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Abstract: The reductive radical cyclization of 4-(1-methyl-2-
phenyloxiranyl)-b-lactams has been achieved using titanocene
monochloride. The reaction was regioselective and diastereoselec-
tive to afford carbapenems and benzocarbacephems. A rearrange-
ment of b-hydroxy-b-phenylketones to give benzaldehyde was
observed when the nitrile function was used as radical acceptor.
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Titanium(III) chloride has been extensively used as a mild
and useful reagent for various chemical transformations
such as reduction of aromatic aldehydes,1 glycosyl
halides,2 vicinal dihalides,3 and sulfoxides.4 In particular,
bis(cyclopentadienyl)titanium(III) chloride is a well-
known titanocene(III) reagent that is useful in promoting
radical carbon–carbon bond formation. Many of the
reported reactions involve either carbonyl compounds,5

epoxides6 or alkyl halides7 as radical precursors. Alkenes,
alkynes,6 carbonyl compounds8 and the cyano group9

have been reported as radical acceptors.

Nowadays, radical cyclization of epoxides using ti-
tanocene(III) species leading to the synthesis of a number
of naturally occurring compounds and related products
has attracted much attention.

In previous articles10 on the Cp2TiCl-promoted reductive
ring opening of enantiomerically pure 4-epoxy-2-azetidi-
nones via single-electron transfer, we described the
cyclization of benzyl and tertiary alkyl radicals to conju-
gated esters and aldehydes as a new approach to poly-
cyclic b-lactams.

In order to extend the application of these reactions to po-
lar multiple bonds, we have also applied this methodology
to d- and e-epoxynitrile-2-azetidinones11 and, surprising-
ly, benzaldehyde elimination was observed during our
study on the cyclization of the epoxynitriles with Cp2TiCl
(Scheme 1).12

When a 2:3 diastereomeric mixture of racemic epoxyni-
triles 1a/1b in THF was slowly added to a green solution
of Cp2TiCl in THF, 4a-methylcarbapenem 2 and benzal-
dehyde were obtained as reaction products.13 Similar be-
havior was observed when we explored the 6-exo radical

process from each one of the pure epoxybenzonitrile-2-
azetidinones 3 and 4 (Scheme 1), which afforded benzal-
dehyde and the 5-methylbenzocarbacephems 5 and 6,
respectively.

Benzaldehyde elimination was also observed when the
green solution of Cp2TiCl was added to the epoxides
solutions (normal way), but in this case bigger amounts of
untransformed starting materials were recovered.

The structures proposed for the reaction products 2, 5 and
6 were rigorously established by IR, 1H NMR and 13C
NMR (including 2D experiments) and MS spectros-
copy.14

The evolution of the epoxides 3 and 4 can be explained as
shown in Scheme 2 (a similar scheme can be depicted for
the transformation of 1 into the bicyclic lactam 2).

Although the reductive opening of the oxiranyl ring with
titanocene monochloride (Scheme 2) should take place
with the formation of the best stabilized benzylic radical
intermediate I (or the equivalent from 1) the evolution to
the lactams 2, 5, and 6 reflects the reversibility of the ox-
irane ring opening because these cyclic products should
come from the less stable tertiary homobenzylic radical
II. This radical should be more reactive and have better
accessibility to the cyano group than the benzylic radical
I, driving the equilibrium towards the observed products.
However, this behavior was not observed when the
homobenzylic radical was secondary as we have recently
observed,11 perhaps because it is not enough stabilized to
be in an appreciable amount in equilibrium with the
benzylic radical. In that case, the cyclization products
came only from the addition of the benzylic radical to the
cyano group.

Scheme 1 Reaction of epoxynitriles 1a/1b, 3b, and 4a with Cp2TiCl
(a = 5a,6a-epoxy, b = 5b,6b-epoxy)
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The radical II cyclizes to the radical III, followed by cou-
pling to the titanocene(III) chloride present in the reaction
medium [IV, pathway (a)] and then, after hydrolysis,
gaves the b-hydroxyketones 7 which rearrange to the
products 2, 5, or 6 with loss of benzaldehyde. Otherwise,
the radical III, in equilibrium with the alkoxy radical V
[pathway (b)], may lose benzaldehyde through a typical b-
cleavage generating a new radical VI. This stabilized
radical can further be coupled with titanocene(III)
chloride available in the reaction medium to give the
organometallic species VII. Finally, decomposition with
aqueous KH2PO4 and work-up can provide the b-lactams
2, 5, and 6.

It is noteworthy that, contrary to the results we obtained in
the reactions of other 4-(1-methyl-2-phenyloxiranyl)-2-
azetidinones with Cp2TiCl (not yet published), we have
not observed in the above reactions the b-lactam ring
opening by evolution of the homobenzylic radical II as
shown in Scheme 2.

