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INTEGRATED PROCEDURE FOR IDENTIFICATION AND CONTROL OF

MDOF STRUCTURES

By Vincenzo Gattulli1 and Francesco Romeo2

ABSTRACT: An integrated procedure based on a direct adaptive control algorithm is applied to structural
systems for both vibration suppression and damage detection. The wider class of noncollocated actuator-sensor
schemes is investigated through parameterized linear functions of the state variables that preserve the minimum
phase property of the system. A larger number of mechanical parameters are shown to be identifiable in non-
collocated configurations. Proper output selection allowing for model reference control and tracking error based
parameters estimation under persistent excitation is described. Using full-state feedback, these capabilities are
effectively exploited for oscillation reduction and health monitoring of uncertain multi-degree-of-freedom
(MDOF) shear-type structures.
INTRODUCTION

The technical science of mechatronics—developing systems
composed by integrated mechanical elements, control logic,
and electronic components—has been fastly evolving during
the last decades. Vibration suppression and health monitoring
of large flexible structures are recent structural engineering
applications of this multidisciplinary field. In this respect, a
structural system equipped with sensors and actuators may be
designed to enable the identification of the relevant structural
parameters and the robust reduction of the oscillations during
a dynamical event. Nevertheless, in most of the investigations
the two aspects have been treated separately according to the
primary objective pursued.

On one hand, on-line identification procedures, developed
in the context of system theory [e.g., Isermann et al. (1974)],
have recently received attention for applications to linear and
nonlinear multi-degree-of-freedom (MDOF) structural systems
[e.g., Ghanem and Shinozuka (1995)]. Most of these proce-
dures consist of prediction error-based estimators, where the
errors between predicted and measured output are used to up-
date estimates of the parameters. The stability proof, parameter
boundedness, smallness condition for the estimation error and
speed of adaptation delineate the differences in the available
methodologies [e.g., Ioannou and Datta (1991)]. Recently,
some specific studies in the structural context have been car-
ried out for time-dependent degrading structures (Lin et al.
1990) and for nonlinear chain-like MDOF hysteretic systems
(Smyth et al. 1999). In both cases, a least-squares based pro-
cedure has been implemented. Good accuracy in the stiffness
degradation estimate is obtained in the former, whereas the
use of forgetting factors and the effects of both persistent ex-
citation and under- or overparameterization are some of the
results obtained in the latter.

On the other hand, adaptive control procedures for structural
systems have been investigated with the main goal of bringing
some state variable combinations of an uncertain dynamical
system to track a desired behavior relying on on-line adjust-
ment of control parameters. The use of these methodologies
has been proposed in different engineering applications (Poh
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and Baz 1996; Ghanem et al. 1997; Sun and Stelson 1997;
Gattulli and Ghanem 1999; Gattulli and Romeo 1999). In par-
ticular, Ghanem et al. (1997) implemented an adaptive control
procedure in a nonlinear single-degree-of-freedom system
modeling a device that relies on an electrorheological fluid for
its force-resisting mechanism. Gattulli and Ghanem (1999)
proposed the use of a direct adaptive procedure to mitigate
hydrodynamic vortex induced oscillations. Experimental vali-
dation of the direct adaptive controller has been pursued for a
large aerospace flexible structure with six collocated actuator/
sensor pairs (Ih et al. 1993a,b).

Recently Ray and Tian (1999) proposed a sensitivity en-
hancing procedure based on feedback control for damage de-
tection pointing out the potential use of feedback for vibration
suppression and health monitoring. According to this point of
view, the present work proposes the use of an integrated pro-
cedure for robust control of oscillations and damage detection
of MDOF linear structural systems. The methodology is
founded on direct model reference adaptive control (MRAC),
highlighting the key role played by the output selection in both
collocated and noncollocated actuator/sensor configurations.
Indeed, a proper output choice assures a linear dependence on
the on-line identifiable mechanical parameters, and it allows
detection of their variations due to damage under persistent
excitation. Moreover, the number of the latter parameters is
shown to be increased in noncollocated configurations. A qual-
itative analysis of the uncontrolled dynamics together with a
Lyapunov-based controller design guarantee overall stability.
It is assumed that the number of actuators is smaller than the
number of sensors, which is the case in a general configuration
for structural control in earthquake engineering applications
(Soong 1990; Gattulli et al. 1994). The control strategy is cur-
rently based on full-state feedback (i.e., displacements and ve-
locities). Applications for aseismic protection of an existing
structure could be tackled by modifying the procedure to rely
only on acceleration measurements (Dyke et al. 1996).

