
NOTES

Detecting deterministic dy- 

namics of cardiac rhythm 

PEI Wenjiang
1
, HE Zhenya

1
, YANG Luxi

1
, S. S. Hull

2

& J. Y. Cheung
3

1. Department of Radio Engineering, Southeast University, Nanjing 

210096, China;  

2. University of Oklahoma Health-Sciences Center, Oklahoma City, OK 

73190, USA;  

3. School of Electrical & Computer Engineering, University of Okla-

homa, Norman, OK 73019, USA 

Correspondence should be addressed to Pei Wenjiang (e-mail: 

wjpei@jlonline.com) 

Abstract  Under the acceptable hypothesis that cardiac 

rhythm is an approximately deterministic process with a 

small scale noise component, an available way is provided to 

construct a model that can reflect its prominent dynamics of 

the deterministic component. When applied to the analysis of 

19 heart rate data sets, three main findings are stated. The 

obtained model can reflect prominent dynamics of the de-

terministic component of cardiac rhythm; Cardiac chaos is 

stated in a reliable way; Dynamical noise plays an important 

role to the generation of complex cardiac rhythm. 

Keywords: cardiac rhythm, nonlinear dynamics, Bayesian estima-

tion. 

 It has been proposed that the heart rate variability 

may display complex nonlinear dynamics, including de-

terministic chaos
[1 5]

. Furthermore, it may be more rea-

sonable that cardiac dynamics is neither chaotic nor sto-

chastic, but rather both. In such a system, the unpredict-

ability of the output will be due to the uncertainty gener-

ated by the deterministic component, and to the stochastic 

inputs
[6,7]

.

 The primary goal of this study is the desire to obtain 

a model that can reflect the prominent dynamics of the 

deterministic component for heart rate variability under 

such an assumption. That is, the model should not only fit 

data and make a good short-term prediction, but should 

also have dynamical behavior similar to that of the ob-

served variable 
[8 12]

. If we can obtain such a model, the 

dynamics of the model will then present a reliable detec-

tion of deterministic dynamics for the heart rate variability. 

To satisfy this stringent criterion, some available methods 

with partial solutions have been provided
[8 11]

.

 Since dynamical noise is a major source of variabil-

ity in the feedback system and the reliability of the result-

ing model as a long-term predictor is highly dependent on 

the amount of measurement and dynamical noises present, 

some questions remain concerning the significance of the 

models obtained by such methods directly in the analysis 

of cardiac dynamics
[4,8]

. It has been also stated that the 

new directions for such methods, including elimination of 

the influences of measurement and dynamical noises, may 

be proved useful for modeling in the presence of noise 

and full detection of deterministic dynamics
[8,13]

.

 To obtain our primary goal for modeling heart rate 

variability, the cluster-weighted filtering (CWF) method is 

proposed to model the deterministic component of the 

approximately dynamical system from complex and noisy 

time series. In order to approach the complexity of origi-

nal attractor, the normalized Gaussian network is used as 

function approximator
[9]

. By putting the problem of 

nonlinear noise reduction into a Bayesian framework
[14,15]

,

we introduce an appropriate way of combining model 

estimation with noise reduction procedures. It enables us 

to determine the correct amount of noise reduction from 

the data itself and thereby avoiding over-fitting and over- 

filtering
[16,17]

.

 With the applications of CWF to the analysis of 

heartbeat intervals
[18]

, we investigate the free-run dynam-

ics of the models to see if they exhibit linear and nonlin-

ear features consistent with those of original time series. 

This involved comparing the time delay plots of the 

free-run behavior derived from the models with that of 

originals. We estimates the dynamical and measurement 

noise levels to confirm that CWF neither changes the un-

derlying deterministic structure nor introduces spurious 

deterministic structure into the data. In order to test 

whether the deterministic component of cardiac dynamics 

is sensible to initial conditions, we estimate the largest 

Lyapunov exponents from the filtered time series and 

free-run behavior of the models. We also use surrogate 

data analysis to confirm the hypothesis that the heart rate 

variability is not consistent with a linear Gaussian proc-

ess.

1  Method of cluster-weighted filtering 

 Let  be the observed time series of an ap-

proximately dynamical system. 