The thermodynamic stability can explain the diastereo-
selectivity observed in the cyclization products through
pathways (a) or (b) so we carried out a molecular model-
ing study to determine the difference of energy minima
between each pair of diastereomers.15 It showed that the
energy differences are 0.6 (for 2), 2.5 (for 5) and 1.2 (for
6) kcal/mol, with the products with trans-arrangement of
H4 and H5 (or H5 and H6) being more stable. We pre-
sume that the benzaldehyde elimination should proceed
via the ionic pathway (a) because in pathway (b) the pres-
ence of the titanium(III) chloride in the reaction medium
should give rise to the reduction or to the intramolecular
coupling of benzaldehyde.1

Further evidence for this hypothesis was obtained from
the reaction of epoxyaldehydes 8 with Cp2TiCl (Scheme
3).

The reaction of a 1:2 diastereomeric mixture of epoxyal-
dehydes 8a/8b with Cp2TiCl, under the reported reaction
conditions, gave a mixture of the bicyclic b-lactams 9a/
9b, from which the pure compound 9b could be isolated
by column chromatography.14

Epoxyaldehydes 8a and 8b upon treatment with Cp2TiCl
could also progress through radical intermediates related
to III–V (Scheme 4) but the presence of the hydroxyben-
zyl group in b-lactams 9a and 9b rules out the alternative
pathway (b).

Finally, in order to investigate the flexibility in the rear-
rangement of hydroxybenzylketones in carbapenem sys-
tems we carried out the reaction of the epoxynitriles 10a,b
with Cp2TiCl (Scheme 3).

In this case, the cyclization of the tertiary radical at C5
generated from a 1:2 mixture of epoxynitriles 10a,b with
Cp2TiCl, afforded a mixture of the corresponding carba-
penems 11a/11b, from which the pure compound 11b
could be isolated by column chromatography.14 The
hydroxyl IR absorption bands as well as the presence of a
typical AB system for an hydroxymethylene group in the

Scheme 2 Proposed mechanisms explaining the formation of com-
pounds 5, 6, and benzaldehyde
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Scheme 3 Reaction of epoxides 8a/8b and 10a/10b with Cp2TiCl
(a = 5a,6a-epoxy, b = 5b,6b-epoxy)
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1H NMR spectra of compounds 11a and 11b, indicates
that the rearrangement of these b-hydroxyketones has not
occurred.

The presence of the benzyl group in the  hydroxy-
benzylketones 7 (Scheme 2) may probably be the reason
for the elimination of benzaldehyde in the radical cycliza-
tion of epoxynitriles 1, 3, and 4. The C4–C8 bond energies
in compounds 11a and 11b with a hydroxymethyl group
at C4 are larger than those of the b-hydroxy-b-phenyl-
ketones 7.

In summary, we have analyzed the reactivity of 4-(1-
methyl-2-phenyloxiranyl)-b-lactams with Cp2TiCl using
cyano and formyl groups as radical aceptors and the
shared aspect for these reactions is the regioselectivity in
the homolytic cleavage C5–O of the oxirane ring. The
benzaldehyde elimination observed in the above exam-
ples can be exploited as a new route to 4-methylcarbapen-
ems (stable antibiotics to kidney dehydropeptidase)16 and
5-substituted benzocarbacephems (b-lactamase inhibi-
tors).17 Further studies on the mechanistic and stereo-
chemical implications of this reaction are underway and
will be reported in due course.
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Selected Data for Cyclization Products
Carbapenem 2: Rf = 0.50 (7:3 benzene–EtOAc). IR (neat): 
n = 3500, 1774, 1755 cm–1. 1H NMR (400 MHz, CDCl3): 
d = 1.12 (3 H, s), 1.53 (3 H, s), 1.21 (3 H, d, J = 7.1 Hz), 2.73 
(1 H, dq, J = 7.1, 8.7 Hz), 3.52 (3 H, s), 3.62 (1 H, dd, 
J = 4.0, 8.7 Hz), 4.68 (1 H, d, J = 4.0 Hz). 13C NMR (100 
MHz, CDCl3): d = 12.5, 21.0, 23.4, 41.0, 58.9, 59.1, 64.4, 
83.4, 170.9, 218.0. HRMS–FAB: m/z calcd for 
C10H15NO3Na [M+ + 23]: 220.0944; found: 220.0949.
Benzocarbacephem 5: Rf = 0.28 (95:5 benzene–EtOAc). IR 
(neat): n = 1759, 1685 cm–1. 1H NMR (400 MHz, CDCl3): 
d = 1.26 (3 H, d, J = 6.5 Hz), 3.01 (1 H, dq, J = 6.5, 12.8 Hz), 
3.68 (3 H, s), 3.98 (1 H, dd, J = 4.5, 12.8 Hz), 4.79 (1 H, d, 