The present paper is organized as follows. The governing
relations of a general structural system are reported in the sec-
ond section, and control canonical forms are recalled in the
third section. In particular, such transformations permit one to
separate from the assignable dynamics the internal dynamics
unaffected by the control input. The relevant steps of the con-
trol procedure based on sliding mode and model reference con-
cepts are presented in the fourth section. An on-line identifi-
cation procedure based on the asymptotic convergence to zero
of the tracking errors is delineated in the fifth section. The last
section is devoted to the applications of the procedure to shear-
type structures.

GOVERNING RELATIONS

It is assumed that structural oscillations induced by dynamic
loads are described by a linear discrete model with nq Lagran-
0.126:730-737.
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gian degrees of freedom. A set of nq linear ordinary differential
equations of the form

Mq̈ 1 Cq̇ 1 Kq = Eu 1 Fw (1)

represents the governing relations of the dynamical motion.
The vector q describes the nq displacements of a discrete set
of points of the structural system from a reference configura-
tion; the vector u contains the m control actions; and the vector
w represents the nq components of the dynamic loads. The (nq

3 nq) mass, damping, and stiffness matrices are represented
by M, C, and K, respectively. The allocation matrices for the
control and the external actions are expressed by the matrices
E (nq 3 m) and F (nq 3 nq), respectively. The equation of
motion [(1)] can be rewritten in the state space form as

ẋ = Ax 1 Bu 1 Hw (2)

where x = (q, q̇) is the n = 2nq dimensional state vector. A
vector y, representing the p # n outputs, can be obtained by
a linear combination of the state variables through the follow-
ing observation equation:

y = Cx (3)

where C = (p 3 n) observation matrix. In particular, the state
space matrix A and allocation matrices B and H are given by

0 I
A = (4a)21 21S D2M K 2M C

0 0
B = ; H = (4b,c)21 21S D S D2M E 2M F

CONTROL CANONICAL FORMS

The present section summarizes some basic control theory
aspects [e.g., Isidori (1995) and Stengel (1994)] useful for ap-
plications of MRAC in structural contexts. MRAC procedures
aim to lead the actual system to follow a desired reference
system. Complete matching between actual and reference out-
puts can be pursued when their number is equal to the number
of inputs (Ih et al. 1993a). Noncollocated input-output pairs
can be properly selected using control canonical forms. In-
deed, these representations highlight the relation between input
and output and the existence of internal dynamics not affected
by the control input. Therefore, we exploit the internal dynam-
ics stability to select a class of plausible outputs.

Introducing the linear transformation, h = Tx, a control ca-
nonical form of (2) and (3), can be written

ḣ = Ah 1 Bu 1 Hw (5)

y = Ch (6)

with A = TAT21; B = TB; H = TH; and C = CT21. For single-
input single-output (SISO) systems, in which u and y are scalar
quantities (m = p = 1), the (n 3 n) linear transformation matrix
T can be defined as

c
cA
? ? ? ?

r21T = cA (7)
f1

? ? ? ?
fn2r

where c is the (1 3 n) observation row vector; fi is the (n 2
r 3 1) arbitrary row vectors chosen such that fib = 0 are
satisfied; and b = (n 3 1) control allocation vector. The trans-
formed system is partitioned in r and n 2 r equations where
J. Eng. Mech. 20
the vector h = (h1; h2)
T, whereas the submatrices A11 and A12

and the subvector b1 have the following special form:

