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Abstract: A convergent total synthesis of (+)-methynolide was
achieved in 23 steps highlighted by a ring-closing metathesis, a Ta-
kai reaction, a Sharpless kinetic resolution of an allylic alcohol and
a crotylboration.
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Complex molecules like macrolide antibiotics with multi-
ple stereocenters have received much attention due to
their powerful biological activities.1 One member of this
macrolide family is methynolide, the aglycone of methy-
mycin.2 The first total synthesis of methymycin (31 steps,
overall yield of 0.12%) by Masamune3 as well as subse-
quent syntheses of methynolide or its corresponding seco-
acid by the groups of Grieco,4 Yamaguchi,5 White,6

Yonemitsu7 and Ditrich8 combined two enantioenriched
fragments giving an open-chain precursor which was cy-
clized by an intramolecular esterification3–5,8 or an in-
tramolecular Wittig-type reaction.7 Three of these
syntheses combined the chiral C1–C8 fragment with the
C9–C11 fragment3,7,8 and three of them combined the C1–
C7 fragment with the C8–C11 fragment.4-6 Linear strategies
were also reported by Ireland,9 Vedejs10 and Bartlett.11

For our part, we planned the synthesis of (+)-methynolide
from the previously synthesized intermediate 16.4,6 The
retrosynthetic analysis of this intermediate suggested a
convergent approach, i. e., the assemblage of 16 from two
enantioenriched fragments A (C1–C7) and B (C8–C11).
These two fragments would be linked by addition of a vi-
nyl lithium reagent, derived from the vinyl iodide B, to the
carboxylic functionality of A. The synthesis of the C1–C7

fragment was envisaged from lactone C that would be ob-
tained from the unsaturated lactone D that could be pro-
duced from the corresponding diene E by a ring-closing
metathesis (RCM). The precursor of this diene is the com-
mercially available methyl (2S)-3-hydroxy-2-methylpro-
pionate (+)-1. The synthesis of fragment B was envisaged
by a Takai12 reaction applied to an aldehyde that can be
obtained by dihydroxylation and subsequent selective ox-
idation of the enantioenriched allylic alcohol (+)-11. Al-
cohol (+)-11 will be synthesized from methacrolein 20
(Scheme 1).

Scheme 1 Retrosynthetic scheme

The synthesis of the C1–C7 fragment A was achieved
starting from methyl (2S)-3-hydroxy-2-methylpropionate
(+)-1 (Scheme 2). The �-hydroxy ester (+)-1 was trans-
formed to the silyl ether (+)-2 in quantitative yield by us-
ing tert-butyldimethylsilyl chloride (TBSCl, imidazole,
DMF) that was then converted to aldehyde (+)-313 in two
steps by reduction with DIBAL-H followed by pyr�SO3

oxidation. The overall yield for the conversion of (+)-1 to
aldehyde (+)-3 was 82%. Control of the stereogenic cen-
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ters at C3 and C4 was achieved by addition of crotylbor-
onate (�)-414 to aldehyde (+)-3. Compound (–)-514 was
isolated in 81% yield and with a diastereomeric excess up
to 95%.15 The next step was the transformation of (–)-5
to the precursor of the unsaturated lactone (+)-7. When
(–)-5 was treated with methacryloyl chloride at 0 °C in the
presence of triethylamine and a catalytic amount of
DMAP, the unsaturated diene ester (+)-6 was isolated in
79% yield. To transform the unsaturated diene ester (+)-6
to the corresponding unsaturated lactone, several RCM
catalysts were examined. The use of catalyst I16 (15
mol%, CH2Cl2, reflux, 14 h) led to lactone (+)-7 in 77%
yield for a conversion of 80%. A better result was ob-
tained with catalyst II17 (15 mol%, CH2Cl2, reflux, 14 h)
as lactone (+)-7 was isolated in 98% yield for complete
conversion of (+)-6. After hydrogenation (H2, PtO2) and
treatment with LDA, a 2.3:1 mixture of lactones (+)-8 and
(+)-8� (epimer at C6) was obtained in 97% yield. These
two compounds were separated by flash chromatogra-
phy,18 and lactone (+)-8 was transformed to the required
amide (–)-9 in two steps. After treatment of lactone (+)-8
with Weinreb’s amine hydrochloride in the presence of
trimethylaluminium,19 the resulting hydroxy amide was
protected by using tert-butyldimethylsilyl chloride in the
presence of AgNO3

