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Several years ago, the phenomenon of sonolumines-
cence, that is, the luminescence of gas bubbles in an
acoustic field, was discovered [1, 2]. This phenomenon
is of interest not only from the scientific point of view;
it also has a number of important applications for prac-
tice. For example, the appearance of such a direction in
chemical technology as sonochemistry is associated
with the discovery of sonoluminescence. By virtue of
the appearance of high temperatures in bubbles, the
acoustic field can initiate certain chemical reactions
which are impossible under other conditions. But the
most impressive fact is that a nuclear-fusion reaction
can be initiated in bubbles at superhigh temperatures.
Deuterium bubbles in heavy water at overcompressions
can release thermonuclear energy (“bubble nuclear
fusion”), but a routine ultrasound is not sufficient to
make this take place.

In recent years, a number of studies [3–11] were
devoted to the theoretical description of the behavior of
an individual gas bubble vibrating in a liquid under a
wave-field action provided that the pressure and tem-
perature in the gas can reach extremely high values.
The principal idea of the new approach [7], referred to
as the “basketball” mode, is the coordination of the pro-
cess of varying the pressure in a liquid with the forced
vibrations of a bubble and the use of a nonlinear reso-
nance during an aperiodic action of an external field of
a moderate-amplitude pressure. To realize this idea, we
formulated and solved the problem of spherically sym-
metric vibrations of a gas bubble in a compressible liq-
uid [8–10]. On the basis of the analytical solution
obtained, we developed an efficient computer code for
the mathematical simulation of the bubble collapse
with allowance for various dissipative mechanisms,
such as viscosity, heat conduction, radiation, ioniza-
tion, wave processes around and inside the bubble, and
heat-and-mass exchange between the bubble and the
ambient liquid under overcompressions of the bubble.

The investigation of the processes taking place in an
individual collapsing bubble is obviously an important
and necessary stage; however, the above applications
are associated with a bubble liquid, i.e., a mixture of
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carrier liquid with a large quantity of bubbles dispersed
in it.

In this study, we propose a method for processing a
limited volume of the bubble liquid by an aperiodic
moderate-amplitude wave action, as a result of which
waves arise with amplitudes exceeding that of the initi-
ating action by several orders of magnitude. This
method is illustrated by the results obtained from a
direct numerical simulation.

We consider a cylindrical volume of bubble liquid,
which has the length L bounded by solid walls and a
mobile piston (Fig. 1).

The basketball mode for the excitation of the gas–
liquid-mixture is realized by means of specifying the
following boundary condition at the piston:

where pp and vp are the pressure and velocity of the
medium at the piston. In such a situation, the waves
traveling from the piston to the wall, the waves
reflected from the wall and traveling back to the piston
reflected from it, etc. propagate in the bubble mixture.

For the numerical investigation of the problem for-
mulated, we use the model of the dynamic behavior of
a bubble liquid and the method of its computer realiza-
tion outlined in [12].

In Fig. 2, we show the time dependences for the
pressure at the piston, the piston velocity, and the gas
pressure in bubbles in the middle of the volume (x =
L/2) calculated for the case of the basketball and wave
(pp = pmax) modes of excitation of the hydrogen–gly-
cerin bubble mixture with the parameters a0 = 1 mm,

pp

pmax, v p 0≥
pmin, v p 0,<




=

Piston Rigid
wall

x

L

Bubble liquid

Fig. 1. Schematic of the piston excitation for a bubble
liquid.
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Fig. 2. Profiles of liquid and gas pressures and piston velocities for (a) basketball mode and (b) steady-state mode of bubble-liquid
excitation.
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x = 10 cmx = 10 cm
α0 = 2%, T0 = 293 K, L = 20 cm, p0 = 105 Pa, pmax =

1.2p0 , pmin = p0 , and v∗  = , where a, α, ρ, T, and

p are the radius and volume content of the bubbles, the
density, temperature, and pressure, respectively. The
subscripts l and g denote the liquid and gas parameters,
and 0 implies the initial values of the parameters.

