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Abstract

We study the complexity of the motion planning problem for a bounded-reach robot in the situation where the
n obstacles in its workspace satisfy two of the realistic models proposed in the literature, namely unclutteredness
and small simple-cover complexity. We show that the maximum complexity of the free space of a robot with
f degrees of freedom in the plane@n//2 + n) for uncluttered environments as well as environments with
small simple-cover complexity. The maximum complexity of the free space of a robot moving in a three-
dimensional uncluttered environment &(1n2//3 + n). All these bounds fit nicely between th@(n) bound
for the maximum free-space complexity for low-density environments anddtw’) bound for unrestricted
environments. Surprisingly—because contrary to the situation in the plane—the maximum free-space complexity
is ®(n/) for a three-dimensional environment with small simple-cover complexi8002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

It is well known that the maximum complexity of the free space of a robot wittegrees of freedom
moving in a scene consisting efdisjoint obstacles of constant complexity cansbé:/). Consequently,
exact motion-planning algorithms often have a worst-case running time of at least the same order of
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magnitude. This is probably one of the reasons that most of the exact algorithms were never implemented.
One exception is Bafion's implementation [3] of the:€) algorithm of Schwartz and Sharir [14] for

a ladder moving in a two-dimensional workspace, which performs surprisingly well, and much better
than the worst-case theoretical analysis predicts. The reason is that the running time of the algorithm is
sensitive to the actual complexity of the free space, and this is in practice far less ttamtheworst-

case bound.

These observations inspired research [1,2,4,7-11,13,15,16,19-21] where geometric problems are
studied under certain (hopefully realistic) assumptions on the input—in the case of motion planning:
the environment in which the robot is moving. The goal of this line of research is to be able to predict
better the practical performance of algorithms. For instance, van der Stappen et al. [16] studied the free-
space complexity for bounded-reach robahoving in environments consisting faft obstacles(A robot
has bounded reach if it is not too large compared to the obstacles in its workspace; an obstacle is fat if
it has no long and skinny parts.) They showed that in this restricted type of environments the worst-case
free-space complexity is onl® (n). Van der Stappen [17,18] also proved that in such environments naive
and slightly adapted versions of Schwartz and Sharir’s ladder algorithm rugef @d Qr logn) time,
respectively, which is more in line with the experimental results of Bafion. Van der Stappen and Overmars
[19] used the linear free-space complexity result to obtain an efficient general approach to robot motion
planning amidst fat obstacles. These results were extended to the more general setting of low-density
environments by van der Stappen et al. [20].

De Berg et al. [5] brought together various of tremalistic input modelghat were proposed in
the literature, namelyatness low density unclutterednessand small simple-cover complexitysee
Section 2 for formal definitions of these models. They showed that these models form a strict hierarchy
in the sense that fatness implies low density, which in turn implies unclutteredness, which implies small
simple-cover complexity, and that no other implications exist between the models. A natural question
that arises is whether the results of van der Stappen et al. [20] remain valid when, instead of a low-
density scene, we assume a more general setting, like an uncluttered scene or a scene with small simple
cover complexity. In other words, does the complexity of the free space of a bounded-reach robot with
f degrees of freedom moving in an uncluttered scene (alternatively, in a scene with small simple-cover
complexity) remain @1)?

The main result of this paper is a negative answer to this question. We prove that the maximum
complexity of the free space of a bounded-reach robot moving in either an uncluttered scene or a scene
with small simple-cover complexity i® (n//2 + n) when the workspace is two-dimensional. These
bounds fit nicely between the (n) bound for low-density scenes and tign/) bound for general
scenes. For three-dimensional uncluttered scenes the bound be®améS + ). Contrary to the planar
case, small simple-cover complexity dasst result in a reduced maximum free-space complexity for
three-dimensional workspaces: the maximum complexi® (s/).

Our upper-bound proofs use the concept of guarding sets [6]. A guarding set for a collection of
objects—in our case the obstacles in the robot’s workspace—is, informally speaking, a set of points
(sometimes referred to as guards) that approximates the spatial distribution of these objects. Guarding
sets allow us to define a simplifying generalization [6] of unclutteredness that implies small simple-cover
complexity in 3D and is even equivalent to it in the plane.

Section 2 recalls the input models that play a role in this paper and briefly reviews the relations between
these models and the concept of guarding sets. Section 3 establishes an upper bound on the number ¢
large objects intersecting a hypercube given the number of guards in its vicinity. In Sections 4 and 5 we



M. de Berg et al. / Computational Geometry 23 (2002) 53-68 55

use the relations and the bound to obtain tight bounds on the maximum complexity of the free space
for motion planning in uncluttered environments and environments with small simple-cover complexity
in 2D and 3D, respectively. Section 6 concludes the paper.

