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Power efficient design of real-time embedded systems based on programmable pro-
cessors becomes more important as system functionality is increasingly realized through
software. We address a power optimization method for real-time embedded applications
on a variable speed processor. The method combines off-line and on-line components.
The off-line component determines the lowest possible maximum processor speed while
guaranteeing deadlines of all tasks. The on-line component dynamically varies the pro-
cessor speed or bring a processor into a power-down mode to exploit execution time
variations and idle intervals. Experimental results show that the proposed method
obtains a significant power reduction across several kinds of applications.
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1. INTRODUCTION

Recently, power consumption has been a critical
design constraint in the design of digital systems
due to widely used portable systems such as
cellular phones and PDAs, which require low
power consumption with high speed and complex
functionality. The design of such systems often
involves reprogrammable processors such as mi-
croprocessors, microcontrollers, and DSPs in the
form of off-the-shelf components or cores. Further-
more, an increasing amount of system func-
tionality tends to be realized through software,

which is leveraged by the high performance of
modern processors. As a consequence, reduction
of the power consumption of processors is
important for the power-efficient design of such
systems.

Recognizing the need to reduce the power con-

sumption of processors, a number of methods have
been proposed at the hardware and software levels.
The methods at the software level can be loosely
classified into power-aware compilation techni-
ques [1-3] and Operating System (OS) directed
power management techniques. The importance of
latter approach increases recently because OS is
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recognized to play a central role in power manage-
ment of overall system components.

Broadly, there are two kinds of methods to
reduce power consumption of processors in OS
level. The first is to bring a processor into a power-
down mode, where only certain parts of the
processor such as the clock generation and timer
circuits are kept running. Another method is to use
a variable speedprocessor (VSP), which can change
its speed by varying the clock frequency along with
the supply voltage when the required performance
on the processor is lower than the maximum.
Reducing power consumption of processors is

fundamentally equivalent to exploiting idle inter-

vals of processors. Thus, we should first identify
sources of idle intervals to efficiently reduce the
power dissipated by processors. Our approach is
strongly motivated by the fact that there are
several kinds of sources for idle intervals in a
schedule of a real-time task set. Especially in case
of a priority-based preemptive scheduling, which is
one of the most widely used scheduling methods
for real-time systems, we identify three kinds of
sources. The first one occurs when a system is not
tightly designed for a given processor, meaning
that there is room for design change or improve-
ment; introducing some more tasks, replacing
certain tasks with their version-ups, using other
processors with lower performance, and so on.
Even if the system is tightly-designed, there are still
idle intervals in case of fixed-priority scheduling
which are strongly dependent upon the relative
values of the periods of the tasks comprising the
system; the second source of idle intervals. The
third one is from run-time variation of execution
time of each task, that is, the execution time of
each task in run-time is not constant due to data-
dependent computation, over-estimation of worst-
case execution time, and so on. Each of these will
be elaborated in more detail in Section 3.
To exploit these idle intervals for low-power, we

propose a power optimization method for real-
time embedded applications on a VSP with a

power-down mode. The proposed method consists
of two components: off-line component based on

real-time analys ofa task set that exploits the first
source of idle intervals and on-line component
based on priority-based real-time scheduling that
exploits both the second and the third sources.

Specifically, for a given real-time task set, we first
compute the lowest possible maximum processor
speed such that at least one of deadlines are vio-
lated if the processor is running below that speed.
With the maximum speed of the VSP set to the
computed value, we then dynamically varies the
speed of the VSP or bring the VSP into a power-
down mode to exploit execution time variation of
each task and idle intervals present in the schedule.
Note that all kinds of idle intervals can be
exploited by on-line component only [4]. However,
we show that combined off-line and on-line com-
ponents bring about more power-saving.
The remainder of the paper is organized as fol-

lows. In the next Section, we review related work,
which focuses on the reduction of power con-
sumption of processors. In Section 3, we present
the system model for power optimization, off-line
component, and on-line component. In Section 4,
experimental results are presented to evaluate the
proposed method. Finally, a conclusion follows in
Section 5.