0 1 0 ? ? 0
0 0 1 ? ? 0

A = ? ? ? ? ? ? (8a)11 S D0 0 0 ? ? 1
a a a ? ? a1 2 3 r

0 0 0 ? ? 0 0
0 0 0 ? ? 0 0

A = ? ? ? ? ? ? ; b = ? (8b,c)12 1S D S D0 0 0 ? ? 1 0
a a a ? ? a br11 r12 r13 n r

while A21, A22, H1, and H2 are generally nonsparse submatri-
ces; and b2 = null vector. The observation row vector c be-
comes c = (1, 0, 0 ? ? ? 0). In the transformed system, the
control variable affects only the rth equation, whereas the
transfer function between u and y is directly related to the
coefficients of the transformed state space matrix. Indeed, the
n coefficients ai and the n 2 r coefficients dj appearing in the
transfer function G(s)

n2ry(s) det(A 2 sI ) d 1 d s 1 ??? 1 d s22 0 1 n2r
G(s) = = g = g nu(s) det(A 2 sI ) a 1 a s 1 ??? 1 a s0 1 n

(9)

are related with those of the rth row of the state matrix A
through the constant g = In (9), r is known as ther21cA b.
relative degree of the transfer function, and the transformation
is complete when r = n.

Multi-input multi-output (MIMO) systems can also be rep-
resented in control canonical forms. In both SISO and MIMO
cases, the transformed system puts into evidence the existence
of an internal dynamics represented by the evolution of a sub-
vector h2 of proper dimension that is not directly affected by
the control. Indeed, choosing a control that brings the first
subvector h1 to zero, the evolution of h2 depends on the spec-
tral contents of the submatrix A22. Eq. (9) shows that the spec-
tral characteristics of the matrix A22 are identical to the zeros
of the corresponding transfer function G(s) (Isidori 1995). Sys-
tems where the selected input-output pair causes stable internal
dynamics are called minimum phase. The developed procedure
is concerned with minimum phase systems characterized by
generic actuator/sensor configurations.

CONTROL STRATEGY VIA SLIDING MODE AND
REFERENCE MODEL

The control is designed to reach an asymptotic tracking of
some suitable variables selected from the ones representing the
system dynamics belonging to a reduced subdimensional
space. The tracking of a reference multidimensional trajectory
yd [ Rp is achieved by asymptotic zero convergence of the
multidimensional error between the actual and reference sys-
tem outputs. This request can be satisfied only if the control
variables are able to assign eigenvectors and eigenvalues of a
subdimensional dynamical system [ Rp. It is currently known
that eigenvectors assignment in a p-dimensional subspace
needs at least a p-dimensional control vector (Stengel 1994).
Thus, the developed procedure is restricted to systems with
p = m.

Reference Model

Despite the imperfect knowledge about the chosen mathe-
matical model for the structural system, the present procedure
aims to devise a controller that will steer the system in some
JOURNAL OF ENGINEERING MECHANICS / JULY 2000 / 731

00.126:730-737.



D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

N
ew

 Y
or

k 
U

ni
ve

rs
ity

 o
n 

05
/1

1/
15

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
desired fashion, for example, so that the system response will
approach or track a desired reference response. The latter can
be obtained from a reference dynamical system analogous to
the actual one. We will refer to such a model as the reference
model described by the following equations:

ẋ = A x 1 H w ; y = C x (10a,b)d d d d d d d d

where the vector yd [ Rp denotes the desired trajectories that
the controlled system will be designed to track.

Sliding Mode Control

The control algorithm is based on the convergence of the
output actual state y(t) to the desired target state yd(t). There-
fore, defining e(t) = y(t) 2 yd(t), the tracking error vector e is
introduced

r21d d
e(t) = e, e, . . . , e (11)S Dr21dt dt

The combined error vector s(t) is defined as

d d
s(e, t) = 1 l , . . . , 1 l e (12)0 r21S Ddt dt

where the positive parameter li, with i = 0, . . . , r 2 1, rep-
resenting the relative weights, is used to fine-tune the con-
troller. Obviously, for s(t) being identically zero, the tracking
error vector e(t) goes exponentially to zero. This observation
justifies the design of a control algorithm that keeps s(t) at or
near zero (Slotine and Li 1991). This goal is achieved sliding
along the line

ṡ(t) 1 k s(t) = 0 (13)c

where the weighting parameter kc defines the convergence rate.
Therefore the control law is designed such that the rth equa-
tion of (5) matches (13). In the following, we will consider
the significant case r = 2, generally occurring in SISO systems
governed by second-order ordinary differential equations.
Thus, by looking at the second equation of the transformed
system represented by (5), an asymptotic tracking of the ref-
erence output can be achieved through the control law

2u = 1/b ( ÿ 2 lė 2 k s 2 cA x 2 h w) (14)2 d c 2

where the state space vector x and the external force vector w
are the full-state feedback and feedforward terms, respectively.