2. Input models

Before we briefly describe the input models that play a role in this paper we list a few important
assumptions and definitions. The dimension of the (work)space is denafetiasshall be dealing a lot
with squares, cubes, rectangles, and so on. These are always assumed to be axis-aligned. All geometri
objects we consider ae-dimensional and open; in particular, if we talk about a point lying in a square
or cube, we mean that the point lies in the interior of the square or cube. Furthermore, all objects we
consider are assumed to have constant complexity. More precisely, each object is a compact connectet
set inR?, bounded by a constant number of algebraic surface patches of constant maximum degree.

Thesizeof a square (more generally, of a hypercube) is defined to be its edge length, and the size of
an object is the size of a smallest enclosing hypercube for the object.

An L-shapeis the geometric difference of a hypercubewith a hypercubes’ C o of less than half
its size and sharing a vertex with it. An L-shape can be covered’ by 2 hypercubes contained in it
for each vertexw of o not shared withy’, take the hypercube of maximal size withas a vertex and
contained ino \ o’.

Although this paper concentrates on motion planning in uncluttered environments and environments
with small simple-cover complexity, we also briefly describe the model of low density for the sake of
reference. It is the weakest model for which the free space of a bounded-reach robot is known to have
linear complexity [20]. We leave fatness [5,18,19] out of our discussion as it imposes stronger constraints
on the environment while leading to the same bound as low density.

The model of low density was introduced by van der Stappen et al. [20] and refined by
Schwarzkopf and Vleugels [15]. It forbids any ba&llto be intersected by many objects whose minimal-
enclosing-ball radius is at least as large as the radiu. o the definition,pmen(P) denotes the radius
of the minimal enclosing ball of an objegt.

Definition 2.1. Let O be a set of objects iR?. We say thatD hasi-low-densityif for any ball B, the
number of object®; € O with pmen(P;) > radiug B) that interseciB is at mosth.

We say that a scene hlmsv densityif it has A-low-density for a small constant
Unclutteredness was introduced by de Berg [4]. The model is defined as follows.

Definition 2.2. Let O be a set of objects ilR?. We say thatO is «-clutteredif any hypercube whose
interior does not contain a vertex of one of the bounding boxes of the obje€sddrintersected by at
mostk objects inO.

We call a scen@nclutteredif it is «-cluttered for a small constant

The following definition of simple-cover complexity is a slight adaptation of the original definition
by Mitchell et al. [12], as proposed by de Berg et al. [5]. Given a s@@nee call a balls-simpleif it
intersects at most objects inO.
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Definition 2.3. Let O be a set ofn objects inR?, and lets > 0 be a parameter. A-simple coverfor O
is a collection ofs-simple balls whose union covers the bounding boxXJofWe say thatD has(s, §)-
simple-cover complexity there is as-simple cover for© of cardinality sm.

We will say that a scene hasnall simple-cover complexitiythere are small constantsandé such that
it has ¢, §)-simple-cover complexity.

Guarding sets [6] against hypercubgzovide a generalization of unclutteredness that turns out
useful in our proofs. A guarding set for a collection of objects is, loosely speaking, a set of points that
approximates the distribution of the objects. More precisely, guarding sets are defined as follows.

Definition 2.4. Let O be a set of objects iR?, and let« be a positive integer. A s&t of points is called
ax-guarding set forO (against hypercubgsf any hypercube not containing a point frofhintersects
at mostx objects fromO.

We will often call the points irG guards

We are particularly interested in scenes that admsitnall «-guarding set for some small constant
that is, a guarding set of size linear in the number of objeat3.iScenes that admit a linear-size guarding
set fit nicely in the existing model hierarchy: a low-density scene is also an uncluttered scene, which is a
scene that admits a linear-size guarding set, which is a scene with small simple-cover complexity [5,6]. In
the plane admitting a linear-size guarding set is even equivalent to having small simple-cover complexity,
but this is not the case in higher dimensions. A consequence of these hierarchical relations is that upper
bounds for scenes with linear-size guarding sets immediately transfer to planar and 3D uncluttered scene:
as well as to planar scenes with small simple-cover complexity. This conclusion will come to our help in
Sections 4 and 5.

3. Guardsand vicinities

Guards provide information on the distribution of the objects in an environment. Let us assume
we are given ac-guarding set for a collection of objects. A hypercube without any guards is, by
definition, intersected by at mostobjects. Moreover, a hypercube with exagihguards in its interior
is intersected by Qrg) objects [6]. Theorem 3.4 below states another, more surprising, relation between
the distribution of the objects and the distribution of the guards. Again we look at hypercubes, but this
time we only look at objects that are at least as large as the hypercube, and not only consider the guards
inside the hypercube but also the ones in its vicinity.