N
iix 1}{
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where fyyy diiii    ). ,, ,( 21y denotes system dy-

namics with unknown parameters that need to be esti-

mated, e a stochastic element in the dynamics and acts

as measurement noise. 

 Our goal is thus to estimate y and f from x. In order 

to find the dependencies of y on y and y on x based on the 

joint density p(x, y, y) (for simplicity, y and x are defined 

as input and output of an approximately dynamical system 

under consideration respectively), we expend the joint 

density p(x, y, y) into M clusters cm, m = 1, …, M, each of 

which contains the product of four terms
 [9]

.

p (x, y, y) = (x| y, y, c
M

m

p

1

m) p(y |y, cm) p(y|cm) p(cm),

(3)
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where p(cm) is the weight of a cluster, and p(y|cm) the do-

main of influence in the input space of the cluster. p(y|y,

cm) denotes the dependence of y on y and cm, the remain-

ing item expresses the output distribution of the cluster. 

 Generally, p(y|cm) is taken to be Gaussian with a 

mean m and covariance matrix Cm. The dynamical noise 

e and measurement noise  are also taken to be Gaussian 

with variances  and  associated with cluster 

C

2
me

2
m

m respectively. Here the mean value of y is replaced by 

the output of local model fm (y, m),

 (4) 
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 An iterative algorithm, the expectation-maximization 

(EM) algorithm search of the maximization of the model 

likelihood given a data set and initial conditions, is used 

for modeling and filtering 
[9,19]

.

 In the E-step, we assume the current cluster parame-

ters to be correct and evaluate the posterior probabilities 

that relate each cluster to each data point. These posteriors 

can be interpreted as the probability that particular data 

are generated by a particular cluster. 

.
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 In the M-step, we assume the current data distribu-

tion to be correct and find the cluster parameters that 

maximize the likelihood of the data. The new estimate for 

the unconditioned cluster probabilities is 
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Given p(cm), we define a cluster-weighted expectation of 

function  (x, y, y)
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 The cluster-weighted expectation is used to update 

m, Cm, and discussed above2
me

2
m

[14]
. An expression 

to update m = [ m1, m2, …, mI] for each cluster cm can 

be obtained by maximizing the log-likelihood function. 
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 In this note, Metropolis-Hastings algorithm is used 

for updating time series 
[14]N

ii
y

1
. For simplicity we 

chose as the criterion to accept or reject 

 as a new sample of y :
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where  For the fast 

convergence of the algorithm, the candidate sample 

can be obtained based on taking the derivative of the total 

log-likelihood function with respect to the data point 

(terms associated with measurement noise are ignored so 

that the algorithm will proceed

). ,, ,,( new
1

new
diiii yyyy

new
iy

[14]
).

 Finally, the model estimation and the noise reduction 

process by cluster-weighted filtering can be summarized: 

( ) Initialization (choose 1/M as the initial cluster prob-

abilities. Pick randomly M points from data set as the 

cluster input means); (ii) evaluation of the probability of 

the data p (x, y, y|cm); (iii) calculation of the posterior 

probability of the clusters p (cm|x, y, y); (iv) update of the 

cluster weights p(cm), the cluster-weighted exceptions for 

input means m and covariance matrix Cm, the maximum 

log-likelihood model parameters m, dynamical noise 

variance  and measurement noise variance ; (v) 

update of 

2
me

2
m

N
iy 1

 based on M-H algorithm; (vi) return  

to (ii) until the total data likelihood does not increase any 

more. 

2  Experimental materials 

 19 mixed breed male dogs (15 24 kg in weight, 2

4 years old by dentition) free of heartworms were con-

ditioned for chronic study. Each dog was prepared surgi-

cally with an anteroseptal myocardial infarction or was 

shamed operated. Heart rate variability was studied before 

infarction. After the last heart rate variability test, each 

dog was identified as being at either high or low risk for 

the development of ventricular fibrillation during a sub-

maximal exercise and transient myocardial ischemia test. 

Chinese Science Bulletin  Vol. 46  No. 1  January  2001 1569



NOTES

 The procedure describing the surgically created 

myocardial infarction was presented in detail elsewhere
[18]

.

