Immunomodulating Steroidal Glycosides from the Roots of Stephanotis mucronata

by Yiping Ye^a)^b), Xiaoyu Li^b), Hongxiang Sun^c), Fengyang Chen^b), and Yuanjian Pan^{*a})

^a) Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China (phone: +86-571-879-51264; fax: +86-571-879-51264; e-mail: panyuanjiang@css.zju.edu.cn)
^b) Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, P.R. China
^c) College of Animal Sciences, Zhejiang University, Hangzhou 310029, P.R. China

Guided by *in vitro* immunological tests, three immunomodulating steroidal glycosides, stemucronatosides A (1), B (2), and C (3), were isolated from the roots of *Stephanotis mucronata*. On the basis of chemical evidence and extensive spectroscopic methods including 1D and 2D NMR, their structures were determined as 12-*O*-deacetylmetaplexigenin 3-[*O*-6-deoxy-3-*O*-methyl- β -D-allopyranosyl- $(1 \rightarrow 4)$ -*O*- β -D-cymaropyranosyl- $(1 \rightarrow 4)$ - β -D-cymaropyranosyl- $(1 \rightarrow 4)$ -

Introduction. – The plants beonging to the Asclepiadaceae family are reported to be rich in pregnane and cardiac glycosides [1][2]. In recent years, the pregnanes and their glycosides have been shown to possess antitumor [3][4], antiepilepsy [5], and antifertility activities [6]. The dried roots of *Stephanotis mucronata* (BLANCO) MEER. (Asclepiadaceae) are used for the treatment of rheumatoid arthritis and rheumatic aches in Chinese folk medicine. We previously reported the isolation and structural elucidation of three pregnane glycosides, mucronatoside A and B and stephanoside E, from the stems of *S. mucronata* [7]. To obtain biological pregnane glycosides, chemical studies of the CHCl₃-soluble extract from the roots of this plant were undertaken by screening with immunological tests *in vitro*, and we obtained three novel pregnane oligoglycosides named stemucronatosides A (1), B (2), and C (3).

© 2004 Verlag Helvetica Chimica Acta AG, Zürich

Results and Discussion. – The EtOH extract of the roots of *Stephanotis mucronata* was extracted with CHCl₃. The CHCl₃-soluble portion was subsequently separated by column chromatography (silica gel, reversed-phase silica gel, and *Sephadex HL-20*) to provide the three compounds 1-3. Each of the isolates was subjected to detailed spectroscopic analysis to establish their chemical structures.

Stemucronatosides A (1) was isolated as an amorphous powder that showed positive *Liebermann–Buchard* and *Keller–Kiliani* reactions indicating the presence of a steroidal and 2-deoxysugar(s) moieties in the molecule. The EI-MS showed the quasimolecular ion at m/z 851.5 ($[M + Na]^+$) and 867.4 ($[M + K]^+$), in agreement with the molecular formula $C_{42}H_{68}O_{16}$, which was supported by the ¹³C-NMR and DEPT spectrum. The EI-MS also displayed other prominent fragments at m/z 691.3 ($[M + Na - 160]^+$), 547.2 ($[M + Na - 160 - 144]^+$). The IR spectrum of 1 showed OH (3510 cm⁻¹), C=O (1690 cm⁻¹), olefinic (1646 cm⁻¹), and C–O–C (1080 cm⁻¹) groups. The assignments of the ¹H- and ¹³C-NMR signals of 1 were successfully carried out with ¹H,¹H-COSY, HMQC, and HMBC experiments (*Tables 1* and 2). On the basis of its spectroscopic data, comparison with those of compound 4, and the results of acid hydrolysis, compound 1 was established as 12-O-deacetylmetaplexigenin 3-[O-6-deoxy-3-O-methyl- β -D-allopyranosyl-($1 \rightarrow 4$)-O- β -D-cymaropyranosyl-($1 \rightarrow 4$)- β -D-cymaropyranoside]¹).

The ¹³C-NMR and DEPT spectra (125 MHz, (D₅)pyridine) of **1** allowed the attribution of 42 C-signals to 9 Me, 9 CH₂, 17 CH, and 7 quaternary C-atoms. The ¹H- (500 MHz) and ¹³C-NMR data for the aglycone moiety of **1** were similar to those of 12-*O*-deacetylmetaplexigenin (**4**) [8], the major difference being the absence of signals for an OH group at C(3). The only other difference in the ¹³C-NMR data between **1** and **4** occurred for the atoms C(2), C(3), and C(4): C(2) and C(4) of **1** were shifted upfield by 2.8 and 4.3 ppm, respectively, and C(3) of **1** was shifted downfield by 5.9 ppm in comparison with the corresponding signals of **4**. The NMR (¹H- and ¹³C-NMR, DEPT, HMQC, and HMBC) spectral data of compound **1** showed that it contained three anomeric C-signals at δ 96.0, 100.0, and 103.8, correlating with the anomeric protons at δ 5.31, 5.14, and 5.16, respectively, which indicated that there were three sugar units in compound **1**. Thus, compound **1** was believed to be a 12-*O*-deacetylmetaplexigenin 3-*O*-trioside.