We define thevicinity of a hypercube to be the hypercube obtained by scalingvith a factor of 53
with respect to its center. Thus, if we partition the vicinityoofnto 5’ equal-sized subhypercubes, then
o consists of the 8middle subhypercubes. The planar case is illustrated in Fig. 1.

We will show that the number of objects intersecting a hypereulie R¢ and at least as large as
cannot be more than (roughly)(@—%9), whereg is the number of guards in the vicinity of.

2 1n the paper by de Berg et al. [6] guarding sets are defined against an arbitrary family of ranges. It is sufficient for our
purposes to concentrate on hypercubic ranges.
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the four outer 3-blocks

2 vicinity of o

Fig. 1. A squarery and its vicinity. Fig. 2. lllustration of the planar case in the proof of Lemma 3.1.

We first reduce the problem to a simpler problem on so-called 3-blocks. Definblack3to be
the hyperrectangle obtained by scaling an axis-parallel hypercube by a factg8 afdhg one of the
coordinate axes. We say that an objexissesa given hyperrectangle if there exists a curve inside the
intersection of the hyperrectangle and the object that connects the two largest (and opposite) faces of the
hyperrectangle. First we prove that if a hypercube is intersected by many larger objects, then there must
be a 3-block in its vicinity that is crossed by many objects.

Lemma 3.1. Let 0 be a hypercube intersected by a collectiéh of m objects that are at least
as large aso. Then there is a3-block contained in the vicinity of that is crossed by at least
m/(2d(3¢ — 1)) objects.

Proof. Partitiono into 3’ equal-sized subhypercubes. Each object interseetinqust intersect one of
the 3’ — 1 subhypercubes that have a common boundary witbecause it is at least as large @
One of the subhypercubes, say, thus intersects at least/ (3¢ — 1) objects. Denote the set of objects
intersectingo* by O*. Let X* be the hypercube obtained by scalmfjwith a factor three with respect
to its center. Consider the/duter 3-blocks that are contained X, that is, the 3-blocks that have one
of the 21 sides of¥'* as a face—see Fig. 2 for an illustration of the planar case. Not&thand, hence,
all 2d outer 3-blocks, are contained in the vicinity ©f We shall argue that one of the outer 3-blocks is
crossed by at least /(2d(3? — 1)) objects.

The hypercuber* has the same size as the original hypercaibelence, each object i? is at least
as large az’*. This implies that the objects cannot be fully contained’ih Thus, each object i®* has
a point insides* and a point outside&’*. But this means that inside each such object we can find a curve
connecting the two largest faces of one of thkaiter 3-blocks. Hence, one of the outer 3-blocks must
be crossed by at leagD*|/2d = m/(2d(3? — 1)) objects. O

The next step is to prove a relation between the number of crossing objects and the number of guards
in a 3-block. The following auxiliary lemma will be called for in the proof of Lemma 3.3.

Lemma 3.2. For any given hypercube intersected by a s&D of m objects, and any constahtwith
0 < b < m, we can identify more thapm /(2¢+1 — 2)b| disjoint hypercubes inside each intersected by
at leastb objects fromO.
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Proof. We construct a tree an by recursively identifying between 2 anél ubhypercubes in the current
hypercube if it is intersected by at leasth2objects. Assume that we have a hypercatientersected

by at least 2b objects and consider its decomposition infoejual-sized subhypercubes (by means of
thed hyperplanes perpendicular to the coordinate axes and cutting the hypercube into two equal halves).
We call a (sub)hypercube crowded if it is intersected by at leadijects. Note that at least one of the
subhypercubes af* is crowded. Note also that each object intersectifigntersects at least one of the

2¢ subhypercubes (because the objects/adémensional and open).

e If the number of crowded subhypercubes ®f exceeds one, then each of these crowded
subhypercubes becomes a childoofin our tree. We charge the objects that do not intersect one
of the crowded subhypercubes,ad. The number of such objects is at m@at — 2)(b — 1).

o If the number of crowded subhypercubesoof equals one, then this subhypercubeis shrunk
towards the vertex it shares with* until o* \ o’ is intersected by at leag®’ — 1)b objects but
o’ is still intersected by at least objects. (Note that this is always possible because the objects
ared-dimensional.) Now consider the 2- 1 hypercubes of maximal size containedih\ ¢’ and
sharing a vertex witls*. Since these hypercubes jointly cover\ ¢’, at least one of them, say’,
is crowded. The crowded hypercubg'sands” become the children af* in our tree. We charge the
at most(2? — 1)b — b = (2¢ — 2)b objects that do not interseet or o to o *.

