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ABSTRACT
Motivation: There has been considerable interest in
developing computational techniques for inferring genetic
regulatory networks from whole-genome expression
profiles. When expression time series data sets are avail-
able, dynamic models can, in principle, be used to infer
correlative relationships between gene expression levels,
which may be causal. However, because of the range of
detectable expression levels and the current quality of the
data, the predictive nature of such inferred, quantitative
models is questionable. Network models derived from
simple rate laws offer an intermediate level analysis, going
beyond simple statistical analysis, but falling short of a
fully quantitative description. This work shows how such
network models can be constructed and describes the
global properties of the networks derived from such a
model. These global properties are statistically robust and
provide insights into the design of the underlying network.
Results: Several whole-genome expression time series
data sets from yeast microarray experiments were an-
alyzed using a Markov-modeling method (Dewey and
Galas, Func. Integr. Genomics, 1, 269–278, 2001) to infer
an approximation to the underlying genetic network. We
found that the global statistical properties of all the result-
ing networks are similar. The overall structure of these
biological networks is distinctly different from that of other
recently studied networks such as the Internet or social
networks. These biological networks show hierarchical,
hub-like structures that have some properties similar to
a class of graphs known as small world graphs. Small
world networks exhibit local cliquishness while exhibiting
strong global connectivity. In addition to the small world
properties, the biological networks show a power law or
scale free distribution of connectivities. An inverse power
law, N (k) ∼ k−3/2, for the number of vertices (genes) with
k connections was observed for three different data sets
from yeast. We propose network growth models based on
gene duplication events. Simulations of these models yield
networks with the same combination of global graphical
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INTRODUCTION
The transcriptome, the mRNA expression levels of all
genes in an organism, can now be explored with DNA
microarray technology. Time series expression profiles
provide a rich source of biological information and allow
the dynamics of gene expression to be modeled. For the
computational biologist attempting to interpret and model
genome-wide phenomena, this wealth of information
provides both significant opportunities and challenges.
In principle, we can use functional genomic data as
the basis for creating systems models that detail all the
specific interactions of each component of the system.
Alternatively, we may use the data to attempt to deduce
general design features that are independent of the specific
details of the system. Both approaches are fraught with
difficulties, not only because of the complexity of the
systems, but also because the underlying quality of the
current data severely limits detailed quantitative modeling.
Short of such quantitative descriptions, but better than
qualitative phenomenological models, are analyses of the
global properties of these systems.

Recent analyses of network properties of protein–
protein interactions and of metabolic maps have provided
some insight into the structure of these networks (Uetz et
al., 2000; Jeong et al., 2000; Barabási and Albert, 1999).
In the present work, we describe global analyses based
on our method (Dewey and Galas, 2001) for generating
gene networks from time series of expression profiles.
The statistical properties of networks derived from DNA
microarray data reveal unique features characteristic of
both scale-free and ‘small world’ networks. From these
features, we can infer some design characteristics of the
underlying networks, and speculate about their origins.
This is done by simulating network growth with a gene
duplication model.
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There has been considerable recent interest in the net-
work structure of a diverse range of systems, including
the Internet, communities of actors, scholarly citations,
metabolic networks and ecological systems, among oth-
ers (Jeong et al., 2000; Barabási and Albert, 1999; Al-
bert and Barabási, 2001; Strogatz, 2001; Amaral et al.,
2000). Three main categories of networks have been used
to model these various systems. They are: random net-
works (Cohen, 1988; Kauffman, 1969), small world net-
works (Strogatz, 2001; Watts, 1999) and growing random
networks (GRNs; Jeong et al., 2000; Barabási and Albert,
1999; Krapivsky et al., 2000; Dorogovtsev and Mendes,
2001). Random graphs have been extensively studied and
are constructed by randomly connecting a set of nodes.
Small world graphs are generated from a regular starting
lattice. Edges in this lattice are then randomly ‘rewired’
to remote nodes. This provides strong local structure as
well as global connectivity. Graphs can also be constructed
from non-equilibrium growth models that start with a seed
graph and add nodes and connections according to some
prescribed set of preferences. Often a ‘rich get richer’ set
of preferences are used, where the newly added nodes are
preferentially connected to nodes of high connectivity.