Mild acid hydrolysis of **1** afforded 12-*O*-deacetylmetaplexigenin (**4**), D-cymarose (=2,6-dideoxy-3-*O*-methyl-D-*ribo*-hexose), and an unidentified sugar (on TLC). The HMBC and ¹H,¹H-COSY experiment allowed the sequential assignments of the δ (C) and δ (H) for the unidentified sugar as shown in *Tables 1* and 2, starting from the anomeric proton and C-signal at δ 5.16 (d, J = 9.5 Hz) and 103.8. Those findings suggested that the unidentified sugar (detected by TLC) is 6-deoxy-3-*O*-methyl- β -D-allose (abbreviated as AllMe) on the basis of its ¹H-NMR data and ¹³C-NMR assignments in agreement with those of similar compounds [9]. Further, a comparison of the chemical shifts of the anomeric protons of other compounds showed that the anomeric-proton signal of AllMe appears at lower field than δ (H) 5.00, while that of Thv (β -D-thevetose = 6-deoxy-3-*O*-methyl-D-glucose) appears at higher field than δ (H) 5.00 in (D₅)pyridine [9][10]. This confirmed the assignment of the anomeric-proton *d* at δ 5.16 to AllMe [10]. The anomeric proton signals due to two cymarose units were observed at δ 5.31 and 5.14 (each *d*, *J* = 9.5 Hz, 1 H) in the ¹H-NMR spectrum of **1**, which indicated that cymarose is of β -D-configuration as judged from the chemical shifts and coupling constants [11]. The chemical shifts for C(2') (δ 36.9) and C(2'') (δ 36.5) of the two cymarose units of **1** showed that both have β -D configuration [12].

As regards the sugar linkage, the following long-range correlations were observed in the HMBC spectrum: C(1') of the β -D-cymaropyranose (δ 96.0) and H–C(3) of the aglycone (δ 3.90, *m*), C(1'') of the β -D-cymaropyranose (δ 100.0) and H–C(4') of the β -D-cymaropyranose (δ 3.50, *dd*, J = 9.5, 2.5 Hz), and C(1''') of the 6-deoxy-3-O-methyl- β -D-allopyranose (δ 103.8) and H–C(4'') of the β -D-cymaropyranose (δ 3.57, *dd*, J = 9.5, 2.5 Hz). Consequently, the sugar sequence was established as O-6-deoxy-3-O-methyl-D-allosyl-(1 \rightarrow 4)-O-D-cymarosyl-(1 \rightarrow 4)-D-cymaroside attached at C(3) of the aglycone.