The leaves of the resulting tree correspond to disjoint hypercubes that are intersected by atdpass.
We will see that there are at leasy (2¢+* — 2)b leaves.

Let L andI be the number of leaves and internal nodes of the resulting tree, respectively. As every
internal node has at least two children the number of leaves is larger than the number of internal nodes,
soL > I. We notice that the number of objects charged to an internal node is a(2ies®)b and the
number of objects intersecting a hypercube corresponding to a leaf is at fhostl2 Since the number
of objects charged to all internal nodes plus the number of objects intersecting the hypercubes at the
leaves should at least be equahkiave have that

12 =2b+L2b—1) >m.

Using the inequalityl. > I we obtain

L LLJ .
(24+1 — 2)b

Lemma 3.3. Let G be ax-guarding set for a collectior® of m objects inR?, withd > 2. Let B be a
3-block crossed by: objects from®, and let« < m. Then there must be at least

d/(d-1
m
d34-1(24 — 2)(k + 1)J
guards fromG inside B.

d— 1)3‘“{

Proof. We assume, without loss of generality, that the short sid® lb&s unit length. We spliB into

m 1/(d-1)
l:=
Ld3d‘1(2d —2)(k + l)J
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Fig. 3. A 3-blockB (with a crossing object shown shaded) is cut ihslices; each slicé contains a certain number of cubes
(sharing a face with the fageof S) that must contain at least one guard.

B

= @
|_V®

slices of height 1/ by means of hyperplanes parallel to its two largest faces, which(cdre 1)-
dimensional hypercubes of side length 3. The two largest (and opposite) faces of the resulting slices
are again(d — 1)-dimensional hypercubes of side length 3; see Fig. 3 for a three-dimensional 3-block
and thel slices. We observe that each of the objects fil@rarossingB also crosses each of thelices.
Consider a slices and letg be one of its two largest faces. The intersections withf the m objects
crossingB are(d — 1)-dimensional objects.

Lemma 3.2 states that we can identify at lepst/(2¢ — 2)(x + 1)| disjoint (d — 1)-dimensional
hypercubes inside, each of which is intersected by at least 1 objects. Since th@/ — 1)-dimensional
volume ofg is 3’1, the number ofd — 1)-dimensional hypercubes with a side length exceedjigsl
less than(3/)¢~1, so at leastm /(2¢ — 2)(k + 1) | — (3)?~* (which is positive) of such hypercubes have a
side length of 11 or less. For every such hypercubetake thed-dimensional hypercube’ with o as a
face and contained in the slice this is possible because the side lengtlrof at most 11 (see Fig. 3).

The hypercube’ is intersected by at least+ 1 objects because is intersected by + 1 objects, and
hence it must contain a guard. It follows that we need at lpagt2? — 2)(x + 1) | — (3)?~* guards per
slice, which sums up to a total of

m d-1 d—1 m =D
- — - > — -
l(t<2d—2)<x+1>J < >/(d b3 Ld3d—1<2d—2><x+1>J
guards for the entire 3-blocR. O

Combining the lemmas above, we now prove that the number of relatively large objects intersecting a
hypercube cannot exceed (roughly) the number of guards in its vicinity to the powéyd.

Theorem 3.4. LetG be ax-guarding set for a sep of objects inR¢, withd > 2. Any hypercube whose
vicinity contains exactly guards fromG is intersected by(«x (1 + g'~%“)) objects fromO that are at
least as large ag.

Proof. Letm denote the number of objects at least as large asersectingo. From Lemma 3.1 we
know that there is a 3-blocB in the vicinity of o that is crossed by at least/(24(3? — 1)) object
curves. Lemma 3.3 now implies that there must be at least

m d/(d-1)
24230-1(31 — 1)(24 — 2)(kc + 1)J

d— 1)3‘“{
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guards inB. SinceB is in the vicinity ofo, this number must be less than or equat tevhich (together
with the fact thatB can still be intersected by objects if it contains no guards) implies the theorerm

We now turn our attention to the complexity of motion planning in two-dimensional workspaces that
are either uncluttered or have small simple-cover complexity, and then extend the obtained results to
three dimensions in Section 5.

