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Generation of  internal waves by a barotropic tide 
in the coastal zone* 

S. V. DOVGAYA and L. V. CHERKESOV 

Abstract - -  Within the framework of the linear theory of long waves, we study internal waves gen- 
erated by a barotropic tide in a two-layer ocean of variable depth taking into account the influence of 
the Coriolis force. Barotropic waves run over an extended unevenness of the bottom at an arbitrary 
angle. This unevenness is regarded as a model of the continental slope and shelf. We establish the 
dependences of the amplitudes of generated !nternal waves on the angle of incidence of the barotropic 
tide, topography of the bottom, and stratification. 

The mathematical simulation of  wave processes in the zones of  extended inhomo- 
geneities of  the bottom topography is an important scientific problem. Thus, the 
wave motions induced by a barotropic tide climbing along the normal to the axis of 
an extended unevenness of  the bottom topography were studied in [1-3]. Several 
analytic solutions are also known for the case of a barotropic tide running at an ar- 
bitrary angle over extended ridges in a homogeneous fluid [4, 5]. However,  for 
practical purposes, it is necessary to have more exact approximations of stratification 
of the fluid and the bottom topography aimed at subsequent application of numerical 
methods. In this connection, in [6, 7], within the framework of  a two-layer model, 
we considered wave motions of a fluid above ridges whose topography is close to 
the actual. In the present work, on the basis of  the linear theory of  long waves in a 
fluid with jump of density, we make an attempt to study internal waves generated by 
a barotropic tide running over the continental slope and shelf. 

1. We consider a basin unbounded in horizontal directions and fi l led with a 
two-layer fluid (Fig. la). In the upper layer of  constant depth h i ,  the density of  the 
fluid is equal to P l ,  whereas in the lower layer of variable depth, it is equal to P2 
(P2 > Pl ). In regions I (x < - l l )  and HI (x > /2 ) ,  the depth of  the basin is con- 
stant (Hi  = hi + h2 and /-/3 = h i +  h4, respectively). In region 11 ( - /1  < x < /2 ) ,  

the depth is variable (H2 = hi + h3(x)). In the first region, the barotropic wave 

= AI exp [i (kl x + n y -  a t ) ]  (1) 

propagates at an angle ct to the x-axis.  
We determine the characteristics of  wave perturbations caused by wave ( i )  de- 
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pending on the direction of its propagation (tan c~ = n/k l ) ,  geometry of the bottom, 
and stratification (Fig. lb). 

Assume that the fluid is inviscid and wave perturbations are weak. Then, within 
the framework of the linear theory of long waves, the system of equations describing 
the motion of fluid in the region x < - l l  takes the form [8] 

Ot fVl = - g  , ~ t  + f u l  = - g  , 

1 ~-~x + Oy ) Ot Ot' 

a~ fv2  -- - ~ - f f x  § ~ ~ ;  (2) 

0V2 __g(f)lO;l P2 --PlO~2~, 
+ru = L- 

.•_ a~2 ~(h2u2) + he - - 
Ox 0t 

In regions lI and 111, the system has the same form but h2 should be replaced by 
h3 and h4, respectively. Subscripts 1 and 2 of the quantities u, v, and ~ corres- 
pond to the upper and lower layers, respectively. 

Since the incident wave is periodic with frequency 13 and the coefficients in the 
system of equations (2) are independent of t and y, we seek the required solutions 
as functions periodic in the spatial coordinate y and t, namely, 

{ ~j, uj, vj } : {~ ,~ j ,v j }  (x) exp[i(ny - 130]- (3) 

If we now substitute (3) in equations (2), then we get the following equation for 
the determination of ~1 in regions I and UI (here and in what follows, the bars over 
~j, uj, and vj, j = 1, 2, are omitted): 

d4~l (2n2 (h 1 + hra)(132 _ f2 )~  d2~i 
dx 4 (, - geh lh  m J - - ~  

2 (t32 _ f2)2 n4 -- (hl + hvn)(132-f )n2 + E1 = O, (4) 
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Figure 1. Schematic diagrams of the basin (a) and the direction of propagation of waves (b). 

where e = (P2 - P l ) / P 2 ,  m = 2 corresponds to region I, and m = 4 to region III. 

In the second region, for ~t, we have the following fourth-order ordinary differen- 
tial equation with variable coefficients: 

d4~l l dhad3;l [ nf dh3 (a2 -  f2)(hl + h3) ]d2; 1 
dx 4 + h 3 dx ~ -  2n2 + ah  3 dx - hlh3eg dx 2 

n 2 t~2_f21 dh3 d~l + n 4 + 
-~3 hlh3Eg j - - ~ - " ~  cyh 3 dx 
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n2(~ 2 - f2)(h l + h 3) nf((r 2 - f2)dh3 (0 2 - f2) 2 ] 
- hlh3Eg - t~hlh3~g - ' ~ ' +  ~1~3- ~ 41 = 0. (5) 

