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Abstract: A cationic Au(I) complex catalyzed the cycloisomeriza-
tion of aromatic enynes that possess a substituent on their alkyne
terminus. Cyclization of the 6-endo-dig type proceeded dominantly
to give 1,3-di- and 1,2,3-trisubstituted naphthalenes.

Key words: cycloisomerization, catalysis, enynes, gold, indenes,
naphthalenes

Recently, activation of alkyne moiety by a metal complex
has been an attractive strategy for the development of new
catalytic carbon–carbon bond forming reactions and gold-
catalyzed cyclization has been intensively studied, which
gives various types of carbo- and heterocyclic skele-
tons.1,2 In particular, Au(I)-catalyzed cycloisomerization
of enynes draws much attention in these days.3 We here
disclose Au(I)-catalyzed cycloisomerization of aromatic
enynes, which have a substituent on their alkyne terminus,
under mild reaction conditions.

Catalytic benzannulation of aromatic enynes is a well-
known protocol for the synthesis of naphthalene deriva-
tives and various metal complexes, including Ru(II),4–6

Pt(II),4,5 Pd(II),4 Rh(I),4 Au(III),4,5 Ag(I),4 W(0),7 and
In(III),8 have already been reported as efficient catalysts.
In the Ru(II)- and W(0)-catalyzed reactions, however,
aromatic enynes with no substituent on their alkyne termi-
nus were used. The authors explained the reason that the
formation of vinylidene complexes, prepared from unsub-
stituted alkynes and metal catalysts, triggers the following
cycloisomerization.6,7a In the reactions of enynes with a

substituent on their alkyne terminus, electron-donating
ene components, such as a silyl enol ether, were submitted
to the cycloisomerization.4

We here examined Au(I)-catalyzed cycloisomerization of
aromatic enynes. When alkyne moiety of aromatic enyne
1 is activated by a cationic Au(I) catalyst, 6-endo-dig- or
5-exo-dig-type cyclization proceeds and the following
deprotonation gives substituted naphthalene 2 or 1-meth-
ylene-1H-indene derivative 3 (Scheme 1).

We chose 1-(1-hexynyl)-2-isopropenylbenzene (1a) as a
model aromatic enyne and examined a Au(I)-catalyzed
cycloisomerization under various reaction conditions
(Table 1). No reaction proceeded at room temperature us-
ing AuCl(PPh3) (entry 1); however, the addition of Ag
salts increased the catalytic activity of Au(I) complex and
aromatic enyne 1a was consumed within one hour. Cy-
clization proceeded exclusively in a 6-endo-dig-type
manner regardless of counter anions of Ag salts and 3-bu-
tyl-1-methylnaphthalene (2a) was obtained in high yield
(entries 2–4). Ag salt itself did not work at all as a catalyst
even at 40 °C (entry 5). High yield was achieved using
only 1 mol% catalyst (entry 6) and it is noteworthy that the
cyclization efficiently proceeded even under an atmo-
sphere of air (entry 7). In the presence of 10 mol% of
TsOH·H2O as a protic acid catalyst, naphthalene 2a could
not be detected, which means that the cationic Au(I) com-
plex worked as an effective catalyst in the present cyclo-
isomerization.9,10
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Under the above reaction conditions (Table 1, entry 6),
various aromatic enynes were examined (Table 2).11 An
aryl group was tolerable as a substituent of the alkyne
terminus and enyne 1b was transformed into the biaryl
compound 2b exclusively (entry 1). When oxygen-func-
tionalized enyne 1c was subjected to the present cyclo-
isomerization, a small amount of 5-exo-dig-type product

3c was detected (entry 2). AgSbF6 induced a more active
catalyst and cyclized products 2c/3c were obtained in
higher yield at the lower temperature (entry 3). Protective
groups of hydroxyl substituent controlled the reaction
pathway and almost no 5-exo-dig-type product 3 was de-
tected in the case of TIPS-protected propargyl alcohol 1e
(entries 4 and 5). Moreover, the protection of a hydroxyl
substituent was unnecessary and (2-naphthyl)methanol
(2f) was exclusively obtained from propargyl alcohol 1f
(entry 6).12 The cyclization of nitrogen-functionalized
enyne 1g also proceeded, however, a significant amount
of 5-exo-dig-type product 3g13 was obtained (entry 7). An
aryl group on the alkene moiety was acceptable (entry 8).
Aromatic enyne 1i possessing trisubstituted alkene
moiety was also a good substrate and 1,2,3-trisubstituted
naphthalene 2i was obtained (entry 9).

