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Abstract: Palladium-catalyzed allylic alkylation of a-sulfinyl car-
banions can take place under biphasic conditions. These new condi-
tions provide a simple, mild and efficient route to allylated
sulfoxides in good yields. The reaction tolerates a wide variety of
EWG groups as additional carbanion stabilizing groups such as
ester, acetyl, cyano, amide, sulfonyl and sulfinyl functions.
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Transition-metal-catalyzed allylic substitutions have
proven to be a fundamental tool for carbon–carbon bond
formation.1 In this context, whereas the palladium-cata-
lyzed allylic alkylation of stabilized a-sulfenyl- and a-sul-
fonyl carbanions has been amply described,2 the
corresponding reaction involving a-sulfinyl carbanions,
despite the stereogenic character of the sulfur atom, has
been so far virtually neglected.3 Such a fact is probably
due to the high coordination power of the sulfoxide func-
tion toward palladium,4 which prevents the direct transpo-
sition of classical reaction conditions from a-sulfenyl- or
a-sulfonyl-activated carbanions to the corresponding a-
sulfinyl analogues. For example, in the course of our pre-
vious studies on the palladium-catalyzed intramolecular
allylic alkylation of unsaturated amides,5 the expected
vinylpyrrolidones could be satisfactorily obtained when a
sulfenyl- or a sulfonyl-based additional carbanion stabi-
lizing group (ACSG) was present, whereas under the
same conditions the corresponding sulfinyl-based deriva-
tive refused to cyclize (Table 1).6

We recently reported that the palladium-catalyzed in-
tramolecular allylic alkylation of unsaturated amides
could be efficiently run under phase-transfer conditions
(Equation 1).7 These conditions were milder and higher
yielding than those previously reported in a homogenous
medium.

Given the remarkable efficiency of these reaction condi-
tions, we decided to test this new system in the so far elu-
sive palladium-catalyzed allylation of sulfinyl-based
carbanions. The allylic alkylation of tert-butyl benzene-
sulfinyl acetate (1)8 with allyl acetate was first studied as

a model reaction. The reaction was very sluggish using the
classical system [Pd(C3H5)Cl]2 (5 mol%), dppe (12.5
mol%), NaH (1.1 equiv), in THF at room temperature. Af-
ter five days, the desired allylated product was isolated in
a poor (£15%) yield (Table 2, entry 1). Thermal treatment
led to the degradation of the starting material after two
hours at reflux (entry 2). To our satisfaction, switch to the
above-mentioned biphasic conditions resulted in sub-
stantial improvement.9

Indeed, the use of n-Bu4NBr (10 mol%) as the phase trans-
fer agent, [Pd(C3H5)Cl]2 (2 mol%) as the palladium
source, dppe (5 mol%) as the ligand, and KOH (2.0 equiv)
as the base, in a biphasic CH2Cl2–H2O (1:1; v/v) system
led after 30 minutes to the desired allylation product 2 (1:1
diastereomeric ratio) in 44% yield at room temperature

Table 1 Palladium-Catalyzed Intramolecular Allylic Alkylation of 
Sulfur Stabilized Amidesa

Entry n Base Yield (%)b

1 2 BSA/AcOK 78

2 0 NaH 58

3 1 NaH 0

a Reagents and conditions: substrate, Pd2(dba)3 (5 mol%), PPh3 (50 
mol%), base (BSA, 1.2 equiv and AcOK, 10 mol% or NaH, 1.1 
equiv) in THF, reflux, 12 h.
b Yields are given for isolated products.
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Equation 1 Palladium-catalyzed intramolecular allylic alkylation
under phase-transfer conditions
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(entry 3). Interesting to note, the yield could be sizeably
improved (62%) by simply omitting n-Bu4NBr (entry 4).
It thus appears that the phase-transfer agent is not only
unnecessary to the allylation reaction, but also somehow
detrimental.10 In a second set of experiments, the in-
fluence of the nature of the ACSG was studied. Table 3 il-
lustrates our results.11 Methyl benzenesulfinyl acetate did
not afford the corresponding allylation product owing to
competitive saponification of the starting material (entry
1). Although this result was not completely unexpected, it
is worth noting that such a problem was not met in the
previously reported methyl ester stabilized intramolecular
allylation under identical conditions (Equation 1).

Acetyl-,12 cyano-,13 amide-,14 and sulfinyl-15 ACSGs
allowed also formation of the corresponding allylated
products 2b–f in good to excellent yields (Table 3, entries
3–6), the sulfonyl group16 being the only ACSG affording
a poor yield of the corresponding product 2g (entry 7).