ON-LINE IDENTIFICATION PROCEDURE BASED ON
TRACKING ERROR

In the above analysis, it has been assumed that the values
of the parameter ai entering the mass, viscous, and stiffness
matrices were known and time invariant. Introducing uncer-
tainties in these coefficients, in general, will not permit the
synthesis of (13). Thus, assuming that only estimates of these
coefficients are available, some conditions on updating these
estimates will prove necessary for the stable operation of the
controlled system.

Parameters Estimator with Exponential
Variable Gains

Due to the chosen reference model based control algorithm,
prediction error and tracking error constitute possible sources
of parameters information, and even a combination of the two
errors can be used (Slotine and Li 1991). The on-line identi-
fication procedure considered here is based on tracking error.

Denoting parameter estimates by âi and the external force
vector estimation by ŵ, a control law with the actual quantities
replaced by their estimates is used at this stage, yielding
732 / JOURNAL OF ENGINEERING MECHANICS / JULY 2000
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2ˆu = 1/b ( ÿ 2 lė 2 k s 2 cA x 2 h ŵ) (15)2 d c 2

From (15) it follows that the estimates of the parameters enter
nonlinearly in the feedback control law. Nevertheless, by se-
lecting the output in terms of displacements, a linear function
of stiffness and damping estimates can still be assured pro-
vided that the masses are known. In this case, the unknown
parameters can be introduced through the (1 3 n) vector =Tũ

. . . , where = âi 2 ai are the parameters˜ ˜ ˜ ˜ ˜(a , a , a , a ), a1 2 3 n i

errors. Substituting (15) into (5) gives the following equation
governing the dynamics of the combined output error:

T˜ ˜ṡ(t) 1 k s = u x 1 h w (16)c 2

where = vector of colored noise modeling errors betweenw̃
the estimate of the external excitations and its actual value and
possible errors in the measurements of the output variables or
even in the dynamical model itself.

The convergence of s(t) to zero, in this case, is not uncon-
ditional and depends on the values of A Lyapunov functionã .i
argument guarantees that a sufficient condition for the asymp-
totic decay of s(t) can be ensured by imposing the following
adaptation law to the uncertain parameters

˙ Tũ = 2sg Ix (17)

Due to the relevance of the initial combined tracking error s,
a variable gain vector g has been introduced in the procedure.
In particular, an exponential term with saturation has been
adopted for each gain gi such as

s tig e if g # ḡ0 i i ig (t) = (18)i Hḡi

where g0i, and si = positive constants. The introduced var-ḡ ,i
iable gain vector enables the initial value of s, with respect to
its smaller value after a certain time t, to be weighted differ-
ently; such gain evolution is introduced to avoid large initial
chattering of the estimated parameters.

Lyapunov Asymptotic Stability

Asymptotic convergence of the motion of MIMO systems
can be guaranteed in the presence of the above control. In
particular, it will be shown that the fixed point of the con-
trolled dynamical system, represented by the origin of the hy-
perplane (e, ė), is asymptotically stable. Thus, we start by
choosing a Lyapunov function of the form

T T˜ ˜V = s Ps 1 u u (19)

where P = positive definite matrix such that V is globally pos-
itive definite ;s [ Rm, and [ Rn. The first-order equations˜;u
[(16) and (17)] governing s and can be rewrittenũ

T˜ ˜ṡ = 2K s 1 H u x 1 H w (20)c c r

˙̃u = 2sGx (21)

where Kc = diagonal matrix composed by the kc constant of
(16); and Hc = matrix that indicates the parameters combina-
tion. By choosing a symmetric Kc that satisfies the following
equation:

TK P 1 PK = Q (22)c c

with Q being positive definite, the derivative of (19) can be
rewritten

T T˜V̇ = 2s Qs 1 2s(PH 2 G)u x (23)c

A monotonically decreasing Lyapunov function V guarantees
the global stability of the controlled dynamical system. The
000.126:730-737.
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TABLE 1. 2-DOF Model Parameters

DOF
(1)

m
(kN s2/m)

(2)

c
(kN s/m)

(3)

k
(kN/m)

(4)

1
2

1.0
2.0

2.42
3.52

800.0
800.0

scalar quantity V̇ can be forced to be negative definite by a
proper choice of G. Indeed, once Q and Kc are selected, a
matrix G can be found by guaranteeing that the second term
of (23) is smaller than zero. Thus, a relation between tracking
and adaptation speed has been found.

In the absence of modeling errors, the previous adaptive
laws assure parameters convergence of the complete vector û
to the true value u provided that the vector x is persistently
exciting (Ioannou and Datta 1991).

APPLICATIONS

The numerical investigations presented in this section refer
to linear shear-type structural models. At first, the output se-
lection criterion relying on the linear transformations intro-
duced in the third section is discussed; then, based on the
selected output, the adaptive control scheme for a 3-DOF sys-
tem is implemented for both vibration suppression and damage
detection.

Stability of Uncontrolled Internal Dynamics in Shear-
Type Structures

The set of output variables representing the reference tra-
jectories to be tracked is selected among those sets that assure
the stability of the system internal dynamics. As discussed in
the third section, such dynamics is made evident in control
canonical form representations. Given an SISO transformed
system, it would be sufficient to analyze the spectrum of the
J. Eng. Mech. 
(n 2 r 3 n 2 r) submatrix A22 to qualitatively infer the sta-
bility of the internal dynamics. Shear-type models are inves-
tigated considering general outputs. First, for a 2-DOF system
(Table 1), the following observation equation is considered:

y = (a 1 1)x 1 ax (24)1 2

where a = displacements (x1, x2) combinations parameter. The
analytical stability regions are shown in m, a-plane in Fig. 1
for different positions of the actuator; m represents the ratio
between the masses of the two floors. Thus, given a mass ratio
value m, the values of a corresponding to points in the dashed
regions indicate output choices assuring overall stability. Com-
binations of the state variables involving both displacements
(x1, x2) and velocities (x3, x4) can also be taken into account
through the observation expression

y = (a 1 1)x 1 ax 1 (b 1 1)x 1 bx (25)1 2 3 4

where b = velocities combinations parameter. For these output
choices the relative degree of the system reduces to 1, and
three eigenvalues belong to the spectrum of the submatrices
governing the internal dynamics. In Fig. 2, the numerically
evaluated region of the stability of the internal dynamics is
reported in the a, b-plane for the actuator position A (Fig. 1).
As expected, the choices of the output corresponding to col-
located cases, represented by a black point in the figures, are
always stable.

Analogous analyses are performed for the stability of the
internal dynamics of the 3-DOF model sketched in Fig. 3(a)
(Soong 1990). In this case, the actuator acts only on the first
floor, and an observation expression involving displacements
combinations of the three floors is considered

y = (d 1 1)x 1 dx 1 ax (26)1 2 3

In Fig. 4, the stability regions for the four eigenvalues are
shown in the a, d-plane, where a, d in this case define the
displacements combinations according to (26). The applica-
FIG. 2. Numerical Stability Regions for Actuator Position A in a, b-Plane; ● = Collocated Case

FIG. 1. Stable Regions (Hatched Areas) for 2-DOF Models in m, a-Plane; Two Cases of Control Force Location: A—Internal Force;
B—External Force
JOURNAL OF ENGINEERING MECHANICS / JULY 2000 / 733
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FIG. 3. (a) MDOF Actively Controlled Structural System; (b) Uncontrolled Displacements under White Noise Excitation [ActualModel
(Dashed Line); Reference Model (Solid Line)]

FIG. 4. Numerical Stability Regions for 3-DOF Model Function in a, d-Plane; ● = Collocated Case
TABLE 2. 3-DOF Model Parameters

DOF
(1)

m
(kN s2/m)

(2)

c
(kN s/m)

(3)
j

(4)

k
(kN/m)

(5)

(a) Actual Model

1
2
3

0.9823
0.9823
0.9823

0.4677
0.1837
0.3879

0.001
0.005
0.005

1,965.0
1,946.0
1,184.1

(b) Reference Model

1
2
3

0.9823
0.9823
0.9823

25.00
0.500
0.500

0.03
0.05
0.05

1,965.0
1,946.0
1,184.1

tions of the adaptive control procedure that will be described
in the following sections refer to the latter 3-DOF system
whose mechanical parameters are reported in Table 2.