¹⁾ For systematic names, see Exper. Part

С	1	2	3	4	5
C(1)	38.6 (<i>t</i>)	38.4 (<i>t</i>)	38.9 (<i>t</i>)	39.0 (<i>t</i>)	39.0 (<i>t</i>)
C(2)	29.1 (t)	29.4 (t)	29.8 (t)	31.9 (<i>t</i>)	31.8 (t)
C(3)	77.3(d)	77.2(d)	77.6(d)	71.4(d)	71.3 (d)
C(4)	38.9 (t)	38.8 (t)	39.2 (t)	43.2 (<i>t</i>)	43.1 (<i>t</i>)
C(5)	138.9 (s)	138.8 (s)	139.2 (s)	140.1 (s)	140.1(s)
C(6)	119.1 (d)	119.0(d)	119.2 (d)	118.6(d)	118.3(d)
C(7)	33.8 (t)	33.7 (<i>t</i>)	33.7 (<i>t</i>)	34.0 (t)	33.6 (<i>t</i>)
C(8)	73.9 (s)	73.7 (s)	74.2(s)	74.2 (s)	74.2 (s)
C(9)	44.5(d)	44.4(d)	44.4(d)	44.8(d)	44.3 (d)
C(10)	37.0 (s)	36.7 (s)	37.3 (s)	37.2 (s)	37.2 (s)
C(11)	29.5 (t)	28.9 (t)	24.8 (t)	29.3 (t)	24.7 (t)
C(12)	68.5(d)	68.4(d)	73.5(d)	68.8(d)	73.4 (<i>d</i>)
C(13)	60.0(s)	59.9 (s)	57.9 (s)	60.2(s)	57.7 (s)
C(14)	88.9 (s)	88.8(s)	89.4 (s)	89.2 (s)	89.3 (s)
C(15)	34.7 (t)	34.5 (<i>t</i>)	34.7 (t)	34.9 (t)	34.5 (t)
C(16)	32.4 (<i>t</i>)	32.3 (t)	32.8 (t)	32.6 (t)	32.6 (t)
C(17)	92.2 (s)	92.0 (s)	92.4 (s)	92.4 (s)	92.2 (s)
C(18)	9.0(q)	8.9(q)	10.4(q)	9.2(q)	10.2(q)
C(19)	18.2(q)	17.8(q)	18.1(q)	18.3(q)	18.1(q)
C(20)	209.2 (s)	209.1 (s)	210.2(s)	209.4(s)	210.0(s)
C(21)	27.5(q)	27.4(q)	27.6(q)	27.7(q)	27.4(q)
MeCOO-C(12)	-	-	169.9 (s)	-	169.7 (s)
MeCOO-C(12)	-	-	20.8(q)	-	20.6(q)
Cym1 C(1')	96.0(d)	95.8(d)	96.4(d)		
C(2')	36.9 (t)	36.4 (<i>t</i>)	37.2 (<i>t</i>)		
C(3')	77.7(d)	77.6(d)	77.9(d)		
C(4')	82.8(d)	82.9(d)	83.3 (d)		
C(5')	68.9(d)	68.8(d)	69.2(d)		
C(6')	18.0(q)	18.0(q)	18.6(q)		
MeO	58.5(q)	58.4(q)	58.8(q)		
Cym ² C(1")	100.0(d)	99.9 (d)	100.4(d)		
C(2")	36.5 (t)	36.8 (t)	37.0 (<i>t</i>)		
C(3")	77.6(d)	77.5(d)	78.0(d)		
C(4'')	83.0(d)	82.5 (d)	82.9(d)		
C(5")	68.6(d)	68.4(d)	69.0(d)		
C(6")	18.3(q)	18.0(q)	18.5(q)		
MeO	58.4(q)	58.3 (q)	58.9(q)		
Carb ³	AllMe	Thv	AllMe		
C(1''')	103.8(d)	105.7(d)	104.8(d)		
C(2''')	74.0(d)	75.3 (d)	74.7(d)		
C(3''')	83.6 (d)	87.3 (d)	85.8(d)		
C(4''')	72.7(d)	74.6(d)	83.1 (<i>d</i>)		
C(5''')	70.3(d)	72.2(d)	71.8(d)		
C(6''')	18.3(q)	18.1(q)	18.6(q)		
MeO	61.8(q)	61.0(q)	60.6(q)		
Glc ⁴ C(1'''')			106.0(d)		
C(2'''')			75.8(d)		
C(3'''')			78.6(d)		
C(4'''')			71.9(d)		
C(5'''')			78.1(d)		
C(6'''')			63.0 <i>(t)</i>		

Table 1. ¹³C-NMR Data ((D_5)pyridine) of Compounds 1–5. δ in ppm, J in Hz^a).

^a) ¹H- and ¹³C-NMR, DEPT, ¹H,¹H-COSY, HMQC, and HMBC data were obtained at 500 and 125 MHz at room temperature, respectively. Multiplicities by DEPT experiments.

Н	1	2	3	4	5
H-C(3)	3.90 (<i>m</i>)	3.87 (<i>m</i>)	3.92 (<i>m</i>)	3.93 (m)	3.91 (m)
H-C(6)	5.36 (br. s)	5.37 (br. s)	5.33 (br. s)	5.42 (br. s)	5.35 (br. s)
H - C(12)	3.97 (dd,	3.96 (m)	4.99 (dd,	3.98 (dd,	5.00 (dd,
	J = 11.5, 4.0)		J = 11.5, 4.0)	J = 11.5, 4.0)	J = 11.5, 4.0)
Me(18)	2.04(s)	2.02(s)	1.94(s)	2.04(s)	1.97 (s)
Me(19)	1.41(s)	1.41 (s)	1.35 (s)	1.49 (s)	1.43 (s);
Me(21)	2.66(s)	2.66(s)	2.50(s)	2.68(s)	2.51 (s)
AcO-C(12)	-	-	2.09 (s)	_	2.10 (s)
$\operatorname{Cym}^1 \operatorname{H-C}(1')$	5.31 (d, J = 9.5)	5.30 (d, J = 10)	5.30 (d, J = 9.5)		
H-C(3')	4.07 (<i>m</i>)	4.09 (m)	4.04 (<i>m</i>)		
H-C(4')	3.50 (dd, J = 9.5, 2.5)	3.50 (dd, J = 9.5, 2.5)	3.52 (dd, J = 10.0, 2.5)		
H-C(5')	4.22 (<i>m</i>)	4.23 (dq, J = 9.5, 6.5)	4.22 (<i>m</i>)		
Me(6')	1.35 (d, J = 7.0)	1.39 (d, J = 6.0)	1.40 (d, J = 6.0)		
MeO	3.61 (s)	3.63 (s)	3.63 (s)		
$\operatorname{Cym}^2 \operatorname{H-C}(1'')$	5.14(d, J = 9.5)	5.13 (d, J = 10)	5.14 (d, J = 10.0)		
H-C(3")	4.10 (<i>m</i>)	4.08 (m)	4.09 (<i>m</i>)		
H - C(4'')	3.57 (dd, J = 9.5, 2.5)	3.60 (dd, J = 10.0, 2.0)	3.85 (dd, J = 11.5, 5.0)		
H-C(5")	4.23 (<i>m</i>)	4.25 (dq, J = 9.5, 6.5)	4.19 (<i>m</i>)		
Me(6")	1.57 (d, J = 6.5)	1.63 (d, J = 6.0)	1.82 (d, J = 6.0)		
MeO	3.60(s)	3.58 (s)	3.59 (s)		
Carb ³	AllMe	Thv	AllMe		
H - C(1''')	5.16(d, J = 9.5)	4.80 (d, J = 10)	5.17 (dd, J = 10.5, 2.5)		
H-C(2''')	3.93 (<i>m</i>)	3.95 (m)	3.87(t, J = 9.0)		
H-C(3''')	4.10 (<i>m</i>)	3.63 (m)	3.75(t, J = 8.0)		
H-C(4''')	3.64 (<i>m</i>)	3.65 (m)	3.55 (dd, J = 9.5, 2.5)		
H-C(5''')	4.18 (m)	3.76 (dq, J = 8.5, 6.0)	3.79 (dq, J = 6.0, 3.0)		
Me(6"")	1.52 (d, J = 6.5)	1.62 (d, J = 6.0)	1.59 (d, J = 6.0)		
MeO	3.88(s)	3.93 (s)	3.96 (s)		
$Glc^{4} H - C(1'''')$			4.73 (d, J = 7.5)		
H-C(2'''')			3.83 (<i>m</i>)		
H-C(3'''')			4.28 (<i>m</i>)		
H-C(4'''')			4.22 (<i>m</i>)		
H-C(5'''')			4.09 (<i>m</i>)		
CH ₂ (6'''')			4.38 (<i>m</i>),		
			4.55 (d, J = 7.5)		