In experiments of entries 6 and 7, the a,b–g,d-unsaturated
sulfoxide 317 and sulfone 4,18 resulting from sulfenic acid
elimination,19 were isolated in 32% and 11% yield, re-
spectively (Equation 2). Noteworthy, 1f required 21 hours
to afford the desired product, whereas the sulfenyl-substi-
tuted precursor 1h was completely inert under the reaction
conditions (entry 8). These results might be related to the
comparatively low acidity of 1f and 1h.20 To further ex-
plore the scope of this new process, we investigated next
the palladium-catalyzed allylic alkylation of acetyl-, tert-
butoxycarbonyl-, cyano- and diphenylaminocarbonyl-
stabilized precursors 1b–e with 3-acetoxy-cyclopentene.

Equation 2 Formation of dienic compounds via elimination.

Gratifyingly, the optimized conditions converted these
substrates into the corresponding allylated products 5b–e
in good to excellent yields (Table 4).

Since 2b–e and 5b–e were obtained as mixtures of two
and four isomers, respectively, oxidation of the allylated
sulfoxides into the corresponding sulfones was con-

Table 2 Palladium-Catalyzed Allylation of tert-Butyl Benzene-
sulfinyl Acetate: Optimization of the Reaction Conditionsa

Entry Conditions Time Yield (%)b

1 NaH, THF, r.t. 120 h £15

2 NaH, THF, reflux 2 h 0

3 KOH, H2O–CH2Cl2, n-Bu4NBr, r.t. 30 min 44

4 KOH, H2O–CH2Cl2, r.t. 5 min 62

a Reagents and conditions: allyl acetate (1 equiv), substrate (1.1 
equiv), [Pd(C3H5)Cl]2 (2 mol%), dppe (5 mol%) and base.
b Yields are given for isolated product. The allylated product was iso-
lated as a 1:1 mixture of diastereomers.
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Table 3 Influence of the Nature of the ACSGa

Entry Ar EWG Product Time Yield (%)b

1 Ph CO2Me 2a – 0

2 Ph CO2t-Bu 2b 5 min 62

3 Ph COMe 2c 15 min 86

4 Ph CN 2d 1 min 96

5 Ph CONPh2 2e 1 h 52c

6 Tol SOTold 2f 21 h 46e

7 Tol SO2Tol 2g 3 h 24f

8 Tol STol 2h 24 h nr

a Reagents and reaction conditions: allyl acetate (1 equiv), a-sulfinyl 
activated substrate (1.1 equiv), [Pd(C3H5)Cl]2 (2 mol%), dppe (5 
mol%), KOH (50% aq solution, 2.0 equiv), CH2Cl2–H2O (1:1), r.t.
b Yields are given for isolated products. Unless otherwise stated, the 
allylated products were isolated as a 1:1 mixture of diastereomers.
c A 70:30 diastereomeric ratio was obtained.
d A 1:1 mixture of diastereomers was used as starting material.
e The allylated product was isolated as a mixture of three diastere-
omers.
f The allylated product was isolated as a single diastereomer.
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Table 4 Scope of the Reaction Using 3-Acetoxy Cyclopentenea

Entry EWG Product Time Yield (%)b

1 COMe 5b 5 min 86

2 CO2t-Bu 5c 5 min 93

3 CN 5d 5 min 95

4 CONPh2 5e 3 h 52

a Reagents and reaction conditions: 3-acetoxy-cyclopentene 
(1 equiv), a-sulfinyl-activated substrate (1.1 equiv), [Pd(C3H5)Cl]2 
(2 mol%), dppe (5 mol%), KOH (50% aq solution, 2.0 equiv), 
CH2Cl2–H2O (1:1), r.t.
b Yields are given for isolated products. The allylated products were 
isolated as a mixture of four isomers.
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sidered, so as to reduce the number of diastereomers in the
adducts. Such an oxidation turned out to be rather delicate
since the starting sulfoxides tend to suffer easy sulfenic
acid elimination to the corresponding 1,3-dienes. After
some experimentation we eventually found that the CrO3-
catalyzed oxidation, according to Trudell et al.,21 allowed
isolation of the desired sulfones 6e–h in satisfactory
yields (Table 5).

In summary, we have reported a new and operationally
very simple protocol for the palladium-catalyzed allylic
alkylation of a-sulfinyl carbanions, a transformation not
satisfactorily achievable under classical conditions. The
new reaction conditions allow the allylation of the tested
precursors in good yields and with milder reaction condi-
tions than previously reported. Extension to intramolecu-
lar and/or asymmetric variants of the present method is
currently under investigation.
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