In this case, the components of the horizontal velocity in the upper and lower 
layers and the displacement of the interface of layers from its nonperturbed state are 
expressed via (1 as follows: 

u 2 = 

v 2 -- 

ig 
Ul = a--T '~_f2[-o ' -~-+nf~l ] ,  Vl = - 0 2 g f 2 [ f d ~ -  na~ l ] ,  

ig__[  ( d ;  1 + F..hlg ( r ~  d3;l t/2 d~l' ~ 2 

g F:dE, . ~h,g ( .(d3;,_ 2dE,~ / 3. 
~2-f2L: ~- _ Lf~dx3 n ~J-i-~rl ,i 

hlg d2~l ( n2hlg 
42= a2 f~ d~ + ~1 1 dr--y2 j 

We now solve equations (4) and (5) taking into account the fact that reflected 

x < - l l ,  

-G <- x <_12, 

x > 1 2 .  " 

waves are absent for x > 12. As a result, we obtain 

AI exp(iklX) + B l exp ( - i k l x )  + C 1 exp(- ikxx) ,  

El(X) = 1A2tPl(X) + B2(P2(x) + C2(P3(x) + O2tPa(X), 
/ 
[ A3 exp(iksx) + C 3 exp(ik6x), 

where 

k I = kllCOS(X, n = kllsintx,  

k~ = k ~ -  : ,  k~ = k~,-  ; ,  k~ = k ~ -  ~, 

4eh~(H~ -hi) ] k~ = H l ( a 2 - f 2 ) [ 1  + (-1) y 1 
2gehl (H l - h l ) L  HI 2 , 

H3(c2-f2) [1+ (-1) ./ 11 4eh~(H'-h') 1 
k~j = 2gehl(H3 - h l )  "~ - H:~ ' J = 1, 2. 

(6) 

(7) 
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Figure 2. Amplitudes of internal waves in the first and third (a) and second (b) regions. 

In relation (6), B1, C1, A2, B2, C2, D2, A3, and C3 are arbitrary constants 
and qOl(X ), qo2(x), qo3(x ), and qo4(x) is the fundamental system of solutions of 
equations (5) found by the fourth-order Runge-Kutta method. To determine eight 
arbitrary constants (the amplitude of the incident wave A1 is regarded as known), 
we have eight algebraic equations expressing the conditions of continuity of eleva- 
tions and flows of the fluid on the boundaries of the domains (for x = - l l  and x = 
/2). The amplitudes of waves and wave velocities are found from the numerical so- 
lution of this system of algebraic equations. 
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It follows from relations (6) and (7) that the form of  the barotropic wave in the 
region x > 12 strongly depends on the quantity ks.  Since HI  > H3 and e < <  1, 
we have k31 > kH. Hence, for any direction of  propagation of  the barotropic wave 
(1), the quantity k5 is real and the barotropic wave in the shallow-water region (x > 
/2) has (qualitatively) the same form as in the deep-water region (x < ll). 

In view of  the inequalities k21 << k22 and k21 << k22, we have n 2 << k~2 

and n 2 << k22 . These inequalities and relations (7) imply that the inequalities k22 > 

0 and k~ > 0 are true for any direction of  propagation of the barotropic wave (1). 
Therefore, the generated internal waves cannot be entrapped. Since n 2 is small as 

compared with k22 and k22, the direction of  propagation of  generated internal 
waves is close to normal both in the first and third regions. 

2. Let us now analyze the dependences of  the amplitudes of  waves and wave 
velocities on the bottom topography, stratification, and the angle of incidence of  the 
barotropic tide for the following initial parameters: 

H 1 = 4 . 1 0 3 m ,  H 2 = 3 . 1 0 2 m ,  H 3 = 2 - 1 0 2 m ,  

h I = 102m, I l = 4.4. 104m, l 2 = 6. 103m, e = 2 . 1 0  -3 , (8) 

tp = 30*, A 1 = I m, and T = 12 h 25 min, 

where T is the period of the incident wave and tp is the latitude of the location. 
In Fig. 2a, we present the dependences of  the amplitudes of  internal waves on 

the interface of  layers in the fluid on the angle of  incidence of the tide ct for the first 
( W1 (co), curve 1) and third ( W3 (~), curve 2) regions. The maximum values of  the 
quantities W1 (ct) and W3 (et) (9.4 and 8.6 m, respectively) are attained for the nor- 
mal incidence of the tide. As I ct I increases, the amplitudes of  generated internal 
waves in the first and third regions decrease. It is worth noting that, for the indicated 
parameters of  the model, W1 (a)  > W3 (t~) for all ~. 

