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ABSTRACT

Derivatives of Tro'ger's base (TB) have played important roles in receptor construction due to their rigid V-shape. A new class of these
compounds are the oligo-TBs, which can function as cavitands. Herein, we describe both stepwise and one-step (oligomerization) methods

suitable for the preparation of linear oligo-TBs.

In 1887, Julius Trger describebithe condensation reaction
of p-toluidine with formaldehyde leading to the formation
of a unique structure containing nitrogen. It does not invert

New uses for TB derivatives were made possible by the
finding that more than one TB unit can be attached to a
central benzene ring. Thus, bis-TB can be pregatred a

its tetradric arrangement of moieties and thus provides amixture of boatlike ¥V-bis-TB) and chairlike YA-bis-TB)
persistent chiral center. The compound is known today asdiastereoisomers, which are mutually interconvertible under

Troger’'s base (TB). Many years later, TB derivatives found
important applications in supramolecular chem#sanyd drug
development. Their popularity stems from their rigid V-
shape (86-12C°) and their inherent chirality. Both of these
structural features were utilized toward the construction of
receptors for achiraland chirat analytes.
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acidic conditions. Recently, we have shown that a structure
with benzene substituted by three TB units can be prepared.
Oligo-TBs with more than two TB units around a central
unit can be called calix-TB. Each of these unique oligo-TBs
can function as a pH-sensitive cavity-containing scaffold for
the construction of novel receptors.

In this article, we present a stepwise preparation of a new
group of oligo-TB derivatives, the linear oligo-TBs. They
have structural TB units that are interconnected, affording a
chain structure. Additionally, for the first time, a one-pot
preparation of linear oligo-TBs via an oligomerization reac-
tion is described.

A step-by-step synthesis of linear oligo-TBs has several
inherent limitations. The main drawback is the limited avail-
ability of suitable starting compounds. A five-step preparation
can be designed for the synthesis of tris-TB&Scheme 1).
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Scheme 1. Step-by-Step Preparation of Tris-TRa
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Theoretically, in the final step, three regioisomées 1b,
and 1c can be formed (each as a mixture of four racemic
diastereoisomers in the caseldf (VVV- VVA, VAA and
VAV or three in the cases db andlc, in which theVAA-
is, due to symmetry, an enantiomer 8¥A- vide infra).
We isolated two tris-TBs I@a-a and 1a-b) in an overall
preparative yield of 11%. In addition, we found that all tris-
TBs l1a can be converted into the two other respective tris-

TB diastereoisomers (LC-MS). This phenomenon is associ-

ated with the well-known racemizatié#§ of TB units. This
proves that only one of three possible regioisoméas b,
and 1c, was formed as a mixture of diastereoisomeasa
and la-b. This strong selectivity in the preparation might
be surprising; however, it is consistent with current knowl-

edge in this area. It has been recently found that 1,2,3,4-

correlation) NMR spectrum. As shown in Scheme 1, both
regioisomerslb and 1c have three bond distances to the
aforementioned atoms. Thulp and1c would be expected
to exhibit cross-peaks.

As the number of TB units in one molecule increases, there
is a need for an easy description of the relative configuration
of oligo-TB diastereoisomers that is not dependent on the
nature of substituents as iR §)-systems. In addition, the
chirality on nitrogen of a TB unit is controlled by the chirality
of the second nitrogen of the unit; thus, only a one-letter
assignment should be sufficient. We propose a description
consistent with traditional labeling of the TB shape as the
V-shape using letters andA. By this natification, bis-TB
in chair (ant) “conformation” can be assigned &#\-bis-

TB (or AV-his-TB for the enantiomer) and the boat (syn
“conformation” asVV-bis-TB (or AA-bis-TB for the enan-
tiomer). The possible diastereoisomers of linear tris-TBs are
shown in Figure 1. Note that symmetrically substituted linear
tris-TBs can be found, due to symmetry, as only three
diastereoisomers.

Graphic representation of Tris-TB diastereoisomers

VVV- VVA- VAA- VAV-
AAA- AAV- AVV- AVA-

for symetric tris-TB is VVA = AVV and VAA = AAV

Figure 1. Graphic representation of Tris-TB diastereoisomers.

Thus, we have prepared, via a step-by-step method, the
symmetric tris-TBla-a (configurationVVV or VAV) as a
major diastereoisomer dfa as well as the asymmetric tris-
TB la-bwith the configuratiorWAA The second symmetric
isomerla-cwas prepared by racemization bd-aor la-b.

It was detected by LC-MS. The three diastereoisomers of
lawere also characterized by NMR.

It is clear that the preparation of tris-TBs different from
la, or the preparation of tetra-TBs or higher oligo-TBs,

substituted benzene derivatives are formed eXCIUSiVely. NOWOUId be tedious. A Step_by_step synthesis would be time-

1,2,4,5-derivatives have been observed to 8atdhe

consuming and expensive. Moreover, our overall preparative

above mentioned facts lead to the speculation that regioiso-yjeld (11%) is low and makes the oligo-TB scaffolds labor-

mer lais the isolated product. In addition, we studied the
diastereoisomers dfa by NMR and assigned the structure

on the basis of a missing cross-peak between the CH carbo

atoms of the central benzene ring and the, @kbton atoms

(9) Tris-TB 1a-a, isomer VVV or VAV: 1H NMR (in CDCl3) ¢ 7.06
2H, d, 8.8), 6.99 (2H, d, 8.8), 6.95 (2H, d, 8.8), 6.75 (2H, dd, 8.8, 3.0),
.43 (2H, d, 3.0), 4.62 (2H, d, 16.7), 4.38 (2H, d, 16.8), 4.18 (2H, d, 16.7),
4.13 (2H, dd, 13.1, 2.6), 4.11 (2H, d, 17.2), 4.06 (2H, s), 3.83 (2H, d, 16.6),

of TB units (see Scheme 1). In addition, there was a missing 3.78 (2H, dd, 16.9, 1.5), 3.71 (6H, s); overall preparative yield Ttfs-

cross-peak between the CH proton atoms of the central

benzene ring and the GHarbon atoms of TB units in the
gHMBC (gradient-enhanced heteronuclear multiple-bond