2. RELATED WORK

2.1. Power-down Modes

In most embedded systems, a processor often waits
for some events from its environment, wasting its
power. To reduce the waste, modern processors
are often equipped with various levels of power
modes. In the case of the PowerPC 603 processor
[5], there are four power modes (Full On, Doze,
Nap, and Sleep), which can be selected by setting
the appropriate control bits in a register. Each
mode is associated with a level of power saving
and delay overhead. In the conventional approach
employed in most portable appliances, a processor
enters power-down mode after it stays in an idle
state for a predefined time interval. Since the
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processor still wastes its energy while in the idle
state, this approach fails to obtain a large
reduction in energy when the idle interval occurs

frequently but its length is short. In [6, 7], the
length of the next idle period is predicted based on
a history of processor usage. The predicted value
becomes the metric to determine whether it is
beneficial to enter power-down modes or not. This
method focuses on event-driven applications such
as user-interfaces where the latency caused by the
mismatch between the predicted value and the
actual value can be tolerated. However, an exact
value or a lower bound are needed instead of a
predicted value for the next idle period when the
power-down modes are to be applied in a hard
real-time system.

2.2. Scheduling on a Variable Speed Processor

It is a well-known fact that power consumption in
CMOS circuits can be decomposed into two parts:
static and dynamic. The dynamic power consump-
tion, which is a dominant factor, is described by

Pdynamic a f Cz. V2
dd

where a is the expected number of transitions per
cycle, called switching activity, f is the clock fre-
quency, CL is the average load capacitance, and

Vdd is the supply voltage. The reduction of Vd is
the most effective way to reduce the power con-
sumption as expected in (1). However, reducing
Vaa leads to an increase in Circuit delay, denoted
by t, which can be approximated by

Vdd
td k

(Vdct- Vt) (2)

where k is a constant, Vt is the threshold voltage,
and c is a constant satisfying < c < 2. A digital
system designed with a fixed supply voltage (Vd)
works at a fixed speed and then can be made idle if
the computational demand is less than the maxi-
mum. If the supply voltage is lowered dynamically
to the lowest value satisfying the required speed

constraint of the system as exhibited by (2), less
power would be consumed. This kind of adaptive
scaling of the supply voltage was exploited in self-
timed circuits [8] and DSP systems [9]. Recently,
the same mechanism was adapted to a micro-
processor architecture [10, 11]. For example [11]
reports a processor based on the ARM micro-
processor core, where the operating voltage is set
by a feedback loop which compares the current
and target frequencies.
A scheduling method to reduce power consump-

tion of a VSP was first proposed in [12] and was
later extended in [13]. The basic method is that
short-term processor usage is predicted from a

history of processor utilization. From the pre-
dicted value, the speed of the processor is set to the
appropriate value. Because latency exists when the
prediction fails, these methods cannot be applied
to real-time systems.

Static scheduling methods for real-time systems
were proposed in [14-16]. The underlying model
of their approaches is a set of tasks with a single
period. When periods of tasks are different from
each other, which is the conventional model
employed in real-time system design, we can
transform a problem by taking the LCM (Least
Common Multiple) of tasks’ periods as a single
period and treating each instance of the same task
occurring within the LCM as a different task. This
can cause a practical problem because we require
excessively large memory space to save a statically
computed schedule, whereas the size of memory is
one of the design constraints in a typical embedded
system. Furthermore, LCM becomes excessively
large when periods of tasks are mutually prime.
Another problem is that a schedule is computed
based on the assumption that a fixed amount of
execution time is required for each task. As a
result, the full potential of power saving cannot be
obtained when variations of execution time exist.
A dynamic scheduling method, called Average

Rate Heuristic (AVR), was also proposed in [14]
with the same model as in the static version.
Associated with each task is its average-rate
requirement, which is defined by dividing its



142 Y. SHIN et al.

required number of cycles by its time frame
(deadline- arrival time). At any time t, the AVR
sets the speed of a processor to the sum of average-
rate requirements of tasks whose time frame
includes t. Among available tasks, AVR resorts
to the earliest deadline policy [17] to choose a task.
Because average-rate requirements are computed
statically with fixed numbers of execution cycles,
the same problem occurs when variations of
execution time exist.

3. POWER OPTIMIZATION METHOD

3.1. System Model

For a processor model, we assume a VSP similar
to [11]. The reference clock frequency, denoted as

fref, and the reference supply voltage, denoted as

Vref, of the VSP is 100 MHz and 3.3 V, respec-
tively. The clock frequency can be varied from
100MHz down to 8MHz with a step size of
MHz. The supply voltage is 3.3 V for 100 MHz

clock and, for lower clock frequency, follows (2).
We assume that there is only one power-down
mode available. The average power consumed by
the processor when it is in power-down mode is
5% of the fully active mode and it takes 10 clock
cycles to return from the power-down mode to the
fully active mode. The processor model described
above is only for the purpose of simulation which
is to be presented in Section 4. Therefore, our
method can be applied for other processor models,
for example of a processor with only two speed
levels [18], though the result of power saving may
be different.