During surgical plane anesthesia, the heart was exposed 

and the fatty tissue was dissected from the vessel ap-

proximately 2 cm from the origin surrounding the circum-

flex branch of the left coronary artery. A loose fitting 

(diameter 3.0 3.5 mm) Doppler flow probe (20 MHz, 

Hartley) and, immediately distally, a pneumatic vascular 

occluder were implanted. To produce the myocardial in-

farction, the anterior intraventricular branch of the left 

coronary artery immediately proximal to the first major 

diagonal artery perforator was critically stenosed for 20 

min and then permanently ligated. A catheter was planted 

in the descending aorta for the later direct measurement of 

arterial pressures. 

 30 d after myocardial infarction, the dogs were stud-

ied consecutively and characterized for developing ven-

tricular fibrillation during an exercise and myocardial 

ischemia test on a motor-driven treadmill. Briefly, each 

dog was exercised submaximally for 12 15 min while 

the work load was increased progressively every 3 min. 

(4.8 km/h at 0% grade and 6.4 km/h at grades of 0%, 4%, 

8%, 12%) until heart rate reached a target range of 215

225 beats/min. At that time, the left circumflex artery was 

pneumatically occluded for 2 min; the treadmill was 

stopped after the 1st min of occlusion, while ischemia was 

maintained for an additional minute. The 2 min period 

myocardial ischemia was verified by a zero flow trace 

signal from circumflex artery Doppler flow probe. During 

the 2-minute of exercises a myocardial ischemia, 8 dogs 

(S_MI group) are susceptible to a sudden death because of 

developing ventricular fibrillation. 11 dogs that did not 

develop ventricular fibrillation were considered to be at 

low risk and were defined to have resistance to a sudden 

death (R_MI group).  

 A few days after myocardial infarction, 30 min ECG 

samples at rest were obtained. All recordings were col-

lected in the late morning or early afternoon without the 

use of sedation or physical restraint and before feeding. 

After a 10 20 min daily transition period in the labora-

tory, ECG data were obtained while the dog was quiet and 

lying down but not sleeping on a padded examination 

table. Specific care was taken to eliminate extraneous 

noise, unfamiliar personnel and other environmental dis-

tractions. Data were not recorded when rectal temperature 

was >39  or the dog was judged to be behaviorally up-

set. A transthoracic modified lead I surface ECG was ob-

tained with the use of self-adhesive pads, amplified and 

filtered at a low frequency (5 Hz) and digitized at 400 Hz. 

All digitally encoded files were analyzed with a commer-

cially available program (Corazonix). Aberrant ECG 

complexes such as premature ventricular beats, electrical 

noise, or other aberrant ECG signals and their adjacent 

RR intervals were rejected by software. 

3  Results and discussions 

 From the results in ref. [7], when applying parsimo-

nious Volterra series model method directly to the analysis 

of heart beat intervals, we find that the largest Lyapunov 

exponents are negative for most (89%) subjects as shown 

in table. 1 (Lyap_kor). These results suggest that cardiac 

chaos is not prevalent in heart. In spite of the fact that this 

method had been successfully tested by artificial data 

sets
[7]

, it does not eliminate the influences of noise essen-

tially. So the conclusion that the deterministic component 

of cardiac dynamics is chaotic or not obtained by such 

methods is suspicious. In order to approach the complex-

ity of original attractor and eliminate the influences of 

noise in modeling the deterministic component of cardiac 

dynamics, we introduce the method of CWF. The parsi-

monious Volterra series models, which are used as local 

models for cluster-weighted filtering, are fitted to the time 

series using a search space that included linear, bilinear, 

and trilinear terms of up to 3th order. Despite the large 

search space (1 constant, 4 linear, 10 bilinear, 20 trilinear 

terms), only six significant terms are included in the local 

models. By searching the space of the candidate terms, the 

one that gives the greatest reduction in the MSE is se-

lected. By repeating this greatest reduction in MSE at 

each step, a parsimonious model can be constructed. Em-

pirically, six to eight embedding data points, which are 

chosen randomly from the training set, are used as the 

cluster input means initially. We discuss the power of 

CWF as follows. 