Vibration Suppression and On-Line Identification
through Model Reference Control

The results reported in this section aim at validating the
procedure for vibration suppression and on-line identification
purposes for a collocated scheme [a = 0 and d = 0, in (26)]
and a noncollocated scheme [a = 1.0 and d = 2.0, in (26)].
Aiming at reducing structural oscillations, a reference model
characterized by high modal dampings has been selected (Ta-
ble 2). Thus, the control action permits output tracking by
734 / JOURNAL OF ENGINEERING MECHANICS / JULY 2000
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increasing the actual structural damping values by one order
of magnitude. The significant differences in the level of oscil-
lations between actual and reference models under white noise
excitation are shown for a selected time interval in Fig. 3(b).

The achievements of the integrated procedure in terms of
vibration suppression are expressed through the error vector «
= q 2 qd between actual and reference displacements [Figs.
5(a and b)]. In particular, the running average of the maximum
absolute values of the displacements errors are reported for
both collocated and noncollocated cases. In the collocated case
[Fig. 5(d)], the reference output is represented by the first-floor
displacement; the error between reference and actual output
converges to zero, and the errors between the other displace-
ments oscillate around a constant small mean value. The actual
and reference floors’ displacements in a time interval are
shown in Figs. 5(c–e) where a good matching is evident. On
one hand, the strategy is successful in terms of displacement
reduction through accurate output tracking; on the other hand,
the selected output cannot allow for a complete identification
of the structural parameters because the third-floor state vari-
ables do not appear in the control law [(14)]. As a matter of
fact, the procedure enables only first- and second-floor stiff-
nesses and dampings to be identified accurately, because they
are directly involved in the action of the collocated actuator-
sensor pair. The performance of the on-line identification is
reported in Fig. 6 for a 25% initial error in all the parameters.
Different simulations have shown that an enhancement in
terms of initial chattering can be obtained using the variable
0.126:730-737.
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FIG. 5. Average Maximum Displacements Errors [First Floor (Solid Line); Second Floor (Dotted Line); Third Floor (Dashed Line)]:
(a) Collocated; (b) Noncollocated. Floors’ Displacement Time Histories [Actual Model (Dashed Line); Reference Model (Solid Line)]:
(c–e) Collocated; (f–h) Noncollocated

FIG. 6. Collocated Scheme Showing On-Line Identification of: (a) Stiffness Parameter; (b) Damping Parameter
gain given by (18). In the noncollocated case, good tracking
performance and associated displacement reduction are also
obtained. In particular, the floors’ displacement errors decrease
[Fig. 5(b)] as the estimated parameters converge to the actual
ones (Fig. 7). The shown time interval indicates a perfect
matching for the first two floors [Figs. 5(g and h)], whereas
the third floor actual displacement differs from the reference
one [Fig. 5(f)]. The difference mainly consists of a phase shift
due to the poor estimate of the third floor damping parameter
J. Eng. Mech. 200
c3 [Fig. 7(b)]; notwithstanding this, the desired amplitude re-
duction is obtained. The chosen displacement combination [a
= 1; d = 2 in (26)] involve all of the displacement variables,
therefore the whole set of mechanical parameters is identifi-
able. The identification performance for the noncollocated case
is shown in Fig. 7 for a 25% initial error in all of the param-
eters. Accurate estimate of all of the stiffnesses [Fig. 7(a)] and
of the first and second dampings [Fig. 7(b)] are achieved. In
this case a careful selection of the l, kc, and gi(t) gains min-
JOURNAL OF ENGINEERING MECHANICS / JULY 2000 / 735
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FIG. 7. Noncollocated Scheme Showing On-Line Identifica-
tion of: (a) Stiffness Parameter; (b) Damping Parameter

imizes the initial and final chattering in the evolution of the
parameters.