Table 2. ¹H-NMR Data ((D₅)pyridine) of Compounds 1-5. δ in ppm, J in Hz.

Stemucronatosides B (2) was isolated as an amorphous powder, and showed positive *Liebermann–Buchard* and *Keller–Kiliani* reactions indicating the presence of a steroidal and 2-deoxysugar(s) moieties in the molecule. It has the same molecular formula, $C_{42}H_{68}O_{16}$, as **1**, as established by quasimolecular ion peak at m/z 851.6 ($[M + Na]^+$) in the EI-MS, the ¹H- and ¹³C-NMR spectra, and the ¹H-detected HMQC experiment. The EI-MS of **2** also displayed other prominent fragments at m/z 867.4 ($[M + K]^+$), 691.3 ($[M + Na - 160]^+$), and 547.2 ($[M + Na - 160 - 144]^+$). Its IR spectrum showed OH (3510 cm⁻¹), C=O (1690 cm⁻¹), olefinic (1646 cm⁻¹), and C-O-C (1085 cm⁻¹) groups. The assignments of the ¹H- and ¹³C-NMR signals of **2** were successfully carried out with ¹H,¹H-COSY, HMQC, and HMBC experiments (*Tables 1* and 2). On the basis of its spectroscopic data, comparison with those of compound **1**, and the results of acid hydrolysis, compound **2** was identified as 12-*O*-deacetylmetaplexigenin 3-[*O*- β -D-thevetopyranosyl-(1 \rightarrow 4)- ∂ - β -D-cymaropyranosyl-(1 \rightarrow 4)- β -D-cymaropyranoside].

The ¹³C-NMR and DEPT spectra (125 MHz, (D₅)pyridine) of compound **2** allowed the attribution of 42 Csignals to 9 Me, 9 CH₂, 17 CH, and 7 quaternary C-atoms. The ¹H-(500 MHz) and ¹³C-NMR data for the aglycone moiety of **2** were similar to those for the aglycone moiety of **1**, indicating that **2** should also be 12-*O*deacetylmetaplexigenin 3-*O*-trioside. The NMR (¹H- and ¹³C-NMR, DEPT, HMQC, and HMBC) data of **2** showed that it contained three anomeric C-signals at δ 95.8, 99.9, and 105.7, correlating with anomeric protons at δ 5.30, 5.13, and 4.80 (each *d*, *J* = 10 Hz, 1 H), respectively, which indicated the presence of three sugar units in **2**.