It can be seen (Fig. 2) that the maximum gas pres-
sure in the bubbles grows for the basketball mode of the
piston motion during each subsequent travel of a wave,
whereas for a constant pressure at the piston (a step-like
wave), the gas pressure in the bubbles tends to the pres-
sure at the piston.

Figure 2 confirms the fundamental possibility for
excitation of overcompression in a bubble mixture by
means of an aperiodic moderate-amplitude action.

The mechanical system under consideration exhib-
its a resonance. Comparing the eigenfrequencies of this
vibrating system and those of the bubble vibrations in
the mixture, it is possible to estimate the system param-
eters for which the excitation mode is resonant.

The eigenfrequency ωS of the system for the wave
excitation can be estimated as

where DS and DR are the velocities for the wave travel-
ing from the piston and the wave reflected from the
wall, respectively. Their values can be calculated in the
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equilibrium approximation from the formulas

where αS is the volume gas content behind the incident
wave and pR is the pressure behind the wave reflected
from the wall.

The eigenfrequency ωR of the bubble vibrations in
the mixture can be determined from the formula

where γ is the gas adiabatic index and ϕ is the correc-
tion taking into account the fact that the bubbles are not
single.

Equalizing the frequencies ωS and ωR, we can find
the resonance values of the parameters. As can be seen
from the formulas, one of the parameters (a0, α0,
L, pmax) is determined by the resonance condition from
the given values of the remaining parameters (for the
chosen liquid and gas).

In Fig. 3, we display the calculated oscillograms for
pressure in the liquid, pressure and temperature in the
gas bubbles, the radius, and the volume content of the
bubbles situated in the middle of the volume (x = L/2)
for the resonance excitation of a water–air gas–liquid
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Fig. 3. Profiles of liquid and gas pressures, radius, temperature, and volume concentration of bubbles in the case of the resonance
excitation.
mixture with the parameters a0 = 1 mm, α0 = 0.1%, T0 =
293 K, L = 5 cm, p0 = 0.1 MPa, and pmax = 1.5p0 . It can
be seen that, in this case, the pressure amplitude is two
orders of magnitude higher than that of the initiating
pulse, whose amplitude is only 0.05 MPa. As this takes
place, the gas temperature increases to a value higher
than 2000 K for a short time. The time dependences for
the bubble radius a, radial velocity w, and volume con-
centration α show that the amplitudes of their vibra-
tions increase with time.

The wave properties of the bubble liquid have been
relatively well studied. The behavior of shock waves
depends on the choice of carrier liquid phase (its den-
sity and viscosity), but is to a greater extent determined
by the dispersed phase, even when it is small not only
in mass, but also in volume. The gas properties in bub-
bles, their size, and the character of the interphase heat
exchange can radically influence the structure of the
shock wave.

The numerical analysis carried out showed that with
decreasing the radius of the bubbles the response of the
bubble mixture is enhanced in the resonance-excitation
mode. This fact agrees with the conclusion obtained
in [10] for an individual bubble.

Thus, we have proposed the method of the reso-
nance excitation of a bounded volume of a bubble liq-
uid by an aperiodic moderate-amplitude action, as a
result of which extremely high pressures and tempera-
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tures can be achieved for a gas in bubbles. This fact is
qualitatively illustrated by the profiles of the pressure,
temperature, bubble radius, etc. calculated in terms of
the single-velocity two-temperature model with two
pressures in the bubble mixture with an incompressible
liquid phase. In order to obtain more exact quantitative
information associated with particular applications,
e.g., with the problem of bubble nuclear fusion, it is
necessary to develop more complicated models of bub-
ble liquids, which take into account various dissipative
mechanisms, such as the compressibility of the liquids,
radiation, ionization, wave processes around and inside
individual bubbles, etc.
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