Often the choice of model is dictated by the specific
graphical property under investigation. For instance, small
world models were originally motivated by the observa-
tion of networks that have high clustering coefficients and
short mean path lengths. The cluster coefficient character-
izes the extent to which vertices adjacent to any vertex are
adjacent to each other. In social networks it is the degree
that a persons acquaintances are acquainted to each other.
The cluster coefficient is calculated by averaging over all
vertices, the fraction of vertices adjacent to a given ver-
tex that are adjacent to each other. The cluster coefficient
varies from 0 to 1 with 1 indicating that all the neighbor-
ing nodes are connected to one another. The characteristic
path length is found by determining the number of edges
on the shortest path connecting any two vertices and aver-
aging this number over all pairs of vertices. GRNs, on the
other hand, were developed to explain the scale-free distri-
bution of node connectivities, a property that the original
small world models do not have. Scale-free distributions
have no characteristic length scale and follow power law
behavior. Random graphs show an interesting phase tran-
sition in the ‘connectedness’ of the graph, but do not show
small world or scale-free behavior. When matching a given
model to a natural network phenomenon, it is important to
examine a range of graphical parameters for full discrimi-
nation between potential models.

In this work, we show how network models of gene
expression can be obtained from a dynamic model of
whole genome expression. The resulting networks are
analyzed by determining three global graph properties—
the average path length, the clustering coefficient and the

connectivity scaling exponent. As will be seen, no existing
model can account for the combined properties of the gene
expression networks. To explain these results, we propose
a new network growth model based on gene duplication
events. Computer simulations indicate that this model can
adequately describe the gene expression graph parameters.

METHODS AND IMPLEMENTATION
Networks from dynamic models of gene expression
There have been a number of recent attempts to analyze
time series data for whole genome expression profiles
(Dewey and Galas, 2001; Holter et al., 2001; Heyer et
al., 1999; DeRisi et al., 1997; Spellman et al., 1998)).
Interestingly, this does not require the complexity of
detailed non-linear models of gene expression, but needs
only simple, linear models (Dewey and Galas, 2001;
Holter et al., 2001)). These previous studies have focused
on the cell-cycle and diauxic shift data in the yeast Sac-
charomyces cerevisiae (DeRisi et al., 1997; Spellman et
al., 1998). In both cases, the system is prepared in a given
physiological state at the initial time point and changes
in gene expression levels are measured as it moves to
a new state. These experiments have some similarity
to traditional perturbation–relaxation experiments in
physics and chemistry. Given this analogy, it is perhaps
not surprising that the time dependence of the expression
profiles can be well represented by simple linear response
models.

Our previous analysis of expression time series is based
on a simple dynamical model (Dewey and Galas, 2001)
that includes both linear and non-linear kinetic terms. This
model is briefly summarized here. The time dependence of
the system is represented by the rate law given below:

A(t) = �1 A(t − 1) + A(t − 1)AT(t − 1)�2 (1)

where A(t) is a matrix of the gene expression profiles at
different points in time. A(t) = (â(2), . . . , â(t)) where
â(t) is a vector representing the expression levels of all
genes in the genome at time, t = i . The ratio values from
the public domain data sets were used (DeRisi et al., 1997;
Spellman et al., 1998), rather than the log ratios, as these
values are proportional to the mRNA concentration and
are consistent with a first-order chemical kinetic model.
The matrix A(t − 1) is a time-lagged matrix given by:
A(t − 1) = (â(1), . . . , â(t − 1)). The first term in
Equation 1 represents a simple linear response and the
elements of the �1 matrix λi j , give the influence of the
expression level of the jth gene on the production of the ith
gene. The second term, A(t − 1)AT(t − 1), in Equation 1,
the gene covariance at a previous time, introduces non-
linearity into the model.