On mild acid hydrolysis, compound **2** gave 12-*O*-deacetylmetaplexigenin (**4**), D-cymarose, and an unidentified sugar (on TLC). The HMBC and ¹H, ¹H COSY experiments allowed the sequential assignments of the δ (C) and δ (H) for the unidentified sugar as shown in *Tables 1* and 2, starting from the anomeric proton and C-signal at δ 4.80 (d, J = 10.0 Hz) and 105.7. Those findings suggested that the unidentified sugar (detected on TLC) was β -D-thevetose because its NMR data were similar to those in other compounds [9]. As the ¹H-NMR spectrum of **2** exhibited three MeO *s* at 3.58, 3.63, and 3.93, the sugar moiety of **2** consisted of two cymarose and one thevetose units. The coupling constant of each sugar indicated that these sugars had β -D-glycosidic linkages. In the HMBC spectrum, significant correlations were observed between H – C(1') of the β -D-cymaropyranose (δ 5.30, dJ = 10 Hz) and C(3) of the aglycone (δ 77.2), H – C(1'') of the β -D-cymaropyranose (δ 4.80, d, J = 10 Hz) and C(4') of the β -D-cymaropyranose (δ 82.9), and H – C(1''') of the β -D-thevetopyranose (δ 4.80, d, J = 10 Hz) and C(4'') of the β -D-cymaropyranose (δ 82.5), establishing the sugar sequence *O*-D-thevetosyl-(1 \rightarrow 4)-*O*-D-cymarosyl-(1 \rightarrow 4)-*O*-D-cymarosy

Stemucronatosides C (3) was isolated as an amorphous powder that showed positive *Liebermann–Buchard* and *Keller–Kiliani* reactions indicating the presence of a steroidal and 2-deoxysugar moieties in the molecule. It has the molecular formula $C_{50}H_{80}O_{22}$ as deduced from the EI-MS (m/z at 1055.6 ($[M + Na]^+$)) and ¹³C-NMR data. The EI-MS of **3** exhibited other prominent fragment-ion peaks at m/z 995.5 ($[M + Na - 60]^+$) and 833.4 ($[M + Na - 60 - 162]^+$). The IR spectrum showed OH (3510), C=O (1690 cm⁻¹), olefinic (1646 cm⁻¹), and C–O–C (1080) groups. The assignments of the ¹H- and ¹³C-NMR signals of **3** were successfully carried out with ¹H,¹H-COSY, HMQC, and HMBC experiments (*Tables 1* and 2). On the basis of spectroscopic data, comparison with those of compound **5**, and the results of acid hydrolysis, the structure of **3** was assigned as metaplexigenin 3-[$O-\beta$ -D-glucopyranosyl-($1 \rightarrow 4$)-O-6-deoxy-3-O-methyl- β -D-allopyranosyl-($1 \rightarrow 4$)- $O-\beta$ -D-cymaropyranosyl-($1 \rightarrow 4$)- β -D-cymaropyranoside].

The ¹³C-NMR and DEPT spectra (125 MHz, (D₅)pyridine) of **3** allowed the attribution of 50 C-signals to 10 Me, 10 CH₂, 22 CH, and 8 quaternary C-atoms. The ¹H- (500 MHz) and ¹³C-NMR data for the aglycone moiety of **3** were similar to those of metaplexigenin (**5**), the major difference being the absence of signals for an OH group at C(3). The only other difference in the ¹³C-NMR data between **3** and **5** occurred for the atoms C(2), C(3), and C(4): C(2) and C(4) of **3** were shifted upfield by 2.0 and 3.9 ppm, respectively, and C(3) of **3** was shifted downfield by 6.3 ppm in comparison with the corresponding signals of **5**. The NMR (¹H- and ¹³C-NMR, DEPT, HMQC, and HMBC) data of **3** showed that it contained four anomeric C-signals at δ 96.4, 100.4, 104.8, and 106.0, correlating with anomeric protons at δ 5.30 (d, J = 9.5 Hz), 5.14 (d, J = 10.0 Hz), 5.17 (dd, J = 10.5, 2.5 Hz), and 4.73 (d, J = 7.5 Hz), respectively, which indicated the presence of four sugar units in **3**. Thus, compound **3** was believed to be a metaplexigenin 3-*O*-tetraside.

Acid hydrolysis of **3** afforded metaplexigenin (**5**), cymarose, allomethylose (=6-deoxyallose), and glucose as the aglycone and the sugar moieties. ¹³C-NMR Comparison of **3** with **2** showed a glycosylation shift of +8.5 ppm for C(4) of 6-deoxy-3-O-methylallose in **3** [13] [14], indicating that the 4-O should be glucosylated. The coupling constant of each sugar moiety indicated that β -D-glycosidic linkages were present. The sugar sequence of **3** was confirmed by the HMBC spectrum, which showed prominent cross-peaks for H–C(1') of the β -Dcymaropyranose (δ 5.30, d, J = 9.5 Hz) to C(3) of the aglycone (δ 77.6), H–C(1'') of the β -D-cymaropyranose (δ 5.14, d, J = 10.0 Hz) to C(4') of the β -D-cymaropyranose (δ 83.3), H–C(1''') of the 6-deoxy-3-O-methyl- β -Dallopyranose (δ 5.17, dd, J = 10.5, 2.5 Hz) to C(4'') of the β -D-cymaropyranose (δ 82.9), and H–C(1''') of the β -D-glucopyranose (δ 4.73, d, J = 7.5 Hz) to C(4''') of the 6-deoxy-3-O-methyl- β -D-allopyranose (δ 83.1). Thus, the sugar sequence was established as O-D-glucosyl-(1 \rightarrow 4)-O-D-6-deoxy-3-O-methyl-D-allosyl-(1 \rightarrow 4)-O-D-cymarosyl-(1 \rightarrow 4)-D-cymaroside attached at C(3) of the aglycone. The immunomodulating activities of compounds 1-3 were determined *in vitro* against concanavalin-A- and lipopolysaccharide-induced (Con-A- and LPS-induced) proliferation of mice splenocytes by means of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2*H*-tetrazolium bromide (MTT) colorimetric assay [15] and shown in *Table 3*. Compounds 1-3 significantly enhanced the Con-A- and LPS-induced mice splenocyte proliferation at the concentrations of $0.01-100.0 \,\mu$ g/ml. The concentration-effect proliferation relationship seems to be bell-shaped.