In a typical real-time embedded application,
there are many periodic tasks that share hardware
resources. To ensure that each task satisfies its
timing constraint, the execution of tasks should be
coordinated in a controlled manner. This is often
done via priority-basedpreemptive scheduling algo-
rithm. There are two kinds of algorithms based on
priority assignment: fixed-priority (or static-prior-
ity) algorithms such as rate-monotonic (RMS) [17]

and deadline-monotonic (DMS) [19] and dynamic-
priority algorithms such as earliest deadline first

(EDF) [17]. A priority-based scheduling is quite
simple to implement in most kernels, and it
typically requires little if any extra hardware
support. Also, there are many analytical methods
to check the schedulability of the system.
The real-time embedded application is modeled

as a set of tasks, -= {7-1,7-2,...,q-n}, which are
numbered in order of decreasing priority in case of
fixed-priority scheduling (FPS). The parameters of

-i include its period (the minimum inter-arrival
time between successive requests in case of a

sporadic task) Ti, deadline Di, and worst case
execution time (WCET) Ci. A task set is called

feasible if deadline of each task is satisfied at all
times. Note that Ci is measured or estimated

[20] when the VSP is running in reference speed
(fref and Vref).
To minimize energy consumption while guaran-

teeing the feasibility of a task set, we first deter-
mine the lowest possible speed such that the task
set is feasible if the VSP is running in that speed
entirely, and will be infeasible if running in lower
speed. This can be done with off-line method as
illustrated in the next subsection. Note that worst-
case scenario (all tasks execute in WCET at all
times) must be assumed in off-line method. How-
ever, during operation of the system, the execution
time of each task frequently deviates from its
WCET, sometimes by a large amount. In many
cases, the possibility of a task running at its
WCET is usually very low. Furthermore, the
complex architecture of modern processors (pipe-
line, instruction cache, data cache, and so on)
makes the static estimation of WCET difficult
thereby resulting in over-estimation of WCET. As
examples of this variation in execution time,
Figure shows the ratio between the best-case
execution time (BCET) and WCET obtained from
[21] for a number of applications.

These execution time variation cannot be ex-

ploited with off-line method alone. Furthermore,
with fixed-priority scheduling, there are still idle
intervals remained even if the VSP is running in
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FIGURE The ratio between BCET and WCET for a
number of applications.

the lowest possible speed entirely. To exploit these
execution time variation and idle intervals, we use
an on-line method, where we dynamically vary the
speed of the VSP or bring the VSP into a power-
down mode according to the status of the task set.

Example 1 Consider the three tasks given in
Table I. Rate monotonic priority assignment is a
natural choice because periods (Ti) are equal to
deadlines (Di). Priorities are assigned in row order
as shown in the fifth column of the table (lower
value means higher priority). Assume all tasks are

TABLE An example task set

Ti Di Ci Priority

7-1 50 50 5
7- 80 80 10 2
7-3 100 100 20 3

released simultaneously at time 0. A typical
schedule, which assumes that tasks run at their
WCETs (Ci), is shown in Figure 2a. If the speed of
the processor is lowered by half or if the processor
with half performance is used meaning that Ci is
doubled, the schedule becomes as shown in
Figure 2b. It is noted that the task set scheduled
in Figure 2b just meets its feasibility. For example,
if 7-2 were to take a little longer to complete, 7"3

would miss its deadline at time 100. Even though
the system is tightly constructed, there are still idle
intervals, as can be seen in Figure 2b. When some
task instances are completed earlier than their
WCETs, there are more idle intervals as shown in
Figure 2c. These idle intervals are sources of power
reduction by on-line method, m

3.2. Computation of Maximum Speed

For a given task set, in order to determine the
lowest possible maximum processor speed (thus
the lowest possible maximum clock frequency,
denoted as fmax, and the lowest possible maximum
supply voltage, denoted as Vm,,x), the analysis of
the schedulability of the task set is required. We
first present the approach for fixed-priority algo-
rithms and then the approach for dynamic-priority
algorithms.
The schedulability analysis for fixed-priority

scheduling is based on the critical instant theorem
[17] which says that if a task meets its deadline
whenever the task is requested simultaneously with
requests for all higher priority tasks, then the

0 50 100 150 200 250

(a)

300 time

0 50 100 150 200 250 300 time

(b)