4. Thecomplexity of motion planning in planar workspaces

Let R be a robot withf degrees of freedom, moving in a two-dimensional workspace amidst(a set
of n obstacles. The robd® can be of any type: it can be a free-flying robot, a robotic arm, and so on.
The only restriction is that it must hawmunded reaclil6], which is defined as follows. Legir be an
arbitrary reference pointinside. Then thaeachof R, denoted by reaafR), is defined as the maximum
distance that any point &® can be fromp, taken over all possible configurations®f For instance,
if R consists of two links of length 1 that are both attached to the origin, and the reference point is the
tip of one of the links, then the reach &fis 2. (If the reference point would be the origin then the reach
would be 1. For any two reference points, however, the two values (Raatan be at most a factor of
two apart.) A bounded-reach robot is now defined as a r@baith

reachR) < c - Eneig{Size(C)}’

wherec is a (small) constant.

In this section we study the complexity of the free space of a bounded-reach Robater the
assumption that the set of obstacles satisfies one of the models defined above. We @rovedr? +n)
worst-case lower bound on the free-space complexity for the most restricted model, namely for
k-Cluttered scenes. Because unclutteredness implies small simple-cover complexity in the hierarchy
of input models [5], this bound carries over to scenes with small simple-cover complexity. Moreover,
we prove an @/ ((sn)//? + sn)) upper bound for scenes withxaguarding set of size - n. By the
conclusions from Section 2, the upper bound immediately carries over to uncluttered scenes and scene:
with small simple-cover complexity. Hence, in both models we get a tight bout(of/? + ).

4.1. A lower bound for uncluttered scenes

The robotR in our lower bound example consists pflinks, which are all attached to the origin. The
links have length % ¢, for a sufficiently smalk > 0. ObviouslyR has f degrees of freedom.

The set ofn obstacles for the case of a 2-cluttered planar scene is defined as follows. (Later we adapt
the construction to get the bound fercluttered scenes for larger but still constan} Recall that our
obstacles are presumed to be two-dimensional. Fix an integer parameitewill turn out later that
the appropriate value for is roughly \/n. For a given integer, let C; be the horizontal rectangle of
length 1 and small height whose lower left corner lies on the unit circle and has@oordinate equal
to i /m—see Fig. 4(a) for an example. Lé4 := {C; | 1 <i < m}; this set forms a subset of the set of
all obstacles. The remaining obstacles, which we describe later, are only needed to turn the environment
into an uncluttered environment.
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new obstacle A z'

L bounding box
of current scene

(a) (b) (c)

Fig. 4. (a) Part of the lower bound construction. (b), (c) Adding bounding-box vertices to make the scene uncluttered.

Consider any subset gf rectangles fronO;. It is easy to see that there is a semi-free placement of
R such that each rectangle in the subset is touched by a lirik.dfence, the free-space complexity
is Q(m”'). Whenm is large, however, the sé; does not form an uncluttered environment: the dashed
square in Fig. 4(a) for instance, interse@én) obstacles without having a bounding-box vertex of one
of the rectangles in its interior. This problem would disappear if between every pair of adjacent horizontal
rectangles there would be a collection@®fm) equal-spaced bounding-box vertices, as in Fig. 4(b). If
the distance between consecutive vertices is set2a then no square without a bounding-box vertex in
its interior will intersect more than one obstacle fr@M. Notice that in total we neeé (m?) bounding-
box vertices for this. We cannot add tiny obstacles between the rectangles to achieve this, because suc
obstacles would be much smaller than the robot, so the robot would no longer have bounded reach.
There is no need, however, to add obstacles between the rectangles; we can also create bounding-bo
vertices there by adding obstacles outside the current scene. Suppose that we wish to have a bounding
box vertex at a given point = (py, p,), and suppose that the current set of obstacles is contained in the
rectanglgxmin, Xmaxl X [Ymin,» Ymaxl- Then we add the right trianglé with vertices(p,, ymax+ Xmax— Px)»

(Xmax+ Ymax— Dy Py) and(Xmax+ Ymax— Dy> Ymax+ Xmax— px) as an obstacle—see Fig. 4(c). The pgint

is a bounding-box vertex ofi, and A is disjoint from the current set of obstacles. By iteratively adding
obstacles that generate the necessary bounding-box vertices between the rectafgles transform

the cluttered environment into an uncluttered one. The added obstacles are collected @ acset

final set of obstacles i® = O, U O,. It is not difficult to see that these obstacles form a 2-cluttered
environment in this manner: any square without bounding-box vertices intersects at most one obstacle
from O, or two obstacles fron®,.

We now have a collection a® (m?) obstacles forming a 2-cluttered scene such that the free-space
complexity isQ2(m/). By choosing a suitable value for (in the order of,/z), we obtain a collection of
n obstacles such that the free-space complexify (s//?).