Concentration [µg/ml]	Mitogen	1	2	3
0.00	ConA		2.047 ± 0.058	
0.01		$2.540 \pm 0.041 ^{***}$	$2.240 \pm 0.066 **$	$2.412 \pm 0.124^{**}$
0.10		$2.602 \pm 0.091^{***}$	$2.566 \pm 0.035^{***}$	$2.671 \pm 0.098^{***}$
1.00		$2.681 \pm 0.040 ***$	$2.672 \pm 0.030^{***}$	$2.534 \pm 0.053^{***}$
10.0		$2.600 \pm 0.032^{***}$	$2.835 \pm 0.085^{***}$	$2.387 \pm 0.102^{**}$
100.0		$2.566 \pm 0.042 ^{***}$	$2.656 \pm 0.125^{***}$	$2.285 \pm 0.068^{**}$
0.00	LPS		1.542 ± 0.059	
0.01		$1.859 \pm 0.046^{***}$	$1.763 \pm 0.077 ^{**}$	$1.793 \pm 0.053 ^{**}$
0.10		$1.939 \pm 0.078^{***}$	$1.954 \pm 0.065^{***}$	$1.822 \pm 0.045^{***}$
1.00		$1.955 \pm 0.039^{***}$	$1.962 \pm 0.054 ^{***}$	$1.799 \pm 0.045^{***}$
10.0		$1.910 \pm 0.042^{***}$	$1.877 \pm 0.040^{***}$	$1.725 \pm 0.037 **$
100.0		$1.652 \pm 0.038 *$	$1.830 \pm 0.075 **$	$1.708 \pm 0.028^{**}$

Table 3. Effect of Three Compounds on in vitro Mitogen-Induced Mice Splenocyte Proliferation^a)

^a) Splenocytes were cultured with the various concentrations of these compounds and Con A (final concentration 5 µg/ml) or LPS (final concentration 10 µg/ml) for 48 h. Cellular proliferation was measured by the MTT method as described in the text, and shown as a stimulation index. The values are presented as means \pm standard error (n=4). Significant differences with 0 µg/ml were designated as *(P<0.05), **(P<0.01), and ***(P<0.001).

We gratefully acknowledge the *Zhejiang Provincial Natural Science Foundation of China* Grant-in Aid No. M303749) and *Zhejiang Provincial Science and Technology Council* (Grant-in Aid No. 2004F13G1360002) for financial support.

Experimental Part

General. TLC: precoated silica gel 60 F_{254} plates and $Rp C_{28}$ (Merck); detection by spraying with 10% H_2SO_4 followed by heating. Column chromatography (CC): silica gel (200–300 mesh; Qingdao), Rp- C_{18} silica gel (40–63 µm, Merck), and Sephadex LH-20 (Pharmacia). IR Spectra: KBr pellets; Perkin-Elmer-577 spectrometer; in cm⁻¹. ¹H- and ¹³C-NMR, DEPT, ¹H, ¹H-COSY, HMQC and HMBC Spectra: Bruker-DRX-500 instrument; at 500 (¹H) and 125 MHz (¹³C); SiMe₄ as internal standard in (D₅)pyridine. EI-MS: Bruker-Esquire-3000p^{elus} mass spectrometer.

Plant Material. The roots of *Stephanotis mucronata* were obtained from Yueqing, Zhejiang province, China. A voucher specimen (No. 200309) was identified by Prof. *Zhang Zhi-Guo* and deposited in the Laboratory of Natural Products Chemistry, Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, China.

Extraction and Isolation Procedures. The dried roots of *Stephanotis mucronata* (10 kg) were ground and extracted three times with 95% EtOH under reflux for 2 h. The extracts were evaporated. This EtOH extract was extracted with CHCl₃ under reflux, and a yellow residue (520 g) was obtained on evaporation of the CHCl₃ extract. The residue was subjected to CC (silica gel, gradient CHCl₃/MeOH $100:0 \rightarrow 2:1$): 10 main fractions. *Fr. 3* (12 g) was subjected to CC (*Rp-C*₁₈, MeOH/H₂O 1:1; then *Sephadex LH-20*, MeOH): **1** (170 mg). *Fr. 4* (9 g) was subjected to CC (*Rp-C*₁₈ and *Sephadex LH-20*): **2** (713 mg). *Fr. 6* (25 g) was separated by CC (*Rp-C*₁₈ and *Sephadex LH-20*): **3** (245 mg).

