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THE BIAXIAL TENSION OF AN ELASTOPLASTIC SPACE 

WITH A PRISMATIC INCLUSION 

A. V. Kovalev, A. N. Sporykhin, and A. Yu. Yakovlev UDC 539.3 

The problem on the elastoplastic state of a thick isotropic plate (the case of plane deformation) is solved. 
A larger prismatic inclusion is made a close fit in a polygonal hole in the plate. The plate is stretched at 
infinity by constant mutually perpendicular forces. The problem is solved by the small-parameter method 
and by the theory of ideal plasticity. The axisymmetric state of the plane with a circular hole stiffened by 
a round ring with a constant force applied to its inner contour is considered as a zero approximation. 
Some specific shapes of the hole and reinforcing elastic rigid ring are considered. 

The problem on the elastoplastic state of an infinite plane with a circular hole stretched at infinity by mutually 

perpendicular forces, and the problem on the biaxial tension of a thick plate with an elliptic hole were solved in [3]. The 

elastoplastic state of an eccentric set on an elastic shaft was determined in [2]. The stress-strain state of a thick plate with an 

elliptic rod-inclusion making an interference fit in an elliptic hole was determined in [4]. 

The objective of the present work is to investigate the elastoplastic state of a thick plate with a polygonal hole into 

which a larger prismatic inclusion is tightly fitted. The plate is stretched at infinity by mutually perpendicular forces of 

intensities P1 and P2- 

The problem is solved by the small-parameter method and by the theory of ideal plasticity in a cylindrical coordinate 

system r, 0, z. The axis z is directed along the cylinder axis, and the origin is at the center of the cylinder. We have the case 

of plane deformation shown in Fig. 1, where 1 is the elastic zone of the plate, 2 is the plastic zone of the plate, and 3 is the 

elastic ring. In the plane perpendicular to the axis Oz, the equation of the polygon bounding the hole in the plate prior to 

deformation has the form 

Pl = ~ (  1 + {3d 1 cosm 0 - . . . ) .  (1) 

The equation of the polygon bounding the inclusion prior to deformation is 

P2 = ~ ( 1 + {3 d 1 cos m 0 - . . .  ) .  (2) 

The equation of the polygon bounding the inner hole of the ring is 

93=1] (1 + { 3 d 2 c o s m 0 - . . . ) ,  (3) 

where p = r /Go ,  t~ = tx/rso, O~ 1 = t X l / r s o  , and rso is the radius of the plastic zone in the axisymmetric case, m is the number of 

angles of the polygon bounding the hole and inclusion prior to deformation, n is the number of angles of the polygon bounding 

the inner hole of the inclusion, d 1 and d 2 are dimensionless constants, and 5 is a parameter