, 21.3, 19.5, 18.7, 18.6, 17.4, 16.5, 15.1; MALDITOF MS: calcd for $C_{45}H_{70}O_{15}Na$ (M+Na⁺), 873.5. Found: 873.4.

3.10. Diosgenyl 3,6-anhydro-2-*O*-(*tert*-butyldiphenylsilyl)-4-*O*-(2,3,4-tri-*O*-benzoyl-α-L-rhamnopyranosyl)β-D-glucopyranoside (31)

To a mixture of compound 27 (116 mg, 0.14 mmol), imidate 19 (178 mg, 1.4 mmol), and 4 Å MS in anhyd CH₂Cl₂ (5 mL) at 0 °C under N₂ was added TMSOTf $(2.4 \,\mu\text{L}, 0.014 \,\text{mmol})$. After stirring for 0.5 h, the mixture was allowed to warm up to room temperature and was stirred for another 4 h. The reaction was then quenched with Et₃N. The resulting mixture was then filtered and concentrated. The residue was applied to silica gel column chromatography (30:1 petroleum ether-EtOAc) to provide 31 (113 mg, 65%) as a white solid: $[\alpha]_{D}^{23}$ +7.3 (*c* 1.37, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 8.14 (d, J = 7.5 Hz, 2H, Ar–H), 7.92 (d, J = 7.5 Hz, 2H, Ar-H), 7.83–7.78 (m, 6H, Ar-H), 7.65-7.16 (m, 15H, Ar-H), 5.87-5.84 (m, 1H), 5.75-5.65 (m, 3H), 5.42 (br s, 1H, H-6), 5.20 (s, 1H, H-1'), 4.57-4.52 (m, 1H), 4.45-4.40 (m, 1H), 4.14 (br s, 2H), 3.97 (d, J = 4.8 Hz, 1H), 3.91-3.84 (m, 2H), 3.73-3.66(m, 2H), 3.51-3.47 (m, 1H), 3.43-3.36 (m, 1H), 2.64-2.60 (m, 1H), 2.44–2.26 (m, 3H), 1.37 (d, J = 5.1Hz, 3H, Rha-CH₃), 1.22 (s, 9H, TBDPS-(CH₃)₃), 0.98 (d, J = 6.9 Hz, 3H, H-21), 0.94 (s, 3H, H-19), 0.79 (br s, 6H, H-18, H-27); ¹³C NMR (75 MHz, CDCl₃): δ

165.8, 165.6, 165.0, 140.6, 135.8–127.8 (30C), 121.7, 109.3, 95.7, 94.8, 80.8, 80.1, 78.4, 75.3, 73.7, 73.0, 72.8, 72.1, 71.0, 69.7, 66.9, 66.6, 62.2, 56.5, 50.1, 41.7, 40.3, 39.8, 39.1, 37.3, 37.0, 32.2, 31.9, 31.6, 31.4, 30.3, 30.0, 28.8, 26.8 (3C), 20.9, 19.3, 19.2, 17.5, 17.1, 16.3, 14.5; MALDITOF MS: calcd for $C_{76}H_{90}O_{14}SiNa~(M+Na^+)$, 1277.5992. Found: 1277.5982.

3.11. Diosgenyl 3,6-anhydro-4-*O*-α-L-rhamnopyranosylβ-D-glucopyranoside (32)

To a solution of 31 (40 mg, 0.032 mmol) in THF (1 mL) was added TBAF (1 mmol). The solution was neutralized with AcOH and stirred at room temperature for 6 h. MeOH (2 mL) and NaOMe was added to adjust the pH ≥ 9 . The resulting solution was stirred for another 2 h and then concentrated. The residue was purified by silica gel column chromatography (20:1 CH₂Cl₂-MeOH) to afford a crude oil, which was then washed with water to provide 32 (21 mg, 94%) as a white solid: $[\alpha]_{D}^{22}$ –113.7 (*c* 0.51, CHCl₃); ¹H NMR (300 MHz, pyridine-d₅): δ 5.84 (s, 1H, Rha-H-1), 5.65 (s, 1H, H-1'), 5.26 (br s, 1H, H-6), 5.06 (br s, 8H), 4.60–4.51 (m, 8H), 4.41-4.30 (m, 2H), 4.01-3.91 (m, 2H), 3.61-3.48 (m, 2H), 2.77-2.73 (m, 1H), 2.56-2.49 (m, 1H), 2.17-2.14 (m, 1H), 1.71 (d, J = 6.0 Hz, 3H, Rha–CH₃), 1.15 (d, J = 6.3 Hz, 3H, H-21), 0.99 (s, 3H, H-19), 0.84 (s, 3H, H-18), 0.70 (br s, 3H, H-27); ¹³C NMR (75 MHz, pyridine-d₅): δ 141.0, 121.9, 109.4, 100.8, 98.0, 81.2, 79.8, 77.5, 75.1, 74.0, 73.0, 72.8, 72.4, 72.3, 71.1, 70.5, 67.0, 63.1, 56.8, 50.5, 42.1, 40.6, 40.0, 39.2, 37.8, 37.3, 32.4, 32.3, 32.0, 31.0, 30.7, 30.4, 29.4, 21.3, 19.5, 18.7, 17.4, 16.5, 15.2; MALDITOF MS: calcd for $C_{39}H_{60}O_{11}Na$ (M+Na⁺), 727.4028. Found: 727.4044.