20 to produce the desired amide (–)-9
in 70% yield for the two steps. By using these two key
steps reactions, a crotylboration and a ring-closing met-
athesis, methyl (2S)-3-hydroxy-2-methylpropionate (+)-1
was transformed to the desired amide (–)-9 in 10 steps
with an overall yield of 23%.

The C8–C11 fragment B was synthesized from metha-
crolein 10 (Scheme 3). When methacrolein 10 was treated
with ethylmagnesium bromide in ether, the resulting alco-
hol 11, isolated in 68% yield, was converted to (+)-11 of
90% enantiomeric excess,21 by using a Sharpless kinetic
resolution22 [Ti(iPrO)4, (+)-DIPT, t-BuOOH, MS 4 Å].
After protection of the alcohol functionality (tert-bu-
tyldimethylsilyl chloride) the silyl ether was treated with
OsO4 in the presence of NMO (acetone, H2O) to produce
the monoprotected triols 12 and 12� in 75% yield as 5.5:1
mixture of two diastereomers which were not separable.23

After oxidation of the mixture of 12 and 12� (pyr�SO3,
DMSO, Et3N), the resulting aldehydes were transformed
to vinyl iodides 13 and 13� in 78% yield by using a Takai
reaction12 (HCI3, CrCl2). The stereoselectivity E/Z > 97:3
was determined by 1H NMR analysis. Compounds 13 and
13� were then deprotected (TBAF) and the resulting diols
were transformed to the ketal derivatives by using 2,2-
dimethoxypropane (PPTS, acetone). The two diastereo-
meric products were separated by flash chromatography
on silica gel and ketal (+)-1424 was isolated in 74% yield.

The transformation of methacrolein 10 to (+)-14 was
achieved in 8 steps with an overall yield of 27%. With
both building blocks (�)-9 and (+)-14 in hand, we next

completed the carbon skeleton of methynolide by addition
of vinyllithium reagent 14�, which was obtained from
the corresponding vinyl iodide by metal-halogen ex-
change (t-BuLi, ether, –78 °C), to the previously obtained
amide (–)-9. The coupling product (+)-15 was obtained in
quantitative yield.25 A selective deprotection to the known
intermediate (+)-1626 was achieved (Scheme 4) by treat-
ment of (+)-15 with HF�pyridine in a mixture of pyridine–
THF. As (+)-16 has been previously converted to meth-
ynolide in 3 steps,3,4 a formal total synthesis of methynol-
ide is thus achieved in 23 steps.

Scheme 2 a) TBSCl, imidazole, DMF. b) DIBAL-H, THF.
c) pyr�SO3, DMSO, Et3N, CH2Cl2, 0 °C, 82% (3 steps). d) (–)-4,
MS 4Å, toluene, 81%. e) methacryloyl chloride, Et3N, cat. DMAP,
CH2Cl2, 0 °C, 79%. f) I or II (15 mol%), CH2Cl2, reflux, 96–98%.
g) H2 (4 atm), PtO2, EtOH, 8/8� = 1/1. h) LDA, –78 °C, 1.5 h; then
10% aqueous citric acid, –78 °C, 8 (65% yield, 2 steps) and 8� (32%
yield, 2 steps). i) Me(MeO)NH.HCl, AlMe3, CH2Cl2. j) TBSCl,
AgNO3, DMF, 70% (2 steps).
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Scheme 4

Compared to other syntheses of methynolide, the synthe-
sis reported in this paper represents one of the shortest
routes to the 11-membered macrocyclic lactone.
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