Stemucronatosides $A = (3\beta, 12\beta, 14\beta, 17\alpha)^{-3} \cdot [O-6-Deoxy^{-3}-O-methyl^{-}\beta^{-}D-allopyranosyl^{-}(1 \rightarrow 4)^{-}O^{-}2, 6-dideoxy^{-}3^{-}O^{-}methyl^{-}\beta^{-}D^{-}rib^{-}hexopyranosyl^{-}(1 \rightarrow 4)^{-}2, 6-dideoxy^{-}3^{-}O^{-}methyl^{-}\beta^{-}D^{-}rib^{-}hexopyranosyl^{-}(1 \rightarrow 4)^{-}2, 6-dideoxy^{-}3^{-}O^{-}methyl^{-}\beta^{-}D^{-}rib^{-}hexopyranosyl^{-}(1 \rightarrow 4)^{-}2, 6-dideoxy^{-}3^{-}O^{-}methyl^{-}\beta^{-}D^{-}rib^{-}hexopyranosyl^{-}(1 \rightarrow 4)^{-}2, 6-dideoxy^{-}3^{-}O^{-}methyl^{-}\beta^{-}D^{-}rib^{-}hexopyranosyl^{-}(2 \rightarrow 4)^{-}2, 6-dideoxy^{-}3^{-}D^{-}rib^{-}D^{-}rib^{-}hexopyranosyl^{-}D^{-}rib^{-}hexopyranosyl^{-}D^{-}rib^{-}hexopyranosyl^{-}D^{-}rib^{-}hexopyranosyl^{-}D^{-}rib^{-}hexopyranosyl^{-}D^{-}rib^{-}hexopyranosyl^{-}D^{-}rib^{-}hexopyranosyl^{-}D^{-}rib^{-}hexopyranosyl^{-}D^{-}rib^{-}hexopyranosyl^{-}hexopyranosyl^{-}hexopyranosyl^{-}D^{-}rib^{-}hexopyranosyl^{-}hexopyranosyl^{-}hexopyranosyl^{-}hexopyranosyl^{-}hexopyranosyl^{-}hexopyranosyl^{-}hexopyranosyl^{-}hexopyranosyl^{-}hexopyranosyl^{-}hexopyranosyl^{-}hexopyranosyl^{-}hexopyranosyl^{-}hexopyranosyl^{-}hexopyranosyl^{-}hexopyranosyl^{-}hexopyranosyl^{-}hexopyranosyl^{-}he$

Stemucronatosides B (= (3β ,12 β ,14 β ,17 α)-3-{[O-6-Deoxy-3-O-methyl- β -D-glucopyranosyl-(1 \rightarrow 4)-O-2,6-dideoxy-3-O-methyl- β -D-ribo-hexopyranosyl-(1 \rightarrow 4)-2,6-dideoxy-3-O-methyl- β -D-ribo-hexopyranosyl]oxy]-3,8,12,14,17-pentahydroxypregn-5-en-20-one; **2**): Amorphous powder. IR (KBr): 3510, 1690, 1646, 1085. ¹H- and ¹³C-NMR: Tables I and 2. EI-MS (pos.): 851.6 ([M + Na]⁺), 867.4 ([M + K]⁺), 691.3 ([M + Na – Thv]⁺), 547.2 ([M + Na – Thv – Cym]⁺).

Stemucronatosides C (=(3 β ,12 β ,14 β ,17 α)-12-(Acetyloxy)-3-{[O- β -D-glucopyranosyl-(1 \rightarrow 4)-O-6-deoxy-3-O-methyl- β -D-allopyranosyl-(1 \rightarrow 4)-O,2,6-dideoxy-3-O-methyl- β -D-ribo-hexopyranosyl-(1 \rightarrow 4)-2,6-dideoxy-3-O-methyl- β -D-ribo-hexopyranosyl]oxy]-3,8,14,17-tetrahydroxypregn-5-en-20-one; **3**): Amorphous powder. IR (KBr): 3510, 1690, 1646, 1080. ¹H- and ¹³C-NMR: Tables 1 and 2. EI-MS (pos.): 1055.6 ([M+Na]⁺),995.5 ([M+Na – MeCOOH]⁺), 833.4 ([M+Na – MeCOOH – Glc]⁺).