(8) (a) Prelog, V.; Wieland, PFHelv. Chim. Actal944 27, 1127-1134.
(b) Greenberg, A.; Molinaro, N.; Lang, M. Org. Chem1984 49, 1127
1130.
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TB la-b, isomerVVA: H NMR (in CDCl;) 6 7.04 (1H, d, 8.5), 7.02 (1H,

d, 8.8), 6.99 (1H, d, 8.8), 6.96 (1H, d, 8.8), 6.86 (2H, s), 6.74 (1H, dd, 8.7,
2.9), 6.70 (1H, dd, 8.7, 2.9), 6.42 (1H, d, 2.5), 6.41 (1H, d, 2.5), 4.64 (1H,
d, 16.8), 4.60 (1H, d, 16.8), 4.35 (1H, d, 17.1), 4.33 (1H, d, 17.1, 1H), 4.27
(2H, d, 17.3), 4.024.26 (8H, m), 3.81 (1H, d, 16.8), 3.79 (1H, d, 17.1),
3.78 (2H, d, 16.8), 3.70 (3H, s), 3.68 (3H, s); overall preparative yield 4%.
Tris-TB 1a-c, isomerVVV or VAV: H NMR (in CDCls; only noncovered
characteristic signals in the mixture after racemizatior§.65 (2H, dd,
8.8, 2.8), 6.34 (2H, d, 2.7), 3.63 (6H, s).
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Scheme 2. Oligomerization Reaction
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intensive by the above-described multistep synthesis. Henceasymmetric diastereoisomer of tris-TB/AA3¢ (1% yield)

a one-step preparation would be preferable even with a lowerfrom the reaction mixture. In addition, the MS analysis shows
isolated yield. This motivated us to develop an alternative the formation of tetra-TEd (n = 3) and penta-TBe (n =
synthetic protocol for this class of compounds. We applied 4) as trace products. We have also isolated formylated and

the oligomerization of a diamine to forming TB units. As a

suitable candidate, we chose commercially available 1,4-

methylated derivatives of TBa and their identification is
in progress. The overall yield of Tger's basesS (>11%)

diamino-2,5-dimethylbenzene, which gives only one route is promising. The oligomerization is thus an attractive

to bis-TB unit formation, thus limiting byproducts.

On the basis of molecular modeling, we predicted a
possibility of forming cyclic pentakis-TBZ n = 5) or
hexakis-TB 2, n = 6). Unfortunately, we did not observe
any traces of cyclo-TBg in the reaction mixture of 1,4-
diamino-2,5-dimethylbenzene with urotropine in TFA by MS

alternative for oligo-TB preparations. We found that the
degree of oligomerization can be controlled by the ratio of
amine:diamine and by the order of reactant addition.
Optimization of the oligomerization reaction aimed at
obtaining higher oligo-TBsn( > 2), improving yields and
decreasing side-products is in progress.

analysis. The mass spectra showed a series of peaks differing In summary, we have prepared linear tris-TBs by a step-
by m/z= 172, which was expected (Scheme 2). This suggestsby-step synthesis. We have additionally prepared oligo-TBs

the possibility of their formation via employment of an
appropriate template.

Second, we tried the oligomerization of the diamine in
the presence gf-toluidine. This led to the expected mixture
of oligo-TBs 3 (Scheme 2). To date, we have isolated
Troger’'s base3a (5% yield), both diastereoisomers of bis-
TB 3b (3% vyield of 3b-a and 7% vyield of3b-b), and an

(10)Bis-TB 3b-a: HRMS (FAB*) calcd for GgHaiNg (M + H)
423.2549, found 423.2558: NMR (in CDCly) 6 6.96 (2H, d, 8.1), 6.87
(2H, dd, 8.1, 1.6), 6.57 (2H, br s), 4.44 (2H, d, 16.6), 4.40 (2H, d, 16.7),
432 (2H, d, 12.5), 4.16 (2H, d, 12.5), 3.92 (2H, d. 16.6), 3.68 (2H, d,
16.7), 2.12 (6H, s), 2.02 (6H, sRis-TB 3b-b: HRMS (FAB*) calcd for
CagHaiN4 (M + H) 423.2549, found 423.2538:H NMR (in CDCLs) 6 7.06
(2H, d, 7.9), 6.96 (2H, dd, 8.3, 2.0), 6.70 (2H, br s), 4.46 (2H, d, 16.8),
433 (2H, d, 16.2), 4.20 (2H, dd, 12.5, 1.6), 4.05 (2H, dd, 12.5, 1.6), 4.05
(2H, d, > 16, covered), 3.79 (2H, d, 16.8), 2.22 (6H, s), 2.10 (6H, ).

Org. Lett, Vol. 7, No. 1, 2005

by one-step oligomerization and isolated linear bis- and tris-
TBs from the reaction mixture. We have proven that tetra-
TBs or higher TBs can be prepared by this synthetic protocol.
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