An o-alkynyl biphenyl, with an aryl group as ene moiety
in aromatic enyne, was also a good substrate: Au(I)-cata-
lyzed cyclization of 2-(1-hexynyl)biphenyl (1j) pro-
ceeded at higher reaction temperature and 9-butyl-
phenanthrene (2j) was a major product (Equation 1). Dif-
ferent from the previous examples,5,8 electron-donating
substituents, such as a methoxy or methyl group, were not
needed.14

Double cyclization of dienediyne 1k efficiently proceed-
ed under the typical reaction conditions and 2,2¢-binaph-
thyl compound 2k was obtained in good yield
(Equation 2).

When aromatic enyne 1l, having no substituent on its
alkyne terminus, was examined, 5-exo-dig-type cycliza-

Table 1 Screening of Reaction Conditions Using Cationic Au(I) 
Catalysts

Entry Ag salt X (mol%) Time (h) Yield (%)

1 None 5 1 NRc

2 AgBF4 5 1 93

3 AgSbF6 5 1 92

4 AgOTf 5 1 92

5a AgOTf 5 1 NRc

6 AgOTf 1 1.5 94

7b AgOTf 1 1.5 96

a The reaction was examined without AuCl(PPh3) at 40 °C.
b The reaction was examined under an atmosphere of air.
c NR = no reaction.
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Table 2 Au(I)-Catalyzed Cycloisomerization of Various Aromatic Enynes 1

Entry R1 R2 R3 Enyne Time (h) Yield (%) Product ratio 2/3

1 Ph Me H 1b 2 87 >20:1

2 CH2OMe Me H 1c 1 71 7:1

3a CH2OMe Me H 1c 2 87 7:1

4 CH2OTBS Me H 1d 1 78b 20:1

5 CH2OTIPS Me H 1e 1 73b >20:1

6 CH2OH Me H 1f 1 93 >20:1

7 CH2NMeTs Me H 1g 2 84 2:1

8 n-Bu Ph H 1h 1 86 >20:1

9 n-Bu Me Mec 1i 1 97 5:1

a AgSbF6 was used in place of AgOTf and the reaction was examined at 0 °C.
b Some product (ca. 20%) was obtained as desilylated alcohol 2f.
c E/Z ratio was ca. 1:1.
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tion proceeded and 1-methylene-1H-indene (3l) was a
major product. In the case of iodo-substituted enyne 1m,
vinyl iodide 3m was dominantly obtained15,16 and only a
small amount of naphthalene derivative 2m was detected
(Equation 3). These results strikingly contrast with the re-
ported examples, where enyne 1l gave naphthalene 2l6,7a

and iodo migration occurred from iodoalkynes.7b

Equation 3

In summary, we disclosed a cationic Au(I) complex-cata-
lyzed cycloisomerization of aromatic enynes. Enynes
with an alkyl- or aryl-substituted alkyne terminus under-
went 6-endo-dig-type cyclization to give various 1,3-di-,
and 1,2,3-trisubstituted naphthalenes. The enyne with an
iodo-substituted alkyne terminus underwent 5-exo-dig-
type cyclization, which provides a new protocol for the
construction of an indene skeleton.
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(12) (1-Methylnaphthalen-3-yl)methanol (2f): yellow oil. IR 
(neat): 3350, 872, 773, 748 cm–1. 1H NMR (600 MHz, 
CDCl3): d = 1.92 (br s, 1 H), 2.68 (s, 3 H), 4.79 (s, 2 H), 7.31 
(s, 1 H), 7.47–7.52 (m, 2 H), 7.64 (s, 1 H), 7.81–7.82 (m, 1 
H), 7.96–7.97 (m, 1 H). 13C NMR (100 MHz, CDCl3): 
d = 19.4, 65.4, 123.7, 123.9, 125.6, 125.7, 125.8, 128.4, 
132.0, 133.4, 134.7, 137.8. HRMS (FAB): m/z calcd for 
C12H12O [M+]: 172.0888; found: 172.0891.

(13) The stereochemistry of alkene moiety was determined by 
NOE observation (Figure 1).

(14) In the presence of AuCl3 (5 mol%) as a catalyst, almost no 
cycloisomerization of 1j proceeded even at 80 °C in toluene 
(see ref. 5).

(15) (1E)-1-(Iodomethylene)-3-methyl-1H-indene (3m): yellow 
oil. IR (neat): 1110, 1079, 1019 cm–1. 1H NMR (400 MHz, 
CDCl3): d = 2.16 (s, 3 H), 6.35 (s, 1 H), 7.14–7.29 (m, 4 H), 
7.39 (d, 1 H, J = 7.2 Hz). 13C NMR (100 MHz, CDCl3): 
d = 13.5, 79.1, 119.1, 125.1, 125.7, 126.5, 127.8, 135.6, 
144.3, 145.9, 150.0. HRMS (FAB): m/z calcd for C11H9I 
[M+]: 267.9749; found: 267.9747.

(16) During the purification of the products, some vinyl iodide 
(E)-3m was isomerized to (Z)-3m.
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