To get the general bound we replace each ofrheectangles in the saD; by « (even thinner)
rectangles of length 1 that are quite close together. The lower left corners of these rectangles still lie on
the unit circle; the new scene iscluttered. It is still possible to choose the vakievhich determines
the length of the links ok, small enough such that arfi+tuple of rectangles in the new s can be
touched by a semi-free placement. Hence, the numbégrfofd contacts has increased®@(x/m/). By
again choosingn to be roughly,/n we get a bound of2 (x/n//?). In the specific case that = 1 the
maximum complexity is clearly2 (n).

Theorem 4.1. The free-space complexity of a bounded-reach robot Witlegrees of freedom moving in
a two-dimensionak -cluttered scene consisting efobstacles can b& (x'n//? + n).
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4.2. An upper bound for scenes with linear-size guarding sets

We want to prove an upper bound on the complexity of the free space of a bounded-reach robot with
f degrees of freedom moving in a scene with a linear-skgiarding set. The global structure of our
proof will be as follows. We construct a decomposition of the workspace into cells that are not much
smaller than the robot. The decomposition will have the property that none of its cells can have too
many obstacles close to it. This means that the robot cannot have too frfahy contacts when its
reference point lies inside any given cell. Summing the numbgrfalid contacts over all the cells using
Theorem 3.4 yields the desired bound on the number of features of the free space.

The decomposition we use is obtained by adapting (the first stage of) the partitioning scheme described
by de Berg [4]. First we describe the exact properties that we require, and then show how to obtain a
decomposition with the desired properties.

Let p := 2 - reaciR). Define theexpansions of an objecto to be the Minkowski sum ob with a
square of size 2 centered at the origin. Henc&contains exactly those points that are dt.g-distance
of less thano from o. Note that the expansion of a squarés another square, whose edge lengthgds 2
more than the edge length of Let 0= {5 | C € O} denote the set of expanded obstacles.

Lemma 4.2. Let O be a set of obstacles iR? (or R®), and letG be ax-guarding set forO. Then there
exists a seb of cells that are either squarg®r cubes or L-shapes with the following properties

(PY the cells inS form a decomposition of a sufficiently large bounding squarecube of the setD
of expanded obstacles

(P2 the number of cells it is O(|G));

(P3 every cell inS whose size is greater th&lp is intersected byD(x) expanded obstacles

(P4 every cell inS whose size is less than or equalZp is a square (or cube) of size at least

Proof. We prove the lemma for the planar case; the generalization to three dimensions is straightforward.
Let G denote the set of points obtained by adding to every ggagrds the four corner points of the
square of size 2 centered ag. The setG contains 5G| points. We enclos@ (and @) by a sufficiently
large square and recursively decompose this square based on the p(ﬂn'aso‘bllows
Let G, denote the subset of points froBhcontained in the interior of a squaseat some stage in the
(quadtree-like) subdivision process. The squais handled according to the following set of rules.

. If size(o) < 2p or G, = ¥ theno is one of the cells irs.

2 If size(o') > 2p, Go # ¥, and not all points o6, lie in the interior of a single quadrant ef, theno
is subdivided into four quadrants, which are handled recursively.

3. If size(o) > 2p, G, # ¢, and all points ofG, lie in the interior of a single quadrant ef, theno is
subdivided as follows. Let’ be the smallest square containing the points f@min its closure that
shares a vertex with.

(a) If size(o’) > p theno’ is handled recursively, and the L-shap& o’ is a cell inS.
(b) If size(o”) < p, then leto” denote a square of size contained ino and containings’. The
squares” and the L-shape \ ¢” are cells inS.
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p o
o
I
:‘-p ————~| ® = guard p
. > p
R P : = points added for p

Fig. 5. A guard fromG insidea implies a point ofG ino.

It follows immediately from the construction that the cells $hsatisfy properties (P1) and (P4).

A subdivision according to rule 2 splits the €&} into two nonempty subsets; a subdivision according
to rule 3 puts one of the points Gf, onto the boundary of a subcell. Both subdivisions can therefore be
performed at mogiG| times. As a result, the number of cells will bé|G|) = O(|G|), which proves (P2).

It remains to prove property (P3). By construction, any cell of size more tparo@tains no point
from G. We now prove that any squate of size at leasjp that does not contain any points froth
intersects at most expanded obstacles. If the cell under consideration is a square this immediately
proves (P3), and if it is an L-shape then it also proves (P3) because an L-shape of size at teasbe
covered by three squares of size at lgas$o consider a squarewithout points fromG and whose size
is at leastp. The fact thatr contains no points frond; implies that its expansiof contains no guard
from G—see Fig. 5 for an illustration. This means thais intersected by at most original obstacles,
which implies thatr is intersected by at mostexpanded obstacles.o

Now that we have a suitable decomposition of the workspace, we can use Theorem 3.4 to prove our
main result.