0 50 100 50 200 250 300 time

FIGURE 2 A schedule for the example task set. (a) When tasks always run at their WCETs. (b) When tasks always run at their
WCETs on a processor with the speed lowered by half. (c) When the execution times of some task instances are smaller than their
WCETs.
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deadline will always be met for all task phasings.
This implies that it is needed to perform the
analysis from time 0 up to LCM of all task periods
under the assumption that all tasks are requested
simultaneously at time 0. This again requires the
analysis to be performed in the continuous time
interval. Lehoczky et al. [22] shows that the
analysis is actually needed only at discrete time
points instead of continuous time interval. The set
of time points, called scheduling points, for task ri
is defined by

when Ti Di. If Di is different from Ti, (3) can be
modified as

S’ (Si {tit ESi, > Di}) tO {Di}. (4)

T can be scheduled without violating its deadline,
if there exist one or more scheduling points Si,
which satisfy

_<t. (5)

Note that the left hand side of the inequality
represents the cumulative demands on the proces-
sor imposed by rl, r2, ri.

Now, it is assumed that elements of Si are sorted
in ascending order. Sij is defined as the jth element
of Si, that is, jth scheduling point of ri. Thus, for
each scheduling point Si/, 7- just meets its
scheduling point if it satisfies

(6)

where T]iff is speed scaling factor for 7- at Si. For
example, rlid=(1/2) means that the speed of the
processor is reduced by half thus execution times
of tasks are doubled. Solving for T]iff gives

T]i0 -2=1C[(Sia/T)]. (7)
Si

Because 7" is schedulable if it completes its execu-
tion before or at any scheduling points and the
minimum possible speed scaling factor is needed
for ri for minimum power consumption, speed
scaling factor for 7"i, denoted by ]i, is given by

i m.in r/ig. (8)
J

In order to get a feasible task set, all tasks are
required to be schedulable. Thus, speed scaling

factor for the task set, denoted by , is given by

m.ax T]i. (9)

Note that if is larger than 1, the original task set
is already infeasible meaning that it cannot be
scheduled with fixed-priority scheduling even with

fref and Vref. Hence,fmax (correspondingly Vmax) is
obtained by

fmax 1"]fref (10)

In practice, we should take Irlfref forfmax because
discrete levels of frequencies are assumed. We also
need clamping operation so thatfm falls between
8 MHz and 100 MHz.
For dynamic-priority scheduling, especially for

EDF scheduling with Di Ti, a task set is feasible
if and only if the processor utilization is less than or
equal to [17]. Thus, is straightforward to com-
pute because it is equal to the processor utilization,
given by

Ci
r/- . (11)

Vri

It should be noted that there are no idle intervals
meaning that the power consumption of the
processor is minimized if the processor is running
entirely in the speed obtained with (11) provided
that fractional value is possible for fmax, and each
task always execute in constant execution time of
WCET. When Di < Ti, we can use Di instead of Ti
in the denominator of the right hand side of Eq.
(11), called total density in this case instead of
processor utilization. Note that, however,
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obtained in this way is conservative in that the task
set is feasible with EDF if the total density is equal
to or less than but the opposite does not hold.

Example 2 Consider again the three tasks given
in Table I with rate monotonic priority assign-
ment. From Eq. (3), the set of scheduling points
for each task is given by

{r,}, s2 {v1, 2,r3}.

We compute r/using Eqs. (7-9), which yields

r/-min =0.1,

r/2- min ( CI+C2T1 ,2C1-+-C2)T2 --0.25,

-min{Cl+C2+C3 2C1+C2+C3
T1 T2

2C1 + 2C2 + C3 ’ O.5,
T3

max(r, 2, r/) 0.5.

Thus, we can reduce the maximum speed by as
much as half or can use the processor with half
performance (see Fig. 2b). m

3.3. Low-power Priority-based Real-time
Scheduling

Even if the processor is running in the speed
obtained with the method of the previous subsec-
tion, there are still idle intervals that arise from
two sources (see Example 1). The first source is idle
intervals inherently present in fixed-priority sche-
duling (thus it is not the case with EDF) because of
different period of each task. The second one is
run-time variation of execution time of each task.
In more specific, although constant execution time
of WCET should be assumed in the method of
the previous subsection, the execution time of
each task in run-time is not constant due to
data-dependent computation, over-estimation of
WCET, and so on. To exploit these idle inter-
vals, we propose a power-efficient version of

priority-based real-time scheduling method, which
we call ipps for brevity.
The basic mechanism of the proposed schedul-

ing algorithm is based on the implementation
model in [23,24]. The scheduler maintains two
queues, one called run queue and the other called
delay queue. The run queue holds tasks that are

waiting to run and the tasks in the queue are
ordered by priority. The task that is running on
the processor is called the active task. The delay
queue holds tasks that have already run in their
period and are waiting for their next period to
start again. They are ordered by the time at which
their release is due. When the scheduler is invoked,
it searches the delay queue to see if any tasks
should be moved to the run queue. If some of the
-tasks in the delay queue are moved to the run

queue, the scheduler compares the active task to
the task at the head of the run queue. If the
priority of the active task is lower, a context switch
Occurs.