3.12. Diosgenyl 6-O-ethyl-β-D-glucopyranoside (33)

To a solution of compound 25 (100 mg, 0.14 mmol) and *p*-toluenesulfonate pyridinium (PPTS, 3.8 mg. 0.015 mmol) in anhyd CH₂Cl₂ (1 mL), ethyl vinyl ether (0.08 mL, 0.8 mmol) was added dropwise under N₂. After stirring overnight, the mixture was poured slowly into cold satd aq NaHCO₃ (2 mL). The aqueous layer was extracted with CH_2Cl_2 (3 × 5 mL). The combined organic layers were washed with satd aq NaCl $(2 \times 10 \text{ mL})$ and dried over MgSO₄. The solvent was removed by rotary evaporation to afford a yellow solid that was added to a stirred solution of Na (52 mg, 2.3 mmol) in EtOH (3 mL, 50 mmol). The reaction was held at reflux for 8 h, and then cooled to room temperature and concentrated. The residue was dissolved in EtOAc (25 mL) and H₂O (30 mL). The aq layer was extracted with EtOAc $(3 \times 25 \text{ mL})$, and the combined organic layers were washed with satd aq NaCl, dried over MgSO₄, and concentrated by rotary evaporation. The resulting oil was added to 50% AcOH (5 mL). After stirring overnight, water was added. The resulting mixture was concentrated by rotary evaporation to give a residue that was subjected to silica gel column chromatography (30:1 CH₂Cl₂-MeOH) to provide 33 (55 mg, 67%) as a white solid: $[\alpha]_{D}^{27}$ -98.0 (c 0.55, 1:1 CHCl₃-MeOH); ¹H NMR (300 MHz, pyridine- d_5): δ 5.31 (br s, 1H, H-6), 4.98 (d, J = 7.5 Hz, 1H, H-1'), 4.55 (q, J = 7.5 Hz, 1H, H-16), 4.29–4.20 (m, 2H), 4.15–3.89 (m, 6H), 3.61–3.50 (m, 4H), 2.72–2.67 (m, 1H), 2.47– 2.39 (m, 1H), 1.15 (t, J = 6.9 Hz, 3H, Et–CH₃), 1.14 (d, J = 6.9 Hz, 3H, H-21), 0.90 (s, 3H, H-19), 0.83 (s, 3H, H-18), 0.70 (d, J = 5.4 Hz, 3H, H-27); ¹³C NMR $(75 \text{ MHz}, \text{ pyridine-}d_5): \delta 141.1, 121.8, 109.4, 102.8,$ 81.2, 78.7, 78.4, 77.1, 75.4, 71.8, 71.4, 67.1, 67.0, 63.1, 56.8, 50.4, 42.1, 40.6, 40.0, 39.5, 37.6, 37.2, 32.4, 32.3, 32.0, 31.8, 30.7, 30.4, 29.4, 21.3, 19.5, 17.5, 16.5, 15.7, 15.2; HRESIMS: calcd for $C_{35}H_{57}O_8$ (M+H⁺), 605.4053. Found: 605.4072.

3.13. Diosgenyl 6-O-allyl-β-D-glucopyranoside (34)

A similar procedure used for the preparation of 33 was employed. Thus, treatment of compound 25 (100 mg, 0.14 mmol) through three steps provided 34 (60 mg, 71%) as a white solid: $[\alpha]_{D}^{27}$ -93.6 (c 0.52, 1:1 CHCl₃-MeOH); ¹H NMR (300 MHz, pyridine- d_5): δ 6.01–5.91 (m, 1H, All-CH), 5.35-5.30 (m, 2H, H-6, All-C=CH₂), 5.10 (d, J = 10.5 Hz, 1H, All-C=CH₂), 4.96 (d, J = 7.5 Hz, 1H, H-1'), 4.52 (q, J = 7.8Hz, 1H, H-16), 4.26-4.21 (m, 2H), 4.14-3.91 (m, 7H), 3.59-3.44 (m, 2H), 2.67 (m, 1H), 2.42 (m, 1H), 1.12 (d, J = 6.6 Hz, 3H, H-21), 0.88 (s, 3H, H-19), 0.81 (s, 3H, H-18), 0.68 (d, J = 3.9 Hz, 3H, H-27); ¹³C NMR (75 MHz, pyridine-d₅): δ 141.1, 136.1, 121.8, 116.2, 109.4, 102.8, 81.2, 78.7, 78.5, 77.2, 75.3, 72.6, 71.7, 71.1, 67.0, 63.0, 56.8, 50.4, 42.1, 40.6, 40.0, 39.5, 37.6, 37.2, 32.4, 32.3, 32.0, 31.8, 30.7, 30.4, 29.4, 21.3, 19.5, 17.4, 16.5, 15.1; HRESIMS: calcd for $C_{36}H_{57}O_8$ (M+H⁺), 617.4053. Found: 617.4060.

3.14. Diosgenyl 6-*O*-(2-azidoethyl)-β-D-glucopyranoside (35)

A similar procedure used for the preparation of **33** was employed. Thus, treatment of compound **25** (755 mg, 1.03 mmol) through three steps provided **35** (372 mg, 56%) as a pale-yellow solid: $[\alpha]_D^{27}$ -85.2 (*c* 0.50, 1:1 CHCl₃-MeOH); ¹H NMR (300 MHz, pyridine-*d*₅): δ 5.34 (br s, 1H, H-6), 4.98 (m, 1H, H-1'), 4.57 (br s, 1H, H-16), 4.32-4.21 (m, 2H), 4.06-3.99 (m, 5H), 3.78 (q, *J* = 4.8 Hz, 2H), 3.61-3.34 (m, 5H), 2.73-2.68 (m, 1H), 2.49-2.41 (m, 1H), 0.70 (br s, 3H); ¹³C NMR (75 MHz, pyridine-*d*₅): δ 141.1, 121.8, 109.4, 102.8, 81.2, 78.7, 78.6, 77.1, 75.3, 72.0, 71.7, 70.8, 67.0, 63.0, 56.8, 51.2, 50.4, 42.1, 40.6, 40.0, 39.5, 37.7, 37.2, 32.4, 32.3, 32.0, 31.8, 30.7, 30.4, 29.4, 21.3, 19.5, 17.5, 16.5, 15.2; HRESIMS: calcd for $C_{35}H_{56}N_3O_8$ (M+H⁺), 646.4067. Found: 646.4018.