Fig. 1. 1200 samples of dynamical noise variance (a) and measurement 

noise variance (b). 
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 First, cluster-weighted filtering yields a property of 

automatic noise level estimation. For example, we apply 

CWF to 1000 points observed from a stochastically driven 

Henon map (the variances of dynamical and measurement 

noises are 0.004 and 0.01 in delay coordinates respective-

ly
[14]

). Fig.1 shows 1200 samples of dynamical and meas-

urement noise variances. One can find that both dynami-

cal and measurement noise variances do converge ap-

proximately to the correct values after 400 iterations. To 

some extent, CWF not only eliminates influences of 

noises but also avoids the tendency to over-clean the data 

in the process of filtering.  

 Second, fig. 2 shows delay plots of original (a, d) 

and filtered (b, e) time series of heart beat intervals of two 

subjects respectively. One can see that the attractors be-

tween the original and the filtered are very similar. Addi-

tionally, table 1 shows values of estimated relative dy-

namical (Amp_dyn) and measurement noise amplitudes 

(Amp_mea) for all time series of heart beat intervals, each 

of which is not larger than 3.5% of the original signal am-

plitudes. It implies that CWF does neither change the un-

derlying dynamics nor introduce spurious dynamics for 

the heart beat intervals
[20]

.

 Third, fig. 2 (c), (f) also shows delay plots of the free 

runs of the model obtained by CWF. That is, the model is 

iterated 500 times without any corrections from the data. 

Attractors similar to that of originals are also obtained. 

For both subjects, free runs show complex deterministic 

structures. Results can tell us that the deterministic com-

ponents of cardiac dynamics can be primarily described 

by only a few of local nonlinear dynamical models. 

Comparison between the originals and the model dynam-

ics also discovers that dynamical noise plays an important 

role in the generation of complex cardiac rhythm. 

Fig. 2. Delay plots of the time series of RR intervals from two subjects (No. 732v2, No. 683v2). (a) and (d) Original heartbeat intervals; (b) and (e) 

filtered time series by CMF; (c) and (f) free runs from models. 

 It is of considerable interest to study whether the 

heartbeat series are chaotic. However, presence of dy-

namical and measurement noise can often lead to false 

positive or negative identifications of chaos when tradi-

tional methods of nonlinear dynamics analysis are used. 

Discussions listed above suggest that the models obtained 

by CWF can reflect prominent dynamics of the determi-

nistic component of an approximately dynamical system, 

and CWF does neither change the underlying dynamics 

nor introduce spurious dynamics. So the characteristic 

exponents of the deterministic components of cardiac dy-

namics can be estimated reliably from filtered time series. 

By evaluating the Jacobians over all the filtered time se-

ries of heartbeat intervals, we estimate the largest 

Lyapunov exponent by the algorithm based on QR de-

composition
[7]

. The numerical results are shown in table 1. 

Let us first consider the largest Lyapunov exponents de-

rived from filtered time series of RR intervals (Lyap_fil). 

17 of 19 time series show positive values. When consid-

ering that for free run behavior of the models, again we 

find 16 of 19 time series show positive values. The re-

mainders show negative values but very near to zero. It 

implies that the deterministic components of cardiac dy-

namics for most subjects under studying are sensible to 

initial conditions. What should be noted is that there are 

not apparent differences between R_MI group and S_MI 

group in the values of the largest Lyapunov exponents. 

 Finally, the widespread surrogate data method is 

used to test the nonlinearity for heartbeat intervals
[21,22]

. In 

this study, the amplitude-adjusted Fourier transform 
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(AAFT) algorithm is used to generate surrogate data 
[21]

,

and the short-term predictability calculated by Sugi-

hara-May method acts as a statistic test 
[23,24]

. The signifi-

cance can be measured by S:
Table 1  Calculated characters of heart rate variability for each subject 

