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Abstract: Diverse sets of 5,5¢-disubstituted hydantoins can conve-
niently be made in moderate to good yields (40–92%) by a one-pot
process involving treatment of aromatic, heteroaromatic or aliphatic
nitriles with an organometallic reagent (RLi or RMgX) followed by
KCN/(NH4)2CO3.

Key words: heterocycles, multicomponent reactions, combinatori-
al chemistry

The hydantoin nucleus displays many important pharma-
cological effects1 and is commonly used in drug discovery
programmes. Indeed, several clinically important medi-
cines including nilutamide (1)2 (anticancer) and phenytoin
(2)3 (antiepileptic) are based upon this heterocyclic scaf-
fold. Moreover, a number of hydantoin natural products
are known, e.g. (+)-hydantocidin (3, Figure 1).4 The hy-
dantoin nucleus also serves as a precursor to nonnatural
amino acids via chemical1 or enzymatic hydrolysis.5

Figure 1

A number of methods exist for the synthesis of hydanto-
ins.1,6 Of these, the classical Bucherer–Bergs provides the
one of the most direct methods.7 It involves reaction of a
ketone 4 (or aldehyde) with cyanide, ammonia and carbon
dioxide (conveniently generated from ammonium carbon-
ate) and directly produces the hydantoin 5 via the NH
imine 6 (Scheme 1). It is highly practical and new appli-
cations of this reaction continue to be developed.8 Despite
the enormous scope and potential of this four-component
reaction (4-CR), only changes in the structure of one
component, namely 4, leads to variation in the structure of
the final hydantoin 5. Thus, for every 5,5¢-disubstituted
hydantoin to be synthesized, the corresponding ketone
with the correct R and R1 groups has to be made or pur-
chased. To increase the utility of this chemistry in drug
discovery programmes, it would be desirable to generate

the ketone 4 (or indeed the corresponding NH imine 6), in
the same vessel as the Bucherer–Bergs reaction by a pro-
cess involving C–C bond formation. In this way, greater
structural diversity in the compounds produced could be
achieved. Of several possibilities, the reaction of a nitrile
7 with an organometallic reagent such as RMgX or RLi
seemed attractive (Scheme 1).9 Selection of this strategy
was based on the following: (1) a very large number of ni-
triles are commercially available or readily accessible; (2)
a variety of common organometallic reagents including
RMgX10 and RLi11 add to alkyl-, aryl- and heteroaryl-sub-
stituted nitriles in high yields; (3) protonation of the inter-
mediate metallated imine 8 directly leads to the NH imine,
an intermediate in the Bucherer–Bergs reaction.7 In this
communication, we report the successful development of
a practical, one-pot method for the synthesis of 5,5¢-disub-
stituted hydantoins 5 based upon this approach.

Scheme 1

Initial studies were undertaken to ascertain whether
Bucherer–Bergs reactions can be performed in solvent
mixtures containing THF, an ideal solvent for organome-
tallic additions to nitriles.10,11 These experiments were
performed on n-butyl phenyl ketone (1 mmol scale) under
a standard set of reaction conditions [KCN (3 equiv),
CO3(NH4)2 (6 equiv), 75 °C, 24 h].12 The reaction solvent
was varied (total volume constant at 9 mL) and the extent
of conversion to the corresponding hydantoin (5a, R = Ph,
R1 = Bu) monitored by 1H NMR spectroscopy. In THF–
H2O (1:1), no appreciable conversion (<15%) to 5a was
observed. Similar results were obtained using the ternary
solvent system, THF–H2O–EtOH (2:1:1). However, re-
ducing the amount of THF [THF–H2O–EtOH, 1:4:4) did
improve the conversion to 47%. Complete conversion
(>95%) was achieved using these latter conditions when a
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sealed tube was used to prevent release of the ammonia
and carbon dioxide generated. In this way, hydantoin 5a
was isolated in 77% yield. Once it was established that
THF is tolerated in Bucherer–Bergs reactions, albeit at

low concentrations, the planned one-pot sequence was at-
tempted. Gratifyingly, treatment of benzonitrile with n-
BuLi at 0 °C in THF for 30 min smoothly generated the
lithiated imine. Direct addition of EtOH (to quench the ex-
cess organolithium) then KCN, CO3(NH4)2 and H2O, and
subsequent heating at 75 °C produced crystalline 5a in
70% yield via this one-pot process (Table 1, entry 1).13,14

The scope of this new 4-CR has been explored using a
range of commercially available nitriles and easily acces-
sible organolithiums (Table 1). Considerable variation in
the nature of the nitrile (Table 1, entries 1, 2, 4, and 6–11)
and the organolithium reagent (Table 1, entries 1–3, 5 and
12) can be achieved. The reaction shows good functional-
group tolerance (Table 1, entries 5 and 7–11) and offers a
simple, practical route to 5,5¢-disubstituted hydantoins.