Theorem 4.3. Let R be a bounded-reach robot with degrees of freedom, witfi a constant, moving in
a two-dimensional workspace containing a €ebf n obstacles. If the set of obstacles has-guarding
set of size - n, then the complexity of the free spac&ig / ((sn)//? + sn)).

Proof. If R touches an obstaclg, its reference point must lie in the interior 6f (This is true because
we definedo astwicethe reach ofR.) Therefore we can bound, for anylk < f, the number ok-fold
contacts ofR by bounding the number df-tuples of expanded obstacles with a non-empty common
intersection. The idea of the proof is to decompose the workspace according to Lemma 4.2 and then surr
the number ok-tuples over all cells of the decomposition using Theorem 3.4.

Let G be ax-guarding set of sizen for the obstacle se&P, and letS denote a decomposition having
the properties stated in Lemma 4.2. To bound the free-space complexity we have to bound the number
of simultaneous contacts involvingobstacles, fok =1, ..., f. By property (P1) this means that the
free-space complexity is bounded by

>y

k=1 oS

wheren, denotes the number of expanded obstacles intersecting the. @d¢ie asymptotic value of this
sum is dominated by the term whete= f, so we ignore the other terms from now on. L%tbe the
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subset ofS consisting of the cells of size larger thap,2and letS, be the subset of consisting of the
remaining cells. By properties (P2) and (P3) we have

Z f = SnIC )

oceSy
Now consider the cells i5,. By property (P4) these cells are squares whose size lies bejwaath 2.
Leto be such a square. We claim that the number of expanded obstacles intersastdg (1+ ,/g,)),
whereg, is the number of guards fro@ in the vicinity of the expansio& . It is important to observe
that 3o < size(o) < 4p. Furthermore, any expanded obstacle intersectirmprresponds to an original
obstacle that intersect. Becausep < 2¢ - min{size(C) | C € O} for a constant, we can partitioro
into O(1) subsquares whose size is smaller than the size of the smallest obstacle. By Theorem 3.4, this
means that the number of original obstacles interse@irg)O(« (1+ ,/g,)), Whereg, is the number of
guards in the vicinity o. Hence, the number of expanded obstacles intersesatiisgoounded by this
guantity as well.

We conclude that the number of-tuples of expanded obstacles with a non-empty common

intersection in a cell oF; is bounded by

Sonl=3 (k(1+vz0))

0652 0682

whereg, is the number of guards in the vicinity of the expanstarSince all squares have size at least
o by property (P4), the vicinity of an expanded squaré&drintersects @L) other vicinities of expanded
squares. Hence, a guard frainlies in O(1) vicinities, and we have

Z 80 = O(sn),

0652

which leads to

> (k(1+v8:)) =0k (sm)7?).

0652

Therefore the total number gf-fold contacts ofR is bounded by

Zn +an— (sn)f/2+sn)) O

0651 0652

5. Thecomplexity of motion planning in 3D workspaces

Having described the two-dimensional setting in the previous section, we now turn our attention to
a robot R moving in a three-dimensional workspace amidst a@etf n obstacles. As in the two-
dimensional case, the robot is allowed to be of any type—we only require that its reach is bounded. We
prove an2(x%/n?//® 4+ n) worst-case lower bound on the complexity of the free space fduttered
scenes, and an@’ ((sn)?//®+sn)) upper bound for scenes withraguarding set of size- n. As before,
this results in a tight bound @ (n2//3 + n) for uncluttered scenes. We also provesaf /) worst-case
lower bound on the complexity of scenes with small simple-cover complexity. The maximum free-space
complexity for such scenes is therefaggn/) and thus equivalent to the complexity for unrestricted
scenes.
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the robot/

Fig. 6. The lower-bound construction.

5.1. Lower bounds

5.1.1. Alower bound for scenes with small simple-cover complexity
We consider the scene consistinguafings,

<x<l—+8, 1<y2+zz<l+8},
n

Ci = {(X, Y, Z)

with 0 <i < n and smalle shown in Fig. 6. It was shown [6] that a similar scene consisting of unit
circles has small simple-cover complexity but requirgsguarding set of siz& (n?) for any constant.

It is clear that these properties carry over to our scene in which the circles are replaced by thin rings.
Our robotR consists off links, which are all attached to the poift, 2, 0). Each link has length 2 and
rotates about the axis= {(x, y,z) | x =0, y = 2}, causing it to stay inside they-plane. Note that the

size of the robot is comparable to the size of the obstacles so it has bounded reach. For any gubset of
rings, there is a semi-free placementffkuch that each ring; in the subset is touched by a link &f.