Subject Lyap kor Lyap fil Lyap pre Amp dyn Amp mea S SM S CWF 

732v2 0.21 1.26 1.43 0.0232 0.0126 2.96 19.73 

679v2  0.34 0.49 0.60 0.0241 0.0172 1.88 16.92 

665v2 0.11 0.21 0.21 0.0104 0.0106 1.73 18.26 

687v2 0.07 0.07 0.36 0.0208 0.0024 4.34 12.78 

717v2 0.02 0.14 0.06 0.0064 0.0074 8.62  8.25 

701v2 0.26 -0.07 0.08 0.0125 0.0047 4.24  9.52 

682v2 0.45 0.11 0.10 0.0107 0.0277 3.35  8.82 

673v2 0.05 0.02 0.02 0.0034 0.0042 3.52  5.75 

671v2 0.62 0.07 0.10 0.0302 0.0197 2.97 10.43 

669v2 0.14 0.11 0.10 0.0066 0.0077 3.18  5.93 

683v2 0.59 0.08 0.11 0.0157 0.0093 1.66  7.83 

729v4 0.23 0.14 0.16 0.0195 0.0121 3.34 15.07 

724v4 0.19 0.07 0.07 0.0144 0.0077 1.32 12.39 

675v4 0.12 0.07 0.11 0.0028 0.0041 2.13  7.42 

725v4 0.08 1.43 1.41 0.0186 0.0057 2.24 28.26 

670v4 0.19 0.08 0.16 0.0350 0.0078 1.18  2.96 

706v4 0.25 0.37 0.45 0.0144 0.0062 0.31  6.48 

713v4 0.16 0.13 0.21 0.0346 0.0188 0.67 21.34 

667v4 0.11 0.04 0.01 0.0077 0.0022 1.71  5.92 

,
orgsurr MM

S  (11) 

where 
surrM  and  are the mean value and standard 

deviation of the predicative error associated with 20 sur-

rogate data sets, Morg is the predicative error of original 

time series. 

 Results are shown in table 1 (S_SM). Only for 47% 

of the subjects (S 1.96) can we reject the null hypothesis 

(P 0.05) that the data arise from a linear Gaussian proc-

ess. By such a method, no obvious evidences of nonlin-

earity in cardiac rhythms are found. Similar results were 

also obtained by Lefebvre
[24]

. He concluded that the evi-

dence of deterministic chaos in cardiac rhythms is not 

strong or persistent, and this relatively small effect was 

believed to be a consequence of many rapidly changing 

physiological inputs (can be viewed as dynamics noises) 

to the sinus node. Fortunately, CWF shows power in 

modeling deterministic components of such systems from 

complex and noisy time series. When the one step predi-

cative errors of filtered time series of RR intervals and 20 

surrogate data sets are obtained by CWF, we test nonlin-

earity reliably for all the subjects under studying. The 

values of significance are obtained in table 1 (S_CWF). 

For each subject, we can reject the null hypothesis (P

0.05).

4  Conclusions 

 An acceptable hypothesis is that cardiac rhythm is a 

complex deterministic process with a small scale noise 

(high dimensional) components. On the largest scales, 

cardiac rhythm behaves as a nonlinear deterministic sys-

tem with finite degrees of freedom. At the smaller scales 

the system is likely to be dominated by noise (determinis-

tic high dimensional motion or true noise source)
[4,6,25,26]

.

This is in agreement with the physiology of the system. 

The heart rate is determined by the activity in the auto-

nomic nerves that supplies the sinus. The activity in these 

fibres is not only determined by feedback from the 

baroreceptors in the cardiovascular system, but also in-

fluenced by inputs from many other systems, including 

hormonal systems, and higher centers such as the cerebral 

cortex
[4,6]

. Because of its intrinsic complex mechanism, 

although many researchers have studied cardiac rhythm in 

a variety of ways in an attempt to determine whether it is 

deterministic chaos or stochastic noise, the conclusions 

have been mixed, sometimes contradictory
[4,6,24 27]

. In this 

note, a powerful method has been presented for modeling 

deterministic component of such an approximately dy-

namical system from complex and noisy heartbeat inter-

vals. After the reliability of the proposed method is both 

supplied from the point view of analysis and tested by 

artificial data, we applied it to the analysis of 19 heart rate 

data sets. The main findings are listed. The obtained mod-

els can reflect prominent dynamics of the deterministic 

component of cardiac rhythms; cardiac chaos is stated in a 

reliable way; Dynamical noise plays an important role to 

the generation of complex cardiac rhythm. 
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