Because most information about the tasks is
available through the queues and lpps depends
on this information, the proposed scheduler can be
implemented with a slight modification of the
conventional scheduler. Figure 3 shows the pseudo
code of the lpps scheduling algorithm. The code
lines between L5 and Lll (except L9 to be
explained shortly) conform to the behavior of the
conventional scheduler, lpps works when the
run queue is empty (L12). This is further divided
into two cases: one where all tasks have completed
their executions in each of their periods and are

waiting for their next arrival times while residing
in the delay queue (L13) and the other where all
tasks except the active task have completed their
execution (L16). In the first case, we can bring the
processor into a power-down mode because there
are no tasks that need it. Furthermore, we know
how long the processor will be idle because the
task at the head of the delay queue is the first one
that will require the processor (recall that the delay
queue is ordered by the tasks’ release times). This
is the key ingredient of lpps. Thus, we set a timer
to expire at the next release time of the task at the
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LI: if current_frequency < maximum_frequency then

L2: increase the clock frequency and the supply voltage to the maximum value;

L3: exit;

L4: end if

L5: while delay_queue.head.release_time < current_time do

L6: move delay_queue.head to the run_queue;

LT: end do

L8: if run_queue.head.priority > active_task.priority then

L9: set the active_task.executed_time;

L1O: context switch;

Lll: end if

L12: if run_queue is empty then

LI3: if active_task is null then

L14: set timer to (delay_queue.head.release_time wakeup_delay);

L15: enter power-down mode;

L16: else

L17: speed_ratio Compute_speed_ratioO;

LI8: find a minimum allowable clock frequency _> speed_ratio max_frequency;

L19: adjust the clock frequency along with the supply voltage;

L20: end if

L21" end if

FIGURE 3 Pseudo code of the ipps scheduler.

head of the delay queue and then put the processor
into the power-down mode. Because, there is a
delay overhead to wake up from the power-down
mode, the timer actually should be set to expire
earlier by that amount of delay (L14).

In the second case, we can control the speed of
the processor because there is just one task (the
active task) to execute and the processor will be

available solely for that task until the minimum of
the deadline of the active task and the release time
of the task at the head of the delay queue. The
amount of time that will be needed by the active
task equals its WCET less its already executed
time. This can be obtained when a task is
preempted because of a request for a task with
higher priority during its execution (L8). When
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FIGURE 4 The status of queues and the information associated with each task (a) at time 160 and (b) at time 180.

this occurs, we get the executed time of the task
from the timer (L9) that is based on an external
clock, which is independent of the variation of
processor’s speed. Note that we assume the execu-
tion of the whole task takes its WCET because at
the time of scheduling we have no information
whether it will take less than WCET or not. When
the active task COlpletes its execution, the sche-
duler gets the control and increases the speed of
the processor to the maximum to prepare for the
next arrival of tasks (L1 through L4). This
involves a delay for raising the supply voltage
and subsequently the clock frequency. Thus, the
active task actually should complete its execution
earlier by an amount equal to this delay. Con-
sidering all these factors, we obtain the ratio of the
processor speed needed for the active task to the
full speed (L17). From the computed ratio, we find
an appropriate clock frequency (L18). In practice,
only discrete levels of frequencies are available,
and among them we should select a frequency
larger than or equal to the computed one to
guarantee the timing constraints. All these pro-
cesses are illustrated in the following example.

Example 3 Consider Figure 2b, that is, the same
task set in Table I with Ci doubled. At time 160
when a request for 7"2 arrives, the status of queues

and the information associated with each task are
shown in Figure 4a. For simplicity of illustration,
assume that the delay required to wake up from
the power-down mode and that required to change
the speed of a processor are all 0. Because the run
queue is empty with the active task of 7"2, the
scheduler computes the desired ratio of speed that
yields ((20-0)/(200 160)) 0.5 (see L17 ofFig. 3).
Thus, we can slow down the processor by half.
Now, assume that the instance of 7"2 started at
time 160 executes at the lowered speed, but
completes its execution at time 180 instead of 200,
meaning that it executes in half its WCET. At this
time, the status ofqueues becomes that ofFigure 4b.
Because all tasks reside in the delay queue, the
scheduler brings the processor into a power-down
mode (see L14 and L15 of Fig. 3) with the timer set
to the next arrival time of 7"1 (200).