As a consequence, the free-space complexify(s’).

l
n

Theorem 5.1. The free-space complexity of a bounded-reach robot Wittegrees of freedom moving in
a three-dimensional scene with small simple-cover complexity consistinglsftacles can b& (n/).

5.1.2. A lower bound for uncluttered scenes
Our approach to obtaining a worst-case lower bound fok3fluttered scenes is similar to the planar
case. We fix a parameter and consider the sé?; of m? thin unit-length rectangloids,
l—<x<l—+8, i<y<i—i—8, O<z<l},
m m m

Ci,j: {(x’yvz)
m

for0<i, j <m.

Consider then? planes through pairs of obstacles and choose a poiat(x,, y,, 1/2) that lies on
none of these planes and satisfig? & x,, y, < 1/2+ 1/m. Our robotR has f links, which are all
anchored ag. Each link has length 1 and is able to rotate about the/axiq (x, y,z) | x = x4, ¥y = y,},
causing it to stay inside the plape= 1/2; the choice of; allows it be placed in contact with each obstacle
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m

F—Jg\

the robotz/; " s omomom /\ points/_\

(a) (b)

Fig. 7. (a) Cross-section of the environmentat 1/2. (b) Magnified portion of the scene showing a single obstacle and the
four sequences of points (bounding-box vertices) immediately surrounding it.

in 0. Fig. 7(a) shows the intersection of the scene with the ptagd /2. The size ofR is comparable
to the size of the obstacles @ . For any subset of obstacles there is a semi-free placemeriRafuch
that each obstacl€; ; in the subset is touched by a link &. Hence, the complexity of the free space
is Q(m?/).

To prevent cubes from intersecting more than one obstacle lwe put sequences of points on
each of the lineg = {(x,y,2) |x =2 — 1) /2m, y=(2j — 1)/2m} for 0 < i, j < m, see Fig. 7(b)
for one obstacle and the points surrounding it. The distance between two consecutive points on a single
line is again equal to/2m. We turn the® (m2) points into bounding-box vertices by iteratively adding
tetrahedral obstacles in a way similar to the planar case. The res@liimg) obstacles are collected
in O,, and our final set of obstaclesds= O; U O,. Any cube without bounding box vertices intersects
at most one obstacle frof; or two obstacles fron®-.

As a result, we now have a collection®im?) obstacles forming a 2-cluttered scene with a free-space
complexity of Q2 (m?/). By choosingm = n'/3, the free-space complexity becon@sn?//3) for the set
of n obstacles.

As in the two-dimensional example, we now replace each owihebstacles inD; by « obstacles
that are close together and arranged such that each of them can be touched by the RnKEhef
resulting scene ig-cluttered, and the number gf-fold contacts increases fro@(m?/) to Q (k/ m?/).

The theorem follows from again choosing= ¥z. By again choosing: to be roughlyz'/3 we get a
bound ofQ2 (xn2//3). Again the maximum complexity i€ (n) in the case thaf = 1.

Theorem 5.2. The free-space complexity of a bounded-reach robot Wittegrees of freedom moving in
a three-dimensionat -cluttered scene of obstacles can b& (x/ n2//3 + n).

5.2. An upper bound for scenes with linear-size guarding sets
Proving an upper bound on the free-space complexity of a bounded-reach robgt dérees of

freedom moving in a scene with a linear-size guarding set is entirely analogous to the two-dimensional
case.
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Theorem 5.3. Let R be a bounded-reach robot with degrees of freedom, witfi a constant, moving in
a three-dimensional workspace containing a@atfn obstacles. If the set of obstacles has-guarding
set of size - n, then the complexity of the free spac&i& / ((sn)?//3 + sn)).

Proof. Analogous to the proof of Theorem 4.3, except that

Z f—z 1+g2/3) =O(Kf(sn)2f/3),

0652 0682

which yields
Z n! + Z =0 (sn)zf/3+sn)) O
0651 0652

6. Conclusion

We have established that the maximum complexity of the free-space of a bounded-reach robot with
f degrees of freedom moving in an uncluttered scen®(s//? + n) in R? and © (n?//3 + n) in RS,
the planar bound also holds for scenes with small simple-cover complexity. These bounds fit nicely
between the (n) bound for low-density scenes—which are more restrictive—andtiae’) bound for
unrestricted scenes. Surprisingly, the maximum complexity of the free space for a robot moving in a
3D scene with small simple-cover complexity is equabtt:/ )—the bound for unrestricted scenes.

Motion planning in low-density environments can be solved in an amount of time that is almost equal
to the maximum free-space complexity [20]. It is interesting to see if a similar result is possible for
uncluttered scenes and scenes with small simple-cover complexity.
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