Grignard reagents can also be used in this modified
Bucherer–Bergs process. In this instance, the organome-
tallic addition to the nitrile is more sluggish and requires
prolonged heating in the presence of catalytic amounts of
copper(I) iodide10 to facilitate complete conversion to the
metallated imine 8 (M = MgX). However, under these
conditions, good yields of a range of functionalised hy-
dantoins can be produced (Table 2).14,15 The results indi-
cate that appreciable variation in the structure of the nitrile
and Grignard reagent is possible.

Table 1 Selection of Hydantoins Made Using Organolithium 
Reagents

Entry RCN R1Li Hydantoin Yield (%)a

1 PhCN BuLi 5a 70

2 Me(CH2)4CN MeLi 5b 64

3 Me(CH2)4CN PhLi 5c 61

4 MeLi 5d 75

5 5e 50b

6 t-BuCN MeLi 5f 75

7 MeLi 5g 45c

8 BuLi 5h 84

9 PhLi 5i 92

10 PhLi 5j 54

11 PhLi 5k 88

12 5l 53d

a Isolated yield of product. All reactions performed using the proce-
dure described in ref. 13.
b Organolithium made by deprotonation of (2-methyl)pyridine using 
n-BuLi. This example was conducted in Et2O.
c Conducted using MeLi (2.4 equiv).
d Organolithium prepared in situ by lithium–iodine exchange.
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Table 2 Selection of Hydantoins Made Using Grignard Reagents

Entry RCN R1MgX Hydantoin Yield (%)a

1 5m 58

2 t-BuCN PhCH2MgCl 5n 74

3 t-BuCN BuMgCl 5o 58

4 PhCN BuMgCl 5a 57

5 PhCN PhCH2MgCl 5p 77

6 t-BuMgCl 5q 40

7 5r 65

8 5s 61

a Isolated yield of product. All reactions performed using the proce-
dure described in ref. 15.
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To conclude, this chemistry offers a simple, practical
method for the synthesis of 5,5¢-disubstituted hydantoins
exploiting two points of diversity. Since all the hetero-
cycles produced in these modified Bucherer–Bergs reac-
tions are isolated in high purity without recourse to
chromatography,13,15 this chemistry seems well suited for
the rapid generation of hydantoin chemical libraries.16

Work in this direction continues in our laboratories.
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13C NMR (100 MHz, DMSO-d6): d = 24.8, 37.8, 55.1, 71.9, 
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(ES): m/z = 261 [M – H]–. HRMS (EI): m/z calcd for 
C14H19N2O3: 263.1396; found: 263.1384. Anal. Calcd for 
C14H18N2O3 (%): C, 64.10; H, 6.92; N, 10.68. Found: C, 
64.00; H, 6.95; N, 10.59.
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(15) Experimental Method (Using RMgX).
In a flame-dried ACE pressure tube under nitrogen, are 
successively added copper iodide (9.5 mg, 0.05 mmol), THF 
(1 mL) and the organomagnesium reagent (1.2 mmol) 
immediately followed by the nitrile [1 mmol; either as liquid 
or in THF (1 mL) if solid]. The vessel is quickly heated to 
70 °C (preheated bath) and maintained at this temperature 
for 24 h. Upon cooling to r.t., the reaction is carefully 

quenched with EtOH (4 mL). Then, (NH4)2CO3 (576 mg, 
6 mmol), KCN (197 mg, 3 mmol; CAUTION) and H2O 
(4 mL) are successively added and the tube is sealed. The 
heterogeneous solution is heated at 75 °C (preheated bath) 
for 24 h then allowed to cool to r.t. The hydantoin is isolated 
using the same work-up and crystallisation protocol 
described in ref. 12.

(16) Shipman, M.; Montagne, C. GB 0603239.5, 2006.

D
ow

nl
oa

de
d 

by
: N

at
io

na
l U

ni
ve

rs
ity

 o
f S

in
ga

po
re

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.