3.15. Diosgenyl 6-*O*-(2-azidoethyl)-3-*O*-pivaloyl-β-Dglucopyranoside (36)

To a solution of triol 35 (1.21 g, 1.87 mmol) in anhyd CH₂Cl₂ (4 mL) and pyridine (8 mL) at -10 °C was added pivaloyl chloride (0.69 mL, 5.6 mmol) in anhyd CH₂Cl₂ (4 mL) portionwise under N₂. The mixture was warmed to -4 °C and stirred for 4.5 h, and was then quenched with MeOH and concentrated. The resulting residue was dissolved in EtOAc (100 mL) and washed with 5% HCl $(2 \times 70 \text{ mL})$ and satd aq NaCl. The organic layer was dried over MgSO₄ and concentrated to give a residue that was purified by silica gel column chromatography (8:1 petroleum ether-EtOAc) to provide 35 (1.04 g, 76%) as a white solid: $[\alpha]_D^{27}$ -65.5 (*c* 0.56, 1:1 CHCl₃-MeOH); ¹H NMR (300 MHz, CDCl₃): δ 5.29 (br s, 1H, H-6), 4.81 (t, J = 9.6 Hz, 1H, H-3'), 4.39– 4.33 (m, 2H, H-16, H-1'), 3.74-3.27 (m, 15H), 2.37-2.14 (m, 7H), 1.17 (s, 9H, Piv), 0.95 (s, 3H, H-19), 0.90 (d, J = 9.9 Hz, 3H, H-21). 0.73–0.72 (m, 6H, H-18, H-27); HRESIMS: calcd for $C_{40}H_{64}N_3O_9$ (M+H⁺), 730.4643. Found: 730.4642.

3.16. Diosgenyl 6-*O*-ethyl-2,4-di-*O*-α-L-rhamnopyranosyl-β-D-glucopyranoside (2)

3.16.1. Diosgenyl 6-O-ethyl-3-O-pivaloyl-2,4-di-O-(2,3,4tri-O-benzoyl-α-L-rhamnopyranosyl)-β-D-glucopyranoside (21). A similar procedure used for the preparation of 20 was employed. Thus, treatment of 16 (263 mg, 0.38 mmol) with imidate 19 (1.41 g, 2.28 mmol) in the presence of TMSOTf (7 µL, 0.04 mmol) afforded 21 (0.59 g, 97%) as a pale-yellow solid: $[\alpha]_D^{27}$ +63.4 (c 0.48, 1:1 CHCl₃–MeOH); ¹H NMR (300 MHz, CDCl₃): δ 8.06 (d, J = 7.2 Hz, 4H, Ar–H), 8.00 (d, J = 6.9 Hz, 2H, Ar–H), 7.94 (d, J = 9.0 Hz, 2H, Ar–H), 7.85 (d, J = 8.4 Hz, 2H, Ar-H), 7.77 (d, J = 8.7 Hz, 2H, Ar-H), 7.65-7.18 (m, 18H, Ar-H), 5.83-5.49 (m, 7H), 5.14 (br s, 2H), 4.77–4.75 (m, 2H), 4.49–4.42 (m, 1H), 4.34-4.29 (m, 1H), 4.13-4.06 (m, 1H), 4.02-3.98 (m, 1H), 3.86-3.64 (m, 5H), 3.54-3.38 (m, 2H), 2.66-2.61 (m, 2H), 1.17 (s, 9H, Piv), 1.01 (d, J = 6.6 Hz, 3H, H-21), 0.95 (s, 3H, H-19), 0.82 (m, 6H, H-18, H-27).

3.16.2. Diosgenyl 6-*O*-ethyl-2,4-di-*O*-α-L-rhamnopyranosyl-β-D-glucopyranoside (2). A similar procedure used for the preparation of 1 was employed. Thus treatment of **21** (160 mg, 0.10 mmol) with LiOH·H₂O (292 mg, 6.95 mmol) afforded **2** (74 mg, 83%) as a white solid: $[\alpha]_D^{27}$ -105.2 (*c* 0.52, 1:1 CHCl₃-MeOH); ¹H NMR (300 MHz, pyridine-*d*₅): δ 6.39 (s, 1H, Rha-H-1), 5.59 (s, 1H, Rha-H-1), 5.31 (br s, 1H, H-6), 4.95–4.82 (m, 5H), 4.54–4.49 (m, 4H), 4.39–4.29 (m, 2H), 4.22–4.19 (m, 3H), 3.90–3.79 (m, 3H), 3.67–3.40 (m, 5H), 2.82– 2.68 (m, 2H), 1.76 (d, J = 5.7 Hz, 3H, Rha–CH₃), 1.63 (d, J = 6.6 Hz, 3H, Rha–CH₃), 1.14 (d, J = 7.5 Hz, 3H, H-21), 1.11 (t, J = 6.9 Hz, 3H, Et-CH₃), 1.03 (s, 3H, H-19), 0.82 (s, 3H, H-18), 0.70 (d, J = 5.4 Hz, 3H, H-27); ¹³C NMR (75 MHz, pyridine- d_5): δ 141.0, 121.9, 109.4, 103.0, 102.2, 100.6, 81.2, 79.3, 78.5, 78.0, 77.8, 75.5, 74.3, 74.0, 73.0, 72.9, 72.7, 72.6, 70.6, 70.0, 69.7, 67.0 (2C), 63.1, 56.8, 50.5, 42.1, 40.6, 40.0, 39.2, 37.7, 37.3, 32.5, 32.4, 32.0, 31.8, 30.7, 30.3, 29.4, 21.2, 19.5, 18.7, 18.6, 17.4, 16.5, 15.5, 15.1; HRESIMS: calcd $C_{47}H_{76}O_{16}Na$ (M+Na⁺), 919.5031. Found: for 919.5015.