Acidic Hydrolysis of Glycosides 1–3. To a soln. of each compound (30 mg) in MeOH (10 ml) was added 0.1N H₂SO₄ (10 ml). The soln. was kept at 60° for 2 h, then diluted with H₂O (20 ml), and concentrated to 30 ml. The soln. was kept at 60° for a further hour and then neutralized with sat. aq. Ba(OH)₂ soln. The precipitation was filtered off, the filtrate evaporated, and the residue subjected to CC (silica gel, CHCl₃/MeOH 100 :1 \rightarrow 50 :1): **4** (12 mg and 10.5 mg from **1** and **2**, resp.) or **5** (15 mg from **3**). The sugar components in each hydrolysate were identified by TLC comparison with authentic samples: $R_{\rm f}$ of D-cymarose 0.42 (CHCl₃/MeOH 9 :1) and 0.35 (Me₂CO/petroleum ether 2 :3).

12-O-DeacetyImetaplexigenin (=(3β ,12 β ,14 β ,17 α)-3,8,12,14,17-Pentahydroxypregn-5-en-20-one; 4): Colorless needles. IR (KBr): 3510, 1690. ¹H- and ¹³C-NMR: Tables 1 and 2. EI-MS (pos.): 403.1 ([M+Na]⁺).

 $Metaplexigenin (= (3\beta, 12\beta, 14\beta, 17\alpha) - 12 - (Acetyloxy) - 3, 8, 14, 17 - tetrahydroxypregn-5 - en-20 - one; 5): Colorless needles. IR (KBr): 3510, 1690. ¹H- and ¹³C-NMR:$ *Tables 1*and 2. EI-MS (pos.): 445.1 ([M + Na]⁺).

Splenocyte Proliferation Assay. Single-cell suspensions were prepared as previously described [15]. Splenocytes were seeded into four wells of a 96-well flat-bottom microtiter plate (*Nunc*) at a cell density of 1×10^7 per l in 100 µl of complete medium where 100 µl of 1-3 (0.01 – 100 µg/ml), and Con A (final concentration 5 mg·l⁻¹), LPS (final concentration 10 mg·l⁻¹), or medium were then added. The plate was incubated at 37° in a humid atmosphere with 5% CO₂. After 44 h, 50 µl of MTT solution (2 g·l⁻¹) was added to each well and incubated for 4 h. The microtiter plates were centrifuged ($1400 \times g$, 5 min), and the untransformed MTT was removed carefully by pipetting. To each well, 200 µl of a Me₂SO working soln. (192 µl of Me₂SO with 8 µl of HCl 1 mol·l⁻¹) was added, and the absorbance (*A*) was evaluated in an ELISA reader at 570 nm with a 630 nm reference after 15 min.

REFERENCES

- [1] S. Christtiane, R. Klaus, B. Eberhard, Liebigs Ann. Chem. 1993, 10, 1057.
- [2] R. Hanada, F. Abe, Y. Mori, T. Yamauchi, Phytochemistry 1992, 31, 3547.
- [3] S. Q. Luo, L. Z. Lin, G. A. Cordell, L. Xue, M. E. Johnson, *Phytochemistry* 1993, 34, 1615.
- [4] Y. Kaushman, D. Green, C. Garcia, A. D. Garcia, J. Nat. Prod. 1991, 54, 1651.
- [5] Q. Z. Mu, J. Lu, Q. Zhou, Sci Sin. Ser. B 1987, 29, 295 (Chem. Abstr. 1987, 106, 81545).
- [6] J. L. Yuan, W. P. Ding, J. P. Shi, G. X. Chen, Acta Universitatis Medicinae TngJi 1991, 20, 81.
- [7] R. S. Zhang, Y. Y. Ye, X. Y. Li, X. Y. Zhang, Acta Chimica Sinica 2003, 61, 1991.
- [8] S. Tsukamoto, K. Hayashi, H. Mitsuhashi, Chem. Pharm. Bull. 1985, 33, 2252.
- [9] K. Yoshikawa, N. Okada, Y. Kann, S. Arihara, Chem. Pharm. Bull. 1996, 44, 1790.
- [10] K. Yoshikawa, K. Matsuchika, S. Arihara, H. C. Chang, J. D. Wang, Chem. Pharm. Bull. 1998, 46, 1239.
- [11] T. Nakagawa, K. Hayashi, K. Wada, H. Mitsuhashi, Tetrahedron Lett. 1982, 23, 5431.
- [12] R. Vleggaar, F. R. van Heerden, L. A. P. Anderson, G. L. Erasmus, J. Chem. Soc., Perkin Trans. 1 1993, 483.
- [13] R. Kasai, M. Ogihara, J. Asakawa, K. Mizutani, O. Tanaka, *Tetrahedron* 1979, 35, 1427.
- [14] K. A. Ei Sayed, A. F. Halm, A. M. Zaghoul, J. D. Mechesney, M. P. Stone, M. Voeler, K. Hayashi, *Phytochemistry* 1995, 39, 403.
- [15] U. Wagner, E. Burkhardt, K. Failing, Vet. Immunol. Immunophathol. 1999, 70, 151.

Received April 17, 2004