The dependences of  the amplitudes of  oscillations of  the interface of  two layers 
over the unevenness of  the bottom W2 (a)  for different values of  the angle of  inci- 
dence are displayed in Fig. 2b. In Figs 2b, 3, and 4, curves 1-3 correspond to angles 
ct of  0", 40", and 80*, respectively. In Fig. 2b, we see that, in the vicinity of  the 
unevenness of  the bottom, there are regions with high amplitudes of  internal waves 
and regions where these amplitudes are quite low. The maximum perturbations of  
the interface are localized in the boundary regions of  the continental slope and shelf 
zone (x = - l l ,  x = 0, and x = 12). In this case, the amplitudes of internal waves 
can be as high as 10 m. The minimum displacements of  the interface from its non- 
perturbed position (0.2-0.8 m for 0 < ct < 80*) are observed in the central parts of  
the indicated regions. As the absolute value of  the angle of  incidence of the barotro- 
pie wave increases, the amplitudes of  internal waves in the second region decrease. 
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Figure 3. Amplitudes of horizontal velocities in the upper (a) and lower (b) layers. 

We also performed calculations for negative values of  the angle of incidence. It 
was shown that the values of  W2(ct) for the angles a and - a  differ by at most 
3%. 
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Figure 4. Amplitudes of the horizontal velocity for the homogeneous fluid. 

For the second region, the dependences of  the amplitudes of  the horizontal com- 
ponent of  the velocity in the upper u12(x) and lower u22(x) layers are shown in 
Fig. 3. As follows from Fig. 3a, the maximum velocities of  wave currents in the up- 
per layer are attained for ct = 0 in the central parts of the continental slope and shelf 
zone (0.16m-s -1 for x = - 2 . 6 . 1 0 4 m  and 0 .13m. s  -1 for x = 2.103m) and the 
minimum velocities are observed on the boundaries of  these regions. In the lower 
layer (Fig. 3b), the maximum values of  u22(x) over the continental slope are at- 

mined on its left boundary (0.12 m.s  -1 for ct = 0). In the shelf zone, the maximum 
values of  U22(X ) are  observed on its fight boundary (0 .1m.s  -1 for cz = 0~ The 
comparison of  Figs 3a and 3b demonstrates that the x-component of  the horizontal 
velocity in the upper layer is greater than the x-component of  the velocity in the 
lower layer over the entire unevenness of  the bottom except the vicinity of  its left 
boundary. Note that, both in the upper and lower layers, the amplitudes of  velocities 

ul2(x) and u22(x) significantly decrease in the vicinity of  the point x = - 9.103 m. 
As the absolute value of  the angle ct increases, both Ul2(X) and u22(x) decrease. 
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As far as the y-components of  the velocity in the upper v12(x ) and lower v22(x ) 
layers are concerned, their behavior is similar to the behavior of ut2(x) and u22(x), 

respectively. Moreover, theratios u12(x)/v12(x) and u22(x)/v22(x) are equal to 2 
with an error that does not exceed 10%. 

We also computed the amplitudes of  waves and wave velocities for two more 

values of  the depth of the basin in the first region (H1 = 3- 103 and 5.103 m). The 
values of  the other parameters were the same as in (8). The analysis of  the results of  
these calculations shows that the amplitudes of  generated internal waves decrease in 
all three regions as the depth of  the basin increases in the region preceding the un- 
evenness of the bottom. In this case, as Hi increases from 3-103 to 5.103 m, the 
maximum displacements of the interface of  layers in the second region vary from 
11.8 to 8.6 m (for ct = 0~ An increase in the depth of  the basin in the third region 
also leads to a decrease in the amplitudes of  generated internal waves. 

3. To analyze the influence of inhomogeneity of the fluid on the field of  wave 
velocities over the unevenness of the bottom, we also performed calculations for a 
model of  homogeneous fluid. All other conditions were equal. For this case, the be- 
havior of  the amplitude u(x)  of the horizontal component of the velocity along the 
x-axis in the region of unevenness of  the bottom is presented in Fig. 4. The compari- 
son of  Figs 4 and 3a, b demonstrates that the maximum values of  the amplitudes of  
the velocities in the region of unevenness of the bottom decrease if we take into ac- 
count the inhomogeneity of the fluid. Thus, for a = 0 ~ Urea x = 0.43 m. s -1 for the 
homogeneous fluid, whereas Ul2ma x = 0.17 m-s "-1 and U 2 2 m a  x = 0.12 m-s --1. How- 
ever, in this region, we observe some areas where the amplitudes of wave velocities 
in the two-layer fluid are higher than in the homogeneous fluid. Thus, u(x)  < ul2(x) 

for - 4.4.104 m < x < - 1.5-104 m and all analyzed angles of  incidence of  the baro- 
tropic tide. 

Thus, within the framework of the two-layer model of  generation of  internal 
waves by an "inclined" barotropic tide, we have demonstrated that, in the region of  
variation of the bottom topography (the continental slope and the shelf), one can find 
both the areas of  high amplitudes of  internal waves and the areas where the ampli- 
tudes of  these waves are relatively small for all considered angles of incidence. The 
amplitudes of internal waves are maximum in the boundary regions (in the vicinity 
of  the points x = -11, x = 0, and x =/2)  and minimum in the central parts of  the 
continental slope and shelf. The amplitudes of the horizontal wave velocities in the 
upper layer attain their maximum values in the central parts of the continental slope 
and shelf. In the lower layer, these amplitudes are maximum on the left boundary of 
the continental slope and on the right boundary of the shelf. 
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