The two matrices �1 and �2 generated by this data
analysis are components of the weighted connectivity
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matrix of a graph of interactions between gene expres-
sion levels (Dewey and Galas, 2001). We simplify the
analysis by using a sparse, binary matrix representation
of the adjacency matrix. This is achieved by applying
a threshold to the entries in the transition matrix. The
absolute values of the matrix elements are set equal
to 1 if they are above a certain threshold, ε, and are
set equal to 0 below this threshold. For high values
of the threshold, the resulting matrix will be a sparse
adjacency matrix. It is a digraph (non-symmetric matrix)
showing the connectivity of the biological network. We
do not differentiate here between positive and negative
values for members in the transition matrix, as we are
only interested in the underlying connectivity. Because
the non-linear transition matrix is not of the same di-
mensionality as the linear term, these matrix elements
cannot be directly compared. From a chemical kinetic
perspective, the �1 matrix is proportional to a matrix
of first order rate constants and �2 is proportional to
second order rate constants. A second order rate constant
can be converted into a pseudo-first order rate constant
by multiplying by the appropriate concentration. We
perform the equivalent operation here to compare �1
and �2. Therefore, we use the pseudo-first order matrix
defined by: �∗

2 = �2 AT(t − 1) which is of the same
dimensionality as �1.

The networks derived in this work represent the phe-
nomenological influence of one gene expression level on
another. Thus, when the level of expression of gene i in-
fluences the expression of gene j , then an arrow is drawn
from node i to node j . This network is strictly speaking
not a genetic regulatory network. Rather it is a network de-
rived from a kinetic model that shows the influence of one
expression level on another. The network obtained from
�1 gives the linear response or passive elements of the
system. Networks obtained from �∗

2 = �2 AT(t − 1) rep-
resents a very specific form of a non-linear response within
this model and are the active elements of the system.

Gene duplication model
Gene duplication is a mechanism for network growth
that is particular to biological systems and has strong
implications for their evolution. This work explores
specific duplication models to simulate the graph prop-
erties of the networks constructed from experimental
data. Figure 1 illustrates how a duplication event can
affect a network. Duplication results in the creation of
a new node that has inherited all the connectivity of
the parent node, as would be true of a duplicated gene
(including its cis regulatory elements). This results in
an increase by one of the number of vertices with the
degree of the parent. It also results in an increase of
one in the degree of each of the neighbors. In a ‘pure’
duplication model, this is the only event that occurs.

This kind of growth model by itself has some interesting
properties but it does not support a scale free distribution
of connectivities. We have, therefore, examined a number
of ‘mixed’ models that include gene duplication plus a
second event. Features of two such models are illustrated
in Figure 1. The ‘partial duplication’ model (Figure 1b)
consists of duplication plus random removal of edges
from the daughter node. A second model, ‘duplication
plus preferential re-wiring’ (Figure 1c) involves dupli-
cation followed by random rewiring of one of the edges
in the network. In our preferential rewiring model, the
new node that the edge is rewired to is chosen at random
according to the same preference function in the previous
GRN models (Jeong et al., 2000; Barabási and Albert,
1999)) i.e. the probability of connecting the edge to a node
is proportional to the fraction of edges in the network
that are incident at that node. These mixed models have
formal similarity to a previous model used to describe the
effect of gene duplication on protein–protein interaction
networks (Wagner, 2001). In this previous work, network
growth was not explicitly treated. Recently, a network
growth model that yields scale-free networks has been
described that involves gene duplication events (Rzhetsky
and Gomez, 2001). This is a specific model involving
domain shuffling and is distinctly different from the
ones presented in this work. In all of these models, gene
duplication is followed by a second event that breaks
the parent–daughter symmetry inherent in a pure gene
duplication model. This results in a broader range of node
connectivities.