Scheme 4 Proposed mechanism explaining the formation of com-
pounds 9a,b
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J = 4.5 Hz), 7.21 (1 H, dt, J = 1.2, 7.9 Hz), 7.52 (1 H, dt, 
J = 1.4, 7.9 Hz), 7.55 (1 H, dd, J = 1.2, 7.9 Hz), 7.95 (1 H, 
dd, J = 1.4, 7.9 Hz). 13C NMR (100 MHz, CDCl3): d = 10.5, 
40.5, 57.7, 59.5, 84.9, 119.4, 123.2, 124.7, 127.7, 134.9, 
138.0, 163.7, 194.8. HRMS–FAB: m/z calcd for 
C13H13NO3Na [M+ + Na]: 254.0788; found: 254.0795.
Benzocarbacephem 6: Rf = 0.25 (95:5 benzene–EtOAc). IR 
(neat): n = 1761, 1684 cm–1. 1H NMR (400 MHz, CDCl3): 
d = 1.36 (3 H, d, J = 6.6 Hz), 2.76 (1 H, dq, J = 6.6, 12.9 Hz), 
3.60 (3 H, s), 3.88 (1 H, dd, J = 2.0, 12.9 Hz), 4.66 (1 H, d, 
J = 2.0 Hz), 7.19 (1 H, dt, J = 1.0, 7.9 Hz), 7.57 (1 H, dt, 
J = 1.5, 7.9 Hz), 7.65 (1 H, dd, J = 1.0, 7.9 Hz), 7.91 (1 H, 
dd, J = 1.5, 7.9 Hz). 13C NMR (100 MHz, CDCl3): d = 10.1, 
43.9, 58.1, 61.4, 90.3, 118.7, 121.9, 124.5,  127.9, 135.2, 
138.3, 161.3, 193.3. HRMS–FAB: m/z calcd for 
C13H13NO3Na [M+ + Na]: 254.0788; found: 254.0800.
Carbapenem 9a (from enriched mixtures): 1H NMR (400 
MHz, CDCl3): d = 1.02 (3 H, s), 1.23 (3 H, s), 1.47 (3 H, s), 
2.63 (3 H, s), 2.79 (1 H, s), 3.56 (1 H, d, J = 4.0 Hz), 4.21 (1 
H, d, J = 4.0 Hz), 4.76 (1 H, s), 7.24–7.39 (5 H, m). 13C NMR 
(100 MHz, CDCl3): d = 9.1, 19.3, 29.5, 58.5, 58.9, 59.1, 
62.9, 82.4, 83.9, 127.5, 127.9, 141.3, 171.3.
Carbapenem 9b: Rf = 0.37 (1:1 hexane–EtOAc). IR (neat): 
n = 3411, 1731 cm–1. 1H NMR (400 MHz, CDCl3): d = 1.06 
(3 H, s), 1.28 (3 H, s), 1.42 (3 H, s), 2.55 (3 H, s), 3.25 (1 H, 
s), 3.71 (1 H, d, J = 4.3 Hz), 4.39 (1 H, d, J = 4.3 Hz), 4.60 
(1 H, s), 7.24–7.39 (5 H, m). 13C NMR (100 MHz, CDCl3): 

d = 6.4, 19.1, 29.7, 52.7, 53.4, 58.7, 59.1, 59.2, 78.9, 83.6, 
126.8, 128.3, 141.1, 170.6. HRMS–FAB: m/z calcd for 
C17H24NO4 [M

+ + 1]: 306.1700; found: 306.1722.
Carbapenem 11a (from enriched mixtures): 1H NMR (400 
MHz, CDCl3): d = 0.97 (3 H, s), 1.10 (3 H, s), 1.64 (3 H, s), 
2.12 (1 H, br s), 3.51 (3 H, s), 4.07 (1 H, d, J = 4.5 Hz), 4.29 
(2 H, d, J = 1.9 Hz), 4.75 (1 H, d, J = 4.5 Hz). 13C NMR (100 
MHz, CDCl3): d = 16.3, 21.8, 23.3, 54.6, 55.7, 59.2, 65.0, 
66.9, 84.7, 171.0, 221.4.
Carbapenem 11b: Rf = 0.34 (1:1 benzene–EtOAc). IR (neat): 
n = 3473, 1746 cm–1. 1H NMR (400 MHz, CDCl3): d = 1.12 
(3 H, s), 1.17 (3 H, s), 1.62 (3 H, s), 2.12 (1 H, br s), 3.51 (3 
H, s), 3.61 (1 H, d, J = 11.1 Hz), 3.85 (1 H, d, J = 11.1 Hz), 
4.12 (1 H, d, J = 4.5 Hz), 4.77 (1 H, d, J = 4.5 Hz). 13C NMR 
(100 MHz, CDCl3): d = 16.3, 21.7, 23.1, 54.6, 55.7, 59.2, 
64.0, 65.2, 84.7, 171.0, 221.4. HRMS–FAB: m/z calcd for 
C11H17NO4Na [M+ + 23]: 250.1055; found: 250.1050.
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