

Tetrahedron Letters 44 (2003) 1133-1135

TETRAHEDRON LETTERS

MeOPEG-bounded azide cycloadditions to alkynyl dipolarophiles

Luisa Garanti and Giorgio Molteni*

Università degli Studi di Milano, Dipartimento di Chimica Organica e Industriale, via Golgi 19, 20133 Milano, Italy Received 27 November 2002; revised 13 December 2002; accepted 16 December 2002

Abstract—The MeOPEG-supported azide 2 was reacted in the presence of a number of alkynyl dipolarophiles. The corresponding 1-MeOPEG-supported-1,2,3-triazoles were obtained in nearly quantitative yields. Acidic hydrolysis of the cycloadducts **5b** and **6b** caused the removal of the MeOPEG pendant giving 4-methoxycarbonyl-1,2,3-triazole **9** and 5-methoxycarbonyl-1,2,3-triazole **10**, respectively. © 2003 Elsevier Science Ltd. All rights reserved.

As it was disclosed from Huisgen's works,¹ the 1,3dipolar cycloaddition between organic azides and alkynyl dipolarophiles represent the choice method for the direct synthesis of variously substituted 1,2,3-triazoles.² The latter may display a wide range of biological activity as anti-HIV³ and anti-microbial⁴ agents as well as selective β_3 adrenergic receptor agonist.⁵ Due to these attractive activities, new methods for the regioselective synthesis of these compounds should be of interest. Within this context, it could be considered that the polymer-supported synthesis of small heterocyclic molecules is the subject of intense research activity,⁶ since it represents one of the most promising ways to generate small molecular libraires in the field of combinatorial chemistry.⁷

Recently, soluble polymers like poly(ethylene glicol) (PEG) and linear polystyrene (LPS)⁸ have gained popularity among organic chemists due to a number of advantageous features like the analytical simplicity, the high reactivity and the low price of the starting materials. Furthermore, the typical ease of the reaction work-up parallels one of the most appreciated features of solid-supported synthesis. The first example of 1,3-dipolar intermediate linked to the PEG was described recently by Janda and co-workers⁹ and is concerned with the generation of a supported nitrile oxide. Following this approach, we undertook the first study on the 1,3-dipolar cycloadditions between the soluble-polymer-supported azide $\mathbf{2}$ and a number of alkynyl dipolarophiles.

The monomethylether of poly(ethylene glycol) with a M_w of 5000 (MeOPEG) was devised as the suitable soluble support for our purposes. MeOPEG-supported azide 2 was obtained by treating MeOPEG-mesylate 1¹⁰ with sodium azide in anhydrous dimethylformamide (Scheme 1).

First, in order to demonstrate the feasibility of the soluble-polymer-supported azide cycloadditions, we heated **2** in dry toluene and in the presence of an excess of DMAD (10 mol. equiv.). 1-MeOPEG-supported-4,5-bismethoxycarbonyl-1,2,3-triazole **3** was obtained with 98% yield as a white solid by simple precipitation from the reaction crude with diethylether.¹¹ Structural assignements of **3** rely upon ¹H NMR analysis¹² and are fully consistent with those of similar 4,5-bismethoxycarbonyl-1,2,3-triazoles.¹³

Next, we reacted 2 with monosubstituted acetylenes 4 obtaining a mixture of the regioisomeric MeOPEG-supported cycloadducts 5 and 6 (Scheme 2).¹⁴ Products, yields and product ratio are summarised in Table 1.¹⁵ All cycloadditions were fully satisfactory in terms of

^{0040-4039/03/\$ -} see front matter 0 2003 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)02844-7

^{*} Corresponding author. Tel.: +0039-02-50314141; fax: +0039-02-50314139; e-mail: giorgio.molteni@unimi.it

Scheme 2.

 Table 1. Cycloaddition between MeOPEG-supported azide

 2 and alkynyl dipolarophiles
 4

R	Product yield (%) $5+6$	Product ratio ^a	
		5:6	7:8
Ph	98	80:20	50:50
COOMe	98	83:17	82:18
CH ₂ Cl	96	70:30	66:34
CH ₂ Br	96	70:30	_
CH ₂ OH	95	57:43	_
CH ₂ CH ₂ OH	93	76:24	_

^a Determined from ¹H NMR.

product yield, while the ratio **5:6** was generally similar to that of **7:8** as it was reported previously¹⁶ for the reaction between *n*-pentylazide and the appropriate alkynyl dipolarophile (Fig. 1 and Table 1).

Finally, the removal of the MeOPEG pendant from the mixture of supported cycloadducts 5b+6b was accomplished in mild conditions (see Scheme 3) giving 4-methoxycarbonyl-1,2,3-triazole 9^{17} or 5-methoxycar-

Figure 1.

bonyl-1,2,3-triazole 10,¹ respectively, with 83% overall yield. In conclusion, the present study provides the first insight into the cycloaddition between the MeOPEG-supported azide 2 and a number of alkynyl dipolar-ophiles. Further developments are in progress.

Acknowledgements

We thank the NMR specialist Dr. Lara De Benassuti, University of Milan, for ¹H NMR analyses of the MeOPEG-supported materials.

References

- Huisgen, R.; Knorr, R.; Möbius, L.; Szeimnies, G. Chem. Ber. 1965, 98, 4014.
- Lwowsky, W. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley-Interscience: New York, 1984; Vol. 1, Chapter 4, pp. 621–627.
- (a) Alvarez, R.; Velazquez, S.; San, F.; Aquaro, S.; De, C.; Perno, C.; Karlsson, A.; Balzarini, J.; Camarasa, M. J. J. Med. Chem. 1994, 37, 4185; (b) Velazquez, S.; Alvarez, R.; Perez, C.; Gago, F.; De, C.; Balzarini, J.; Camarasa, M. J. Antivir. Chem. Chemoter. 1998, 9, 481.
- Genin, M. J.; Allwine, D. A.; Anderson, D. J.; Barbachyn, M. R.; Emmert, D. E.; Garmon, S. A.; Graber, D. R.; Grega, K. C.; Hester, J. B.; Hutchinson, D. K.; Morris, J.; Reischer, R. J.; Ford, C. W.; Zurenko, G. E.; Hamel, J. C.; Schaadt, R. D.; Stapert, D.; Yagi, B. H. J. Med. Chem. 2000, 43, 953.
- Brockunier, L. L.; Parmee, E. R.; Ok, H. O.; Candelore, M. R.; Cascieri, M. A.; Colwell, L. F.; Deng, L.; Feeney, W. P.; Forrest, M. J.; Hom, G. J.; MacIntyre, D. E.; Tota, L.; Wywratt, M. J.; Fisher, M. H.; Weber, A. E. Bioorg. Med. Chem. Lett. 2000, 10, 2111.
- (a) Früchtel, J. S.; Jung, G. Angew. Chem., Int. Ed. Engl. 1996, 35, 17; (b) Allin, S. M.; Sharma, P. K. Synthesis 1997, 1217; (c) Ellmann, J. A. Chem. Rev. 1996, 96, 555; (d) Krcňák, V.; Holladay, M. W. Chem. Rev. 2002, 102, 61.
- Nefzi, A.; Otresh, J. M.; Houghten, R. A. Chem. Rev. 1997, 97, 449.
- 8. Toy, P. H.; Janda, K. D. Acc. Chem. Res. 2000, 33, 546.
- Lòpez-Pelegrìn, J. A.; Wentworth, P., Jr.; Sieber, F.; Metz, W. A.; Janda, K. D. J. Org. Chem. 2000, 65, 8527.
- Zhao, X.-y.; Metz, W. A.; Sieber, F.; Janda, K. D. Tetrahedron Lett. 1998, 39, 8433.
- 11. The yields of MeOPEG-bounded materials were determined by weight of pure compounds. The purity of MeOPEG-bounded compounds was determined by ¹H NMR analyses with pre-saturation of the MeOPEG methylene signals at 3.64 δ .
- 12. ¹H NMR data of **3** (CDCl₃): δ 3.28 (2H, t, *J*=7.0, CH₃OCH₂-), 3.33 (3H, s, CH₃OCH₂-), 3.80 (2H, t, *J*=7.0, -CH₂CH₂N<), 3.94 (6H, s, CH₃COO-), 4.81 (2H, t, *J*=7.0, -CH₂CH₂N<).
- 13. Zalkow, L. H.; Hill, R. H. Tetrahedron 1975, 31, 831.

- 14. For a typical run: A solution of 2 (5.00 g, 1.0 mmol) and 4 (10.0 mmol) in dry toluene (40 mL) was refluxed for 20 h. Diethyl ether (50 mL) was added, the white precipitate was collected by filtation off affording a mixture of the MeOPEG-supported cycloadducts 5+6 (see Table 1).
- The following data are selected from the ¹H NMR analyses of the mixtures 5+6 in CDCl₃ solutions. 5a: δ 7.97 (1H, s, C₅-H); 6a: δ 7.65 (1H, s, C₄-H); 5b: δ 8.30 (1H, s, C₅-H); 6b: δ 8.06 (1H, s, C₄-H); 5c: δ 7.79 (1H, s, C₅-H);

6c: δ 7.58 (1H, s, C₄- \underline{H}); **5d**: δ 7.84 (1H, s, C₅- \underline{H}); **6d**: δ 7.65 (1H, s, C₄- \underline{H}); **5e**: δ 7.78 (1H, s, C₅- \underline{H}); **6e**: δ 7.60 (1H, s, C₄- \underline{H}); **5f**: δ 7.62 (1H, s, C₅- \underline{H}); **6f**: δ 7.51 (1H, s, C₄- \underline{H}).

- Tsypin, G. I.; Timofeeva, T. N.; Melnikov, V. V.; Gidaspov, B. V. Zh. Org. Chim. 1975, 11, 1395 and 1977, 13, 1395.
- 17. Woerner, F. P.; Reimlinger, H. A. Chem. Ber. 1970, 103, 1908.