To assess the properties of the gene duplication models,
we simulated network growth based on these processes.
In these simulations, we start with a small initial, seed
network. Two different seeds were considered: a random
network seed and a network seed with a high clustering
coefficient. The influence of the seed reveals those graph
parameters that are influenced by initial conditions and
those that are due to the dynamics of the growth process.
Starting with the seed graph, the network is grown in a
probabilistic manner, following the simple set of dynamic
rules illustrated in Figure 1. A node from the entire
network is chosen at random to be duplicated. In the partial
duplication models, edges are then removed at random
from the new daughter node. On average, half of the
edges are removed. In the mixed model with preferential
rewiring, both duplication and rewiring are treated as
random processes, each occurring with a probability
of one half. This parameter could also be varied, but
we found that this condition was sufficient to create
satisfactory models. The growth process then proceeds
through a random sequence of duplication and rewiring
events.
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Fig. 1. Schematic representation of network growth through gene
duplication. (a) Shows pure gene duplication where a new node is
created by duplicating the connectivity of the parent. This results in
an increase in degree of the neighboring nodes. Node i is duplicated
to give i ′. Nodes j , k, l are neighbors. (b) The partial duplication
model where node i is duplicated to i ′ but not all the original
connections are retained. (c) Shows a rewiring process where edge
i– j is rewired to becom i–k.

RESULTS
Network properties of expression dynamics
Our analysis allowed us to determine digraphs for each set
of experimental conditions. We considered three examples
from the yeast data sets: the diauxic shift data, the cell
cycle data (alpha factor) and the cell cycle data (cdc20).
For each data set we generated a range of digraphs by
varying the threshold for the linear and non-linear terms
in the model.

Two global network parameters, the clustering coeffi-
cient and the characteristic path length, were determined
from the networks. The results in Table 1 show that
the gene expression graphs have very high clustering
coefficients and relatively low average path lengths. Also,
shown in Table 1 are the corresponding parameters for
randomly generated graphs with an identical number of
nodes and edges as the yeast networks. The clustering
coefficients for the yeast networks are much higher than
the equivalent random graphs while the characteristic
path lengths are quite similar. The path length in random

graphs depends on the ratio of edges to nodes and is low
under the present conditions.

On the basis of the clustering coefficient and mean
path length, it is tempting to classify the yeast expression
networks as a small world network. However, when we
examine the distribution of connectivity of these networks
we consistently see scale-free behavior, a feature that
is not seen in small world models. The complexity of
the networks we derived from the expression data are,
however, dependent on the threshold parameter, ε, of the
analytical method. More linkages are added to the inferred
network as the threshold is lowered so that the network
becomes more and more complex. This raises the question
of a possible analytical artifact, and suggests that we
examine how the scaling of these increasingly complex
networks depends on the threshold—a free parameter
of the analytical method. To address this question we
generated a series of networks from the same data set
by varying ε and examined and compared the scaling of
the resulting networks. Plotting the number of nodes as
a function of the number of incident edges, the degree
of the node, in Figure 2 reveals a strongly consistent
scaling behavior that is independent of threshold level.
In Figure 2 representative networks are shown with very
different levels of complexity. This result establishes that
the observation of a scale-free distribution is insensitive to
changes in the analytical parameter ε. The networks in the
figure are clearly very dissimilar to the eye, the bottom one
containing almost ten-fold more edges and yet they exhibit
the same scaling. It should also be noted that when exit
edges are counted instead of incident edges (‘ins’ versus
‘outs’), the scaling of the connectivity remains unchanged.

Figure 3 shows the overall scaling behavior for all of
the data from the diverse set of experiments. As can be
seen, these different data sets show the same power law
over two orders of magnitude. The scaling is identical
to within the error inherent in this data set—each power
law yields an exponent of 3/2. The robustness of these
scaling results were assessed using a randomized residual
technique (Manly, 1997, see Supplementary information).

Network properties of gene duplication model
The results of the computer simulations of network growth
are shown in Table 2 for a variety of growth models and
for the two different starting networks (network seeds).
For comparison, we also show the results for the GRN
model, originally introduced by Barabasi and co-workers
(Barabási and Albert, 1999). As can be seen, the GRN
model produces lower cluster coefficients and longer path
lengths than the experimental data. When ‘evolving’ the
networks in the simulation, it is important to establish
the initial condition or starting network. Two different
seed networks were used—random and clustered. The
random graph was generated by starting with a fixed
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Table 1. Statistical graph parameters for gene expression networks

�1 �∗
2

Data set Cluster Average Cluster Average
coefficient path length coefficient path length

