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Abstract: The effect of a 3-O-acetyl group on the stereoselectivity
of a-glycosylation with 2-O-benzylated D-gluco glycosyl donors
was studied. It was shown that 3-O-acetylated donors gave a-ano-
mers predominantly or exclusively, whereas glycosylation with the
corresponding per-O-benzylated donors afforded mixtures of com-
parable amounts of a- and b-anomers. The higher a-stereoselectiv-
ity in the first case was accounted for by the remote anchimeric
assistance of the 3-O-acetyl group, which was confirmed by theo-
retical calculations. 
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Although the glycosylation reaction has been known for
more than a century, the stereoselective formation of the
1,2-cis glycoside bond is still considered a challenging
problem in synthetic chemistry.1 The major principle of
the strategy is the use of a non-participating substituent on
C-2 to avoid formation of the acyloxonium intermediate.2

A number of factors should be taken into account, for
instance, the nature of leaving and protecting groups,
solvent, promoting system, the structure of the glycosyl
acceptor, and temperature.3,4 There are a few communica-
tions where the anchimeric assistance of remote substitu-
ents was used to improve the stereoselectivity of 1,2-cis
glycosylation. Noteworthy are the examples with 6-O-
acylated D-glucosyl and D-galactosyl donors,5,6 4-O-acyl-
ated D-galactosyl,7 L-fucosyl,8,9 D-mannosyl,10 and L-
rhamnosyl11 donors, and fully benzylated glucuronyl
donors bearing a participating COOAlk group at C-5.12,13

The anchimeric participation of a remote 3-O-acyl substit-
uent was also reported for the glycosylation with 2-deoxy-
ribo-hexopyranosyl donors.14–16 Recently we have shown
that glycosylation with 3-O-benzoyl-2,4-di-O-benzyl-fu-
cosyl bromide proceeded with high a-stereoselectivity.17

Moreover, the stereoselectivity of the glycosylation with
the latter donor was higher than that with the 4-O-benzo-
ylated isomer, indicating that the anchimeric assistance of
the 3-O-benzoyl group is more efficient than that of 4-O-
benzoyl. These results were in good correlation with
theoretical calculations on the ‘stabilization energy’ of the
glycosyl cations formed due to the participation of a
benzoyl group. 

To investigate the scope of this stereochemical effect, we
studied the influence of a 3-O-acetyl group on the stereo-
selectivity of glycosylation with D-gluco donors, such as
fully benzylated and 3-O-acetylated D-glucosyl N-phenyl
trifluoroacetimidates 118 and 2,18 D-glucuronyl bromides
314 and 4, and D-xylosyl trichloroacetimidates 5 and 6. All
these compounds have the same configuration at C-2, C-
3, and C-4 (for this reason the xylosyl donors were includ-
ed in the D-gluco series) but vary in the C-5 substituent
and the leaving group at the anomeric center. Glycosyla-
tions of acceptors 7–9 with donors 1–6 were performed as
steps within the syntheses of several substances: glyco-
forms of the outer core of the Pseudomonas aeruginosa li-
popolysaccharide,18 heterosaccharide fragments of
fucoidans, and probes for the elucidation of xylosyltrans-
ferase activity. The synthesis of compounds 4, 5, and 6
will be reported elsewhere.

Methyl 2-azido-2-deoxy-D-galactoside 718 was used as a
glycosyl acceptor in reactions with glucosyl donors 1 and
2. AgOTf-promoted glycosylation with fully benzylated
N-phenyltrifluoroacetimidate 1 (Table 1, entry 1) afford-
ed a 2:1 mixture of a- and b-isomers 10 and 11 in 95%
yield.19 The reaction of 3-O-acetylated donor 2 (Table 1,
entry 2) demonstrated a notably higher a-stereoselectivity
(12/13, a/b ratio, 4:1).20 

A more pronounced stereochemical effect was observed
in the case of glucuronyl donors 3 and 4. The reaction of
per-O-benzylated bromide 3 with acetonide 821 in the
presence of AgOTf (Table 1, entry 3) led to a 2:1 mixture
of a- and b-anomers 14 and 15 (89%), whereas the use of
3-O-acetylated bromide 4 (Table 1, entry 4) strongly
enhanced the stereoselectivity of the reaction and gave the
a-isomer 16 exclusively (90%).22

Xylosyl donors 5 and 6 also provided evidence for the
stereocontrolling effect of the 3-O-acetyl group. Glyco-
sylation of allyl xyloside 923 with 2,3,4-tri-O-benzylated
trichloroacetimidate 5 (Table 1, entry 5) proceeded with
relatively low stereoselectivity (17:18, 2.5:1), while the
coupling of compounds 6 and 9 (Table 1, entry 6) afford-
ed only a-linked disaccharide 19 in 80% yield.24

We assumed that the higher stereoselectivity of reactions
with D-gluco donors 2, 4, and 6 is regulated by the remote
stereocontrolling effect of the 3-O-acetyl group resulting
in the formation of stabilized cation II (Scheme 1).
Nucleophilic attack on cation II is favored from the a-
side. To evaluate this possibility we calculated the energy
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difference between the stabilized and non-stabilized
forms I and II, which is referred to as the ‘stabilization
energy’ (Table 1).

‘Stabilization energy’ calculations (Table 1) were per-
formed with an MM+Molecular mechanics force field
(HyperChem, Version 7.0). Electrostatic interactions
were considered in charge-charge approximation, the
values of partial atomic charges were obtained from AM1
single point calculations. Calculated energy data were in
good agreement with experimental results. Thus, the
‘stabilization energy’ of –11.3 kcal/mol for the donor 2

corresponds to the a/b ratio of 4:1. ‘Stabilization energies’
–15.3 kcal/mol for xylosyl donor 6 and –21.6 kcal/mol in
the case of glucuronyl donor 4 are in accordance with the
increase in a-stereoselectivity.

In conclusion, a series of D-gluco donors was studied as
a-glycosylating agents. It was found that the reactions
with donors bearing an acetyl group at O-3 provided
remarkably higher stereoselectivity than those with per-
O-benzylated analogues. This finding can be applied to
the efficient synthesis of a-glucosides.
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