Damage Detection and Simultaneous Corrective
Control Action

In this section the ability of the procedure to detect damage
occurring in the structural system is exploited. It is generally
recognized that damage in structures appears as degradation
of system characteristics, such as stiffness and/or damping (Lin
et al. 1990). In particular, structures are apt to suffer damage
caused by different events such as strong environmental loads,
sudden impacts, and degradation due to longtime exposure. By
modeling damage as an abrupt reduction in the stiffness and
damping coefficients, the procedure can be effective for iden-
tifying these structural changes. Based on a good knowledge
of the actual system mechanical parameters, a reference model
close to the actual one can be designed. Thus, the initial small
control action compensates only the small differences between
actual and reference model. When damage occurs, the proce-
dure detects the amplitude of the sudden reduction of stiffness
and damping and simultaneously compensates such degrada-
tion through the control. Indeed the actual system is forced to
behave as the reference model that represents its initial un-
damaged conditions.

A numerical experiment has been carried out to demonstrate
the performance of the procedure. The reference model has
been selected with a 2% lower estimate of the mechanical
parameters. At the time instant t = 100 s in the first and second
floors, instantaneous 25 and 15% reductions occur in damping
and stiffness parameters, respectively. Fig. 8 shows the iden-
tification performance of the procedure. In Fig. 8(a) the exact
detection of a change in the stiffness parameters is obtained
after a small transient; the initial overshoot can be regulated
through the gains l, kc, and gi. Despite a larger overshoot, the
damping parameters are also accurately identified [Fig. 8(b)].
In Fig. 9 the control efforts needed to detect and compensate
damage are reported together with the displacement of the first
floor [Fig. 9(a)]. Fig. 9(b) shows that the control action is
scarce before damage occurs, and then a sudden large control
effort for a small transient is required. Afterward, the control
compensates the loss of stiffness and damping leading the
structure to behave as undamaged. The control-displacement
cycles during the described three phases are depicted in Figs.
9(c–e). Fig. 9(c) shows that during the first time interval the
control acts to reduce the stiffness (negative slope in the cycle)
736 / JOURNAL OF ENGINEERING MECHANICS / JULY 2000
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FIG. 8. On-Line Identification in Presence of Abrupt Variation
of: (a) Stiffness; (b) Damping

FIG. 9. Control Performance in Presence of Abrupt Changes
in Mechanical Parameters: (a) First-Floor Displacement Time-
History; (b) Control Force Time-History; (c–e) Control-Displace-
ment Cycles during Time-Intervals Dt1, Dt2, and Dt3, Respec-
tively

to drive the actual system to behave as the reference one.
Large control efforts are required during the abrupt parameters
variations, and a cycle mainly characterized by a viscous be-
havior takes place [Fig. 9(d)]. A stiffness increment is even-
tually furnished in the third phase to compensate for the re-
duction in the actual system, and the intensity of control efforts
depends on the level of damage [Fig. 9(e)].

CONCLUSIONS

An integrated procedure is used in this paper enabling ref-
erence model tracking and parameters identification. A general
framework for the application of the procedure to collocated
and noncollocated control schemes has been provided. The
algorithm relies on a direct MRAC procedure where the full-
state feedback is employed to address a dual goal—vibration
00.126:730-737.
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suppression and damage detection. This is accomplished in the
former by tracking a reference output of an arbitrary model
with desired damping characteristics and in the latter by de-
tecting on-line mechanical parameters variations. During the
control process, after a designed transient interval, the relevant
mechanical parameters of the structure are monitored through
the on-line estimation algorithm. Applications to shear-type
models have been considered showing that an opportune se-
lection of a reduced measure of the complete state variables
guarantees exact output reference tracking. Moreover, it has
been shown that the complete actual state vector turns out to
be rather close to the reference one.

Numerous issues still need to be investigated. Acceleration
feedback, nonlinear parameters dependence in the control law,
time delay, and noise contamination are aspects that need to
be tackled to make the procedure implementable in full-scale
systems. In this respect, small-scale experiments would rep-
resent an initial step providing meaningful insights into these
problems.
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