Diauxic shift
Original 0.58 3.0 0.67 2.3
Random 0.17 1.9 0.19 1.9

Cell cycle-alpha factor
Original 0.66 2.6 0.46 3.5
Random 0.06 2.5 0.15 1.9

Cell cycle-cdc 28
Original 0.88 2.2 0.71 2.4
Random 0.07 2.4 0.07 2.4

For each of the 3 data sets: �1 and �∗
2 were generated using four eigenvalues. Thresholds of 0.006 and 0.0012 were applied to �1 and �∗

2 respectively.
The thresholds were chosen to generate adjacency matrices whose SCCs would have roughly 200 nodes (to make the other computations tractable). The
SCCs of these networks were computed and the numbers in the first row are the values of the cluster coefficient and the average path length. Random
graphs with roughly the same number of nodes and edges the respective SCCs were generated. The second row lists the cluster coefficient and average
path lengths for these random equivalents.

Table 2. Statistical graph parameters for simulated networks

Simulation Cluster Average Scaling
coefficient path length exponent

Growing random network model
Random seed 0.02 ± 0.01 7.4 ± 1.4 2.6 ± 0.3
Clustered seed 0.50 ± 0.03 2.8 ± 0.1 2.4 ± 0.1

Gene duplication model
Random seed 0.03 ± 0.02 9.7 ± 3.8 0.13 ± 0.11 (no)
Clustered seed 0.86 ± 0.03 2.1 ± 0.1 0.31 ± 0.22 (no)

Partial gene duplication model
Random seed 0.03 ± 0.02 19 ± 8 1.7 ± 0.2
Clustered seed 0.68 ± 0.09 2.4 ± 0.1 1.5 ± 0.3

Gene duplication with preferential rewiring
Random seed 0.06 ± 0.03 7.6 ± 2.5 1.4 ± 0.15
Clustered seed 0.74 ± 0.06 2.2 ± 0.15 1 ± 1 (unstable)

Network growth was simulated as described in the text. Two different seed graphs were used—the ‘random’ seed has 70 nodes and 100 edges with a
clustering coefficient of 0.017 and the ‘clustered’ seed has 83 nodes and 362 edges with a cluster coefficient of 0.8. The seed networks were grown for 100
iterations to generate comparable networks of tractable size. All entries represent the average and standard deviation of 100 simulations. Gene duplication
model is taken to show no scaling. Gene duplication with preferential rewiring shows scaling that is extremely sensitive to initial conditions in the case of
the clustered seed.

set of nodes and randomly assigning linkages between
them. The clustered network was generated from our
experimental data at high thresholds. For instance, the
networks in Figure 2 could serve as seed networks. These
networks generally have more of a hub-like structure than
the random networks.

For random seeds, all of the gene duplication models
showed an increase in the cluster coefficient as the
network grows. When a clustered seed is used, the cluster
coefficient remains fairly constant with these models. This

suggests that the initial conditions in the clustered seed are
closer to the stationary state of the growing network. This
result is not seen with the GRN model, where the cluster
coefficient actually decreases drastically with network
growth. Inspection of the results in Table 2 indicates
that the mixed duplication models with a clustered seed
give comparable graph parameters to those observed in
the experimental data (see Table 1), while the GRN is
unsuccessful in reproducing these results. An examination
of the scaling exponent for the mixed duplication model
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Fig. 2. Plots showing the effect of the threshold parameter on the size of a network and on the scaling of node degrees. Strongly coupled
components of networks at various thresholds ε (right-hand side). Plot of degree distribution, N (k) versus k for diauxic shift data at different
thresholds (left-hand side). Plots show that scaling is independent of threshold value. Actual thresholds differ somewhat between left- and
right-hand examples. Threshold was varied by a factor of 2 to generate scaling plots. The lines in right-hand plots represent functions with a
slope of −3/2. Note that they intersect the axes at different points, however, reflecting the different numbers of nodes in the graphs. Graphs
derived from the cdc data of Spellman et al. (1998).