4. EXPERIMENTAL RESULTS

To evaluate the proposed method, we perform
simulations with several examples and compare
the average power consumption with the proposed
method against that with the conventional
priority-based scheduling. In the conventional



148 Y. SHIN et al.

TABLE II Maximum frequency and voltage computed for
each application, fref= 100 MHz and Vref= 3.3 V

FPS EDF

fmax Vmax fmax Vmax
avionics 91MHz 3.1V 86MHz 3.0V
ins 75 MHz 2.7 V 74 MHz 2.7 V
flight_control 84 MHz 2.9 V 68 MHz 2.5V
cnc 54 MHz 2.2V 49 MHz 2.0 V

priority-based scheduling, the processor is as-
sumed to execute NOP (no operation) instructions,
when it is not being occupied by any tasks. The
average power consumed by a NOP instruction is
assumed to be 20% of that consumed by a typical
instruction [25]. We also compare the result with
that of [4].

We collect four applications for experiments: an
avionics task set [26], an ins [24], a flight_
control [27], and a cnc machine controller [28].
The first three examples are mission critical
applications and the last one is a digital controller
for a CNC machine, which is an automatic
machining tool that is used to produce user-
defined workpieces. For each task comprising an
application, three timing parameters (Ti, Di, and
Ci) are given. Because the statistics of the actual
execution times of instances of the tasks are not
available, it is assumed that the execution time of
each instance of a task is drawn from a random
Gaussian distribution with mean of m ((BCET+
WCET)/2) and standard deviation of or=

((WCET- BCET)/6), where WCET Ci. Then,
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FIGURE 5 Simulation results of (a) avionics, (b) ins, (c) flight_control, and (d) cnc.
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the BCET is varied from 10% to 100% of the
WCET for each task. This ensures that almost
all generated values fall between BCET and
WCET because the probability that a random
variable x takes on a value in the interval

[m- 3a, rn + 3a] of a random Gaussian distribution
is approximately 99.7%. If we set WCET to be
equal to m+ 3or and solve for r with the help of
equation for m, we get equation for r. After the
generation of execution time, we apply clamping
operation so that the generated value does not
exceed WCET.

First, fmax and V,ax are obtained for each
application using Eqs. (9) and (11), which are
summarized in Table II. Clearly, they are smaller
with EDF than with FPS, because EDF sets the
lower bound for f,,,ax and V,,,ax. In case of +/-ns,

fmax with FPS is very close to that with EDF
meaning that very high processor utilization is
possible even with FPS. This is because most
periods of tasks in +/-ns is harmonic, that is, period
of each task is divisible with each other.

Next, with the maximum speed of the VSP set to
the corresponding value shown in Table II, each
task set is simulated with lpps. The results are
shown in Figure 5, where lpps/l$ indicates that
RMS is used for basic scheduling algorithm of
lpps and lpps/EDF similarly for EDF. The
vertical axis indicates average power reduction
with each method compared to the conventional
priority-based scheduling (see Fig. 2). Note that
the power gain from off-line method is indepen-
dent on the horizontal axis because worst-case
scenario is assumed in that method. The power
gain from on-line method increases as the BCET
gets smaller (variation of execution time gets
larger). This is because the chances both for
dynamically varying the speed of the VSP and
for bringing the VSP into a power-down mode
increases as the variation of execution times
increases. The largest gain is obtained in cnc.

This can be understood from Table II because cnc

can be operated in the lowest speed, meaning that
its processor utilization in reference speed is the
lowest. Compared to on-line method alone, we can

obtain more power saving with combined off-line
and on-line methods.

5. CONCLUSION

In this paper, we propose a power optimization
method for a real-time embedded application on a
variable speed processor. The method consists of
two components. First, we determine the lowest
possible processor speed such that the task set is
feasible if the processor is running in that speed
entirely, and will be infeasible if running in lower
speed. Then, to exploit execution time variation
and idle intervals, we relies on low-power priority-
based real-time scheduling, which dynamically
varies the speed of the VSP or brings the processor
into a power-down mode. Experimental results
show that the proposed method obtains a signifi-
cant power reduction across several applications.
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