3.17. Diosgenyl 6-*O*-allyl-2,4-di-*O*-α-L-rhamnopyranosylβ-D-glucopyranoside (3)

3.17.1. Diosgenyl 6-O-allyl-3-O-pivaloyl-2,4-di-O-(2,3,4tri-O-benzoyl-a-L-rhamnopyranosyl)-B-D-glucopyranoside (22). A similar procedure used for the preparation of 20 was employed. Thus, treatment of 17 (317 mg, 0.45 mmol) with imidate 19 (1.68 g, 2.70 mmol) in the presence of TMSOTf (8 µL, 0.04 mmol) afforded 22 (691 mg, 95%) as a pale-yellow solid: $[\alpha]_{D}^{27}$ +65.7 (c 0.52, CHCl₃-MeOH 1:1); ¹H NMR (300 MHz, CDCl₃): δ 8.07 (d, J = 7.5 Hz, 4H, Ar–H), 8.00 (d, J = 7.2 Hz, 2H, Ar-H), 7.94 (d, J = 6.9 Hz, 2H, Ar-H), 7.85 (d, J = 7.2 Hz, 2H, Ar–H), 7.77 (d, J = 7.2 Hz, 2H, Ar-H), 7.75-7.21 (m, 18H, Ar-H), 6.03-5.94 (m, 1H), 5.83–5.15 (m, 15H), 4.81–4.76 (m, 2H), 4.50–4.42 (m, 1H), 4.33-4.28 (m, 1H), 4.19-3.71 (m, 7H), 3.53-3.38 (m, 2H), 2.66–2.61 (m, 1H), 2.48–2.44 (m, 1H), 1.17 (s, 9H, Piv), 1.01 (d, J = 7.2Hz, 3H, H-21), 0.96 (s, 3H, H-19), 0.82 (m, 6H, H-18, H-27).

3.17.2. Diosgenyl 6-O-allyl-2,4-di-O-a-L-rhamnopyranosvl-β-D-glucopyranoside (3). A similar procedure used for the preparation of 1 was employed. Thus treatment of 22 (168 mg, 0.10 mmol) with LiOH·H₂O (250 mg, 6.00 mol) afforded 3 (72 mg, 79%) as a white solid: $[\alpha]_{D}^{27}$ -104.3 (c 0.51, 1:1 CHCl₃-MeOH); ¹H NMR (300 MHz, pyridine- d_5): δ 6.40 (s, 1H, Rha-H-1), 5.96-5.85 (m, 1H, All-CH), 5.61 (s, 1H, Rha-H-1), 5.32-5.25 (m, 2H), 5.10-4.82 (m, 9H), 4.65-4.49 (m, 4H), 4.39–4.29 (m, 2H), 4.24–4.19 (m, 3H), 4.02–3.84 (m, 5H), 3.70–3.50 (m, 4H), 2.81–2.67 (m, 2H), 1.76 (d, J = 6.0 Hz, 3H, Rha–CH₃), 1.62 (d, J = 6.3 Hz, 3H, Rha–CH₃), 1.14 (d, J = 7.2 Hz, 3H, H-21), 1.03 (s, 3H, H-19), 0.82 (s, 3H, H-18), 0.69 (d, J = 5.7 Hz, 3H, H-27); ¹³C NMR (75 MHz, pyridine- d_5): δ 141.0, 136.0, 121.9, 116.8, 109.4, 103.1, 102.2, 100.6, 81.2, 79.4, 78.6, 78.0, 77.9, 75.5, 74.3, 74.0, 72.9, 72.8, 72.7, 72.6, 72.5, 70.7, 69.7, 69.6, 67.0, 63.1, 56.8, 50.5, 42.1, 40.6, 40.0, 39.2, 37.7, 37.3, 32.5, 32.4, 32.0, 31.8, 30.7, 30.3, 29.4, 21.2, 19.5, 18.8, 18.6, 17.5, 16.5, 15.2;

HRESIMS: calcd for $C_{48}H_{77}O_{16}$ (M+H⁺), 909.5212. Found: 909.5209.

3.18. Diosgenyl 2,4-di-O- α -L-rhamnopyranosyl-6-O-benzyl- β -D-glucopyranoside (4)

3.18.1. Diosgenyl 6-O-benzyl-3-O-pivaloyl-B-D-glucopyranoside (18). The crude compound 13 prepared from diosgenvl 4.6-O-benzvlidene-B-D-glucopyranoside was dissolved in anhyd CH₂Cl₂ (5 mL). The solution was cooled to 0 °C, and Et₃SiH (0.51 mL, 3.2 mmol) and BF3·Et2O (0.1 mL, 0.8 mmol) were added under N_2 . After stirring at room temperature for 1.5 h, the resulting mixture was diluted with EtOAc (50 mL) and washed with satd aq NaHCO₃. The organic layer was dried with Na₂SO₄ and was then concentrated. The residue was subjected to silica gel column chromatography (7:1 petroleum ether-EtOAc) to provide 18 (157 mg, 19%) as a white solid: ¹H NMR (300 MHz, CDCl₃): δ 7.33 (br s, 5H, Ar–H), 5.36 (br s, 1H, H-6), 4.91–4.86 (m, 1H, H-3'), 4.60 (br s, 2H), 4.46– 4.41 (m, 2H), 3.78–3.35 (m, 8H), 2.40–2.23 (m, 2H), 1.25 (s, 9H, Piv), 1.03 (s, 3H, H-19), 0.98 (d, J = 6.6 Hz, 3H, H-21), 0.80 (br s, 6H, H-18, H-27); MALDITOF MS: calcd for $C_{45}H_{66}O_9Na$ (M+Na⁺), 773.5. Found: 773.5.

3.18.2. Diosgenyl 6-O-benzyl-3-O-pivaloyl-2,4-di-O-(2,3,4-tri-O-benzoyl-α-L-rhamnopyranosyl)-β-D-glucopyranoside (23). A similar procedure used for the preparation of 20 was employed. Thus, treatment of 18 (159 mg, 0.21 mmol) with imidate **19** (789 mg, 1.26 mmol) in the presence of TMSOTf $(4 \,\mu L,$ 0.02 mmol) afforded 23 (289 mg, 80%) as a white solid: $[\alpha]_{D}^{28}$ +68.6 (c 0.51, 1:1 CHCl₃-MeOH); ¹H NMR (300 MHz, CDCl₃): δ 8.05 (d, J = 7.4 Hz, 4H, Ar–H), 7.98 (d, J = 7.2 Hz, 2H, Ar–H), 7.92 (d, J = 7.5 Hz, 2H, Ar–H), 7.85 (d, J = 7.4 Hz, 2H, Ar–H), 7.74 (d, J = 7.1 Hz, 2H, Ar-H), 7.62–7.58 (m, 2H, Ar-H), 7.50-7.19 (m, 21H, Ar-H), 5.81-5.46 (m, 8H), 5.14 (br s, 2H), 4.76-4.66 (m, 4H), 4.45-4.43 (m, 1H), 4.29-4.24 (m, 1H), 4.16-3.68(m, 7H), 3.51-3.41 (m, 2H), 2.35-2.26 (m, 2H), 1.15 (s, 9H, Piv), 0.99 (d, J = 6.5 Hz, 3H, H-21), 0.94 (s, 3H, H-19), 0.79 (br s, 6H, H-18, H-27).