also shows agreement with the experimental results (see
Supplementary information). Most of the previous linear
growth models (GRNs) yield values for the scaling

exponent γ that lie in the range 2 < γ < 3. Our analysis
of the gene expression data from yeast suggests that these
models are not appropriate because we observe exponents

1491



A.Bhan et al.

k

1 10 100 1000 10000

N(k)

1

10

100

1000

Fig. 3. Plot of the distribution of degrees with N (k), number of
nodes with degree k, plotted versus k. Networks for three different
gene expression data sets were used—cell cycle data (cdc-28)
bullet ; cell cycle data (alpha) 
; diauxic shift data (. See references
DeRisi et al. (1997) and Spellman et al. (1998) for a complete
description of data sets. Dashed line is drawn with a slope of
−3/2. Threshold parameter was set so that the adjacency matrix has
connections out of a possible connections.

smaller than 2. So in addition to not giving an appropriate
cluster coefficient, the GRNs also do not mimic the scaling
properties of expression networks.

SUMMARY AND CONCLUSIONS
In this work, we report and model inferred networks of
gene expression from a dynamic analysis of time series
of whole genome profiles. These networks are statistically
robust and share common properties across very different
data sets from yeast. This approach is an intermediate level
of analysis, going beyond strictly statistical approaches
such as cluster analysis or principal component analysis,
to create a phenomenological, causal model of gene
control based on dynamic correlations. It falls short of a
full quantitative, predictive physico-chemical model. Such
network models have great potential utility, however, in
investigating genome-wide databases generated by high-
throughput technologies of gene activity. While the power
of these technologies is the ability to create a global
profile of a given functionality, the quality of data and
lack of statistical assessment of individual parameters is
a difficulty. Given the current state of the technologies,
network methods offer attractive approaches to model
building and data mining.

These yeast expression networks have a number of inter-
esting properties. They have short mean path lengths char-
acteristic of highly connected networks and high cluster-
ing coefficients associated with very ‘clique-ish’ graphs.

Additionally, they show a scale-free distribution of con-
nectivities with scaling exponents that are less than 2. This
combination of graph traits is unique and is not observed
in other real world networks analyzed to date. These prop-
erties also present restrictive constraints for developing
models of network formation. Studies of previous models
for the growth of networks have elucidated the behavior
of some properties of real networks like the Internet, but
as we show here, they do not explain the biological net-
works represented by genetic regulatory networks. These
models fail because they cannot yield exponents below 2
and because they often do not have either high cluster co-
efficients or low mean path lengths. We cannot at this time
assess whether these results apply just to the yeast sys-
tem or have a greater generality. Recently, the properties
of a number of biological networks have been explored.
Metabolic networks showing the connectivity of substrates
show high cluster coefficient and a scaling exponent of 1.6
(Wagner and Fell, 2001). Other studies of metabolic net-
works show a higher scaling exponent of 2.2 (Jeong et al.,
2000). The yeast protein–protein interaction map has been
reported also to have high cluster coefficients and a higher
exponent of 2.5. Our analysis of the protein–protein data
however, using a composite of all the existing databases
(Uetz et al., 2000; Ito et al., 2001), gives an exponent
of 1.5 (see supplementary information). The results ob-
tained here suggest that some biological networks show
lower scaling than other observed networks and may obey
a −3/2 power law.

The graphical parameters for the experimental networks
can be matched to simulated networks using a new
network growth model based on gene duplication. Gene
duplication provides a natural and compelling model for
the growth of genetic regulatory networks. There is now
abundant evidence from recent genome analysis from
yeast (Seoighe and Wolfe, 1999) to human (Lander et al.,
2001) that Ohno’s original hypothesis that new genes are
almost always created by duplication is largely valid. Gene
duplication is now widely accepted as the single most
important mechanism for generating new functions and
processes (Ohno, 1970). This evolutionary mechanism
must be at work in shaping the structure and function of
interactions between genes and regulatory networks. We
may be seeing evidence of this in the scaling law evident
in the yeast data. If this is correct and other, organism-
specific evolutionary processes do not obscure the effect,
this scaling should be evident in other organisms.
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