3.18.3. Diosgenyl 6-*O*-benzyl-2,4-di-*O*-α-L-rhamnopyranosyl-β-D-glucopyranoside (4). A similar procedure used for the preparation of 1 was employed. Thus treatment of **23** (260 mg, 0.15 mmol) with LiOH·H₂O (393 mg, 9.4 mol) afforded **4** (101 mg, 70%) as a white solid: $[\alpha]_D^{28}$ -102.0 (*c* 0.53, MeOH); ¹H NMR (400 MHz, pyridine-*d*₅): δ 7.53 (d, *J* = 7.09 Hz, 2H, Ar-H), 7.43-7.40 (m, 2H, Ar-H), 7.35 (m, 1H, Ar-H), 6.45 (s, 1H, Rha-H-1), 5.73 (s, 1H, Rha-H-1), 5.41 (br s, 1H, H-6), 5.04-4.89 (m, 15H), 4.71-4.57 (m, 6H),

4.45–4.24 (m, 5H), 4.03–3.92 (m, 3H), 3.80 (m, 1H), 3.68–3.56 (m, 2H), 2.90–2.77 (m, 2H), 1.84 (d, J = 6.2 Hz, 3H, Rha–CH₃), 1.70 (d, J = 6.2 Hz, 3H, Rha–CH₃), 1.22 (d, J = 6.9 Hz, 3H, H-21), 1.12 (s, 3H, H-19), 0.91 (s, 3H, H-18), 0.78 (d, J = 5.5 Hz, 3H, H-27); ¹³C NMR (100 MHz, pyridine- d_5): δ 141.0, 139.1, 128.8 (2C), 128.2 (2C), 127.9, 121.9, 109.4, 103.0, 102.2, 100.7, 81.2, 79.3, 78.7, 78.0, 77.9, 75.5, 74.3, 74.0, 73.6, 72.9, 72.8, 72.7, 72.6, 70.7, 69.8, 69.7, 67.0, 63.0, 56.8, 50.5, 42.1, 40.6, 40.0, 39.2, 37.6, 37.3, 32.4, 32.3, 32.0, 31.8, 30.7, 30.4, 29.4, 21.2, 19.5, 18.8, 18.6, 17.4, 16.5, 15.1; MALDITOF MS: calcd for C₅₂H₇₈O₁₆Na (M+Na⁺), 981.5. Found: 981.8.

3.19. Diosgenyl 6-O-(2-azidoethyl)-2,4-di-O- α -L-rhamnopyranosyl- β -D-glucopyranoside (5)

3.19.1. Diosgenyl 6-O-(2-azidoethyl)-3-O-pivaloyl-2,4-di-O-(2,3,4-tri-O-benzoyl-α-L-rhamnopyranosyl)-β-D-glucopyranoside (37). A similar procedure used for the preparation of 20 was employed. Thus, treatment of 36 (1.04 g, 1.42 mmol) with imidate **19** (5.30 g, 8.53 mmol) under the promotion of TMSOTf (26 µL, 0.14 mmol) afforded **37** (1.96 g, 84%) as a white solid: $[\alpha]_D^{27}$ +68.0 (*c* 0.51, CHCl₃–MeOH 1:1); ¹H NMR (300 MHz, CDCl₃): δ 8.06 (d, J = 7.5 Hz, 4H, Ar–H), 8.00 (d, J = 7.8 Hz, 2H, Ar-H), 7.94 (d, J = 8.1 Hz, 2H, Ar-H), 7.85 (d, J = 7.8 Hz, 2H, Ar-H), 7.78 (d, J = 7.5 Hz, 2H, Ar-H), 7.64–7.22 (m, 18H, Ar-H), 5.84–5.49 (m, 6H), 5.15 (br s, 2H), 4.78–4.76 (m, 2H), 4.50-4.45 (m, 1H), 4.34-4.29 (m, 1H), 4.18-4.07 (m, 3H), 3.96-3.76 (m, 7H), 2.65-2.62 (m, 1H), 2.49-2.41 (m, 1H), 2.09–2.01 (m, 1H), 1.28 (s, 6H), 1.17 (s, 9H, Piv), 1.01 (d, J = 6.6 Hz, 3H, H-21), 0.96 (s, 3H, H-19), 0.82 (m, 6H, H-18, H-27).

3.19.2. 6-O-(2-azidoethyl)-2,4-di-O-a-L-Diosgenvl rhamnopyranosyl-β-p-glucopyranoside (5). A similar procedure used for the preparation of 1 was employed. Thus treatment of 37 (1.70 g, 1.03 mmol) with LiOH. H₂O (4.34 g, 103 mmol) afforded 5 (796 mg, 82%) as a white solid: $[\alpha]_{D}^{27}$ –90.8 (c 0.46, 1:1 CHCl₃–MeOH); ¹H NMR (300 MHz, pyridine- d_5): δ 6.37 (s, 1H, Rha-H-1), 5.59 (s, 1H, Rha-H-1), 5.32 (br s, 1H, H-6), 4.98-4.83 (m, 6H), 4.64-4.48 (m, 5H), 4.39-4.13 m, 6H), 3.85–3.67 (m, 4H), 3.67–3.46 (m, 6H), 3.34–3.28 (m, 2H), 2.83–2.67 (m, 2H), 1.75 (d, J = 6.6 Hz, 3H, Rha-CH₃), 1.61 (d, J = 6.0 Hz, 3H, Rha-CH₃), 1.14 (d, J = 7.2 Hz, 3H, H-21), 1.04 (s, 3H, H-19), 0.82 (s, 3H, H-18), 0.70 (d, J = 4.8 Hz, 3H, H-27); ¹³C NMR (75 MHz, pyridine- d_5): δ 141.0, 121.9, 109.4, 103.1, 102.2, 100.6, 81.2, 79.5, 78.6, 78.0, 77.9, 75.4, 74.2, 73.9, 72.9, 72.8, 72.6 (2C), 70.7 (2C), 69.7, 67.0 (2C), 63.1, 56.8, 51.1, 50.5, 42.1, 40.6, 40.0, 39.2, 37.7, 37.3, 32.5, 32.4, 32.0, 31.8, 30.7, 30.4, 29.4, 21.3, 19.5, 18.8,

18.6, 17.5, 16.5, 15.2; HRESIMS: calcd for $C_{47}H_{75}N_3O_{16}Na$ (M+Na⁺), 960.5040. Found: 960.5005.

3.20. Diosgenyl 6-*O*-(2-aminoethyl)-2,4-di-*O*-α-Lrhamnopyranosyl-β-D-glucopyranoside (6)

To a solution of azide 5 (52 mg, 0.055 mmol) in THF (1.6 mL) and H₂O (0.4 mL) was added PPh₃ (29 mg, 0.11 mmol). The mixture was warmed up to 60 °C and stirred for 2 h. The solvent was removed by rotary evaporation to give a white solid that was employed directly in the next acylation step. Silica gel column chromatography (4:1 CH₂Cl₂-MeOH) of the crude solid afforded 6 (48 mg, 94%) as a pale-yellow solid: $\left[\alpha\right]_{D}^{23}$ -72.2 (c 0.50, 1:1 CHCl₃-MeOH); ¹H NMR (300 MHz, pyridine- d_5): δ 6.30 (s, 1H, Rha-H-1), 6.10 (s, 2H, NH₂), 5.63 (s, 1H, Rha-H-1), 5.32 (br s, 1H, H-6), 4.98-4.77 (m, 4H), 4.67-4.49 (m, 4H), 4.39-4.28 (m, 2H), 4.18-4.07 (m, 3H), 3.92-3.81 (m, 4H), 3.70-3.42 (m, 11H), 3.13 (br s, 1H), 2.89–2.62 (m, 2H), 1.75 (d, J = 6.0 Hz, 3H, Rha–CH₃), 1.58 (d, J = 3.7 Hz, 3H, Rha–CH₃), 1.12 (d, J = 6.9 Hz, 3H, H-21), 1.02 (s, 3H, H-19), 0.81 (s, 3H, H-18), 0.68 (d, J = 4.8 Hz, 3H, H-27); HRESIMS: calcd for $C_{47}H_{78}NO_{16}$ (M+H⁺), 912.5321. Found: 912.5328.

3.21. Diosgenyl 2,4-di-*O*-α-L-rhamnopyranosyl-6-*O*-(2-acetylaminoethyl)-β-D-glucopyranoside (7)

To a stirred solution of crude 6, prepared from azide 5 (0.032 mmol), and Et₃N (27 µL, 0.19 mmol) in MeOH (2 mL) at 0 °C was added AcCl (11 uL, 0.15 mmol). The solution was warmed to room temperature and stirred for 2 h. The mixture was concentrated to give a residue that was purified by silica gel column chromatography (12:1 CH₂Cl₂-MeOH) to afford 7 (25 mg, 82% based on 5) as a white solid: $[\alpha]_{\rm D}^{23}$ -70.2 $(c 0.47, 1:1 \text{ CHCl}_3-\text{MeOH});$ ¹H NMR (300 MHz, pyridine- d_5): δ 6.33 (s, 1H, Rha-H-1), 5.53 (s, 1H, Rha-H-1), 5.29 (br s, 1H, H-6), 4.86-4.79 (m, 5H), 4.61-4.13 (m, 8H), 3.86-3.77 (m, 2H), 3.62-3.43 (m, 6H), 2.09 (s, 3H), 1.75 (d, J = 6.0 Hz, 3H, Rha-CH₃), 1.59 (d, J = 6.0 Hz, 3H, Rha-CH₃), 1.12 (d, J = 6.9 Hz, 3H, H-21), 1.01 (s, 3H, H-19), 0.80 (s, 3H, H-18), 0.67 (d, J = 5.2 Hz, 3H, H-27); HRESIMS: calcd for $C_{49}H_{80}NO_{17}$ (M+H⁺), 954.5426. Found: 954.5473.

3.22. Diosgenyl 2,4-di-*O*-α-L-rhamnopyranosyl-6-*O*-(2trifluoroacetylaminoethyl)-β-D-glucopyranoside (8)

A similar procedure used for the preparation of **7** was employed. Thus treatment of crude **6** (prepared from 0.028 mmol **5**) with (CF₃CO)₂O (36 μ L, 0.26 mmol) afforded **8** (25 mg, 90% based on **5**) as a pale-yellow solid: $[\alpha]_D^{22}$ -81.0 (*c* 0.49, 1:1 CHCl₃-MeOH); ¹H

NMR (300 MHz, pyridine- d_5): δ 11.01 (s, 1H, NH), 6.36 (s, 1H, Rha–H-1), 5.50 (s, 1H, Rha–H-1), 5.29 (br s, 1H, H-6), 4.98–4.81 (m, 4H), 4.63–4.62 (m, 3H), 4.41–4.30 (m, 2H), 4.13 (br s, 2H), 3.86–3.49 (m, 8H), 2.75–2.71 (m, 2H), 1.78 (d, J = 6.0 Hz, 3H, Rha–CH₃), 1.13 (d, J = 6.6 Hz, 3H, H-21), 1.02 (s, 3H, H-19), 0.81 (s, 3H, H-18), 0.68 (br s, 3H, H-27); HRESIMS: calcd for C₄₉H₇₇F₃NO₁₇ (M+H⁺), 1008.5144. Found: 1008.5113.

3.23. Diosgenyl 6-*O*-(2-benzoylaminoethyl)-2,4-di-*O*-α-Lrhamnopyranosyl-β-D-glucopyranoside (9)

A similar procedure used for the preparation of 7 was employed. Thus treatment of the crude 6 (prepared from 0.077 mmol 5) with benzoyl chloride (45 μ L, 0.39 mmol) afford 9 (75 mg, 96% based on 5) as a white solid: $[\alpha]_{D}^{22}$ -90.0 (c 0.53, 1:1 CHCl₃-MeOH); ¹H NMR (300 MHz, pyridine-d₅): δ 9.17 (s, 1H, NH), 8.30 (m, 2H, Ar-H), 7.43-7.41 (m, 3H, Ar-H), 6.34 (s, 1H, Rha-H-1), 5.59 (s, 1H, Rha-H-1), 5.29 (br s, 1H, H-6), 4.92–4.81 (m, 4H), 4.61–4.47 (m, 3H), 4.43–4.15 (m, 4H), 3.84–3.76 (m, 6H), 3.64–3.56 (m, 2H), 2.74 (br s, 1H), 2.79–2.63 (m, 2H), 0.99 (s, 3H, H-19), 0.80 (s, 3H, H-18), 0.69 (br s, 3H, H-27); ¹³C NMR (75 MHz, pyridine- d_5): δ 168.1, 141.0, 131.5, 128.9 (2C), 128.3 (2C), 121.9, 109.4, 102.9, 102.3, 100.7, 81.3, 78.9, 78.7, 78.0, 77.9, 75.3, 74.2, 73.9, 73.0, 72.8, 72.6, 71.0, 70.7, 70.2, 69.7, 67.0, 63.1, 56.8, 50.5, 46.1, 42.1, 40.6, 40.4, 40.0, 39.2, 37.6, 37.3, 32.5, 32.4, 32.0, 31.8, 30.8, 30.3, 30.1, 29.4, 21.3, 19.5, 18.8, 18.6, 17.5, 16.5. 15.2: HRESIMS: calcd for C₅₄H₈₂NO₁₇ (M+H⁺), 1016.5583. Found: 1016.5537.

3.24. Diosgenyl 6-O-(2-N-(2E,4E)-hexa-2,4-dienoylaminoethyl)-2,4-di-O- α -L-rhamnopyranosyl- β -D-glucopyranoside (10)

To a solution of sorbic acid (35 mg, 0.31 mmol) in anhyd CH₂Cl₂ (3 mL) were added oxalyl dichloride (53 μ L, 0.62 mmol) and DMF (2 μ L, 0.026 mmol). The solution was stirred for 3 h at room temperature and concentrated to afford a red oil that was added to a solution of crude 6 (prepared from 0.031 mmol 5) and Et_3N $(52 \,\mu\text{L}, 0.37 \,\text{mmol})$ in MeOH (2.5 mL). The solvent was removed by rotary evaporation after stirring for 2.5 h. Silica gel column chromatography (10:1 CH₂Cl₂-MeOH) of the residue afforded 10 (29 mg, 93% based on 5) as a white solid: $[\alpha]_D^{22}$ -91.9 (c 0.49, 1:1 CHCl₃-MeOH); ¹H NMR (300 MHz, pyridine- d_5): δ 8.88 (br s, 1H, NH), 7.62–7.54 (m, 1H), 6.37–6.31 (m, 2H), 6.15-6.07 (m, 1H), 5.92-5.85 (m, 1H), 5.57 (s, 1H, Rha-H-1), 5.29 (br s, 1H, H-6), 4.98-4.82 (m, 3H), 4.63-4.48 (m, 4H), 4.40-4.29 (m, 2H), 4.18 (m, 2H), 3.84–3.49 (m, 8H), 2.77–2.63 (m, 2H), 1.78 (d, J = 6.3 Hz, 3H), 1.61 (d, J = 6.3 Hz, 3H), 1.57 (d,

J = 6.4 Hz, 3H), 1.13 (d, J = 6.6 Hz, 3H, H-21), 1.02 (s, 3H, H-19), 0.81 (s, 3H, H-18), 0.68 (d, J = 3.6 Hz, 3H, H-27); HRESIMS: calcd for C₅₃H₈₄NO₁₇ (M+H⁺), 1006.5739. Found: 1006.5678.

3.25. Diosgenyl 2,4-di-*O*-α-L-rhamnopyranosyl-6-*O*-(2-tetradecanoylaminoethyl)-β-D-glucopyranoside (11)

To a solution of tetradecanoic acid (63 mg, 0.27 mmol) in anhyd CH₂Cl₂ (3 mL) were added oxalyl chloride (47 µL, 0.55 mmol) and DMF (2 µL, 0.026 mmol). The solution was stirred for 3 h at room temperature and concentrated to afford a yellow oil that was added to a solution of crude 6 (prepared from 0.027 mmol 5) and Et₃N (47 μ L, 0.34 mmol) in MeOH (2.5 mL). The solvent was removed by rotary evaporation after stirring for 2.5 h. Silica gel column chromatography (12:1 CH₂Cl₂-MeOH) afforded 11 (27 mg, 87% based on 5) as a white solid: $[\alpha]_D^{23}$ -69.2 (c 0.50, 1:1 CHCl₃-MeOH); ¹H NMR (300 MHz, pyridine- d_5): δ 8.63 (br s, 1H, NH), 6.34 (s, 1H, Rha-H-1), 5.54 (s, 1H, Rha-H-1), 5.29 (br s, 1H, H-6), 4.87-4.79 (m, 4H), 4.61-4.57 (m, 4H), 4.18-4.11 (m, 3H), 3.84-3.81 (m, 3H), 3.68-3.40 (m, 7H), 2.85 (q, J = 7.2 Hz, 4H), 2.49-2.39 (m, 2H), 1.75 (d, J = 6.6 Hz, 3H, Rha–CH₃), 1.60 (d, J = 6.3 Hz, 3H, Rha–CH₃), 1.29–1.11 (m, 28H), 1.02 (s, 3H), 0.86-0.80 (m, 6H), 0.68 (br s, 3H); HRE-SIMS: calcd for $C_{61}H_{104}NO_{17}$ (M+H⁺), 1122.7304. Found: 1122.7312.

3.26. Diosgenyl 6-*O*-(dansylaminoethyl)-2,4-di-*O*-α-Lrhamnopyranosyl-β-D-glucopyranoside (12)

To a mixture of crude 6 (prepared from 0.053 mmol 5) and NaHCO₃ (42 mg, 0.50 mmol) in MeOH (5 mL) was added dansyl chloride (99 mg, 0.37 mmol). After stirring for 24 h in darkness, the mixture was concentrated. The residue was purified by silica gel column chromatography (14:1 CH₂Cl₂-MeOH) to afford 12 (47 mg, 77% based on **5**) as a green solid: $[\alpha]_{\rm D}^{23}$ -83.0 (c 0.52, 1:1 CHCl₃-MeOH); ¹H NMR (300 MHz, pyridine- d_5): $\delta 9.76$ (m, 1H, NH), 8.96 (d, J = 8.8 Hz, 1H, Dansyl), 8.58 (m, 2H, Dansyl), 7.64-7.52 (m, 2H, Dansyl), 7.16 (d, J = 7.4Hz, 1 H, Dansyl), 6.30 (s, 1H, Rha-H-1), 5.46 (s, 1H, Rha-H-1), 5.31 (br s, 1H, H-6), 4.97-4.75 (m, 5H), 4.62-4.50 (m, 3H), 4.45 (dd, J = 4.0, 9.1 Hz, 1H), 4.38-4.00 (m, 4H), 3.84-3.36 (m, 9H), 2.73 (s, 6H, Dansyl-(CH₃)₂), 1.78 (d, J = 3.6 Hz, 3H, Rha–CH₃), 1.12 (d, J = 6.9 Hz, 3H, H-21), 1.02 (s, 3H, H-19), 0.81 (s, 3H, H-18), 0.68 (d, J = 5.2 Hz, 3H, H-27); HRESIMS: calcd for $C_{59}H_{89}N_2O_{18}S$ (M+H⁺), 1145.5831. Found: 1145.5870.

Acknowledgments

This work is supported by the Chinese Academy of Sciences (KGCX2-SW-213 and KSCX2-YW-R-23) and the National Natural Science Foundation of China (20321202).

Supplementary data

Supplementary data (¹H NMR spectra of compounds **2–12**, **16–18**, **21–23**, **26**, **27**, and **29–37** and ¹³C NMR spectra of compounds **26**, **27**, **29–35**, **2–5**, and **9**). Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.carres.2007.09.004.

References

- Hostettmann, K.; Marston, A. Saponins; Cambridge University Press: Cambridge, UK, 1995.
- (a) Mimaki, Y.; Yokosuka, A.; Kuroda, M.; Sashida, Y. *Biol. Pharm. Bull.* 2001, 24, 1286–1289; (b) Nakamura, T.; Komori, C.; Lee, Y. y.; Hashimoto, F.; Yahara, S.; Nohara, T.; Ejima, A. *Biol. Pharm. Bull.* 1996, 19, 564– 566.
- Wang, Y.; Zhang, Y.; Zhu, Z.; Zhu, S.; Li, Y.; Li, M.; Yu, B. Bioorg. Med. Chem. 2007, 15, 2528–2532.
- 4. (a) Deng, S.; Yu, B.; Hui, Y. *Tetrahedron Lett.* 1998, *39*, 6511–6514; (b) Deng, S.; Yu, B.; Hui, Y.; Yu, H.; Han, X. *Carbohydr. Res.* 1999, *317*, 53–62; (c) Yu, B.; Tao, H. *J. Org. Chem.* 2002, *67*, 9099–9102; (d) Zou, C.; Hou, S.; Shi, Y.; Lei, P.; Liang, X. *Carbohydr. Res.* 2003, *338*, 721–727; (e) Hou, S.; Zou, C.; Zhou, L.; Lei, P.; Yu, D. *Chem. Lett.* 2005, *34*, 1220–1221.
- (a) Li, M.; Han, X.; Yu, B. Carbohydr. Res. 2003, 338, 117–121; (b) Zhang, Y.; Li, Y.; Zhu, S.; Guan, H.; Lin, F.; Yu, B. Carbohydr. Res. 2004, 339, 1753–1759; (c) Zhang, Y.; Li, Y.; Guo, T.; Guan, H.; Shi, J.; Yu, Q.; Yu, B. Carbohydr. Res. 2005, 340, 1453–1459; (d) Zhu, S.; Zhang, Y.; Li, M.; Yu, J.; Zhang, L.; Li, Y.; Yu, B. Bioorg. Med. Chem. Lett. 2006, 16, 5629–5632; (e) Wang, Y.; Zhang, Y.; Yu, B. ChemMedChem 2007, 2, 288–291.
- Deng, S.; Yu, B.; Xie, J.; Hui, Y. J. Org. Chem. 1999, 64, 7265–7266.
- (a) Fischer, E.; Zach, K. Ber. Dtsch. Chem. Ges. 1912, 45, 456–465;
 (b) McDonnell, C.; Lopez, O.; Murphy, P.; Fernandez Bolanos, J. G.; Hazell, R.; Bols, M. J. Am. Chem. Soc. 2004, 126, 12374–12385.
- Wijnbergen, F.; Regeling, H.; Zwanenburg, B.; Chittenden, G. J. F.; Rehnber, N. *Carbohydr. Res.* **1996**, *280*, 151– 156.
- Liu, X.; Cui, Y.; Yu, Q.; Yu, B. Phytochemistry 2005, 66, 1671–1679.
- Sun, J.; Han, X.; Yu, B. Carbohydr. Res. 2003, 338, 827– 833.
- Chwalek, M.; Lalun, N.; Bobichon, H.; Ple, K.; Voutquenne-Nazabadioko, L. *Biochim. Biophys. Acta* 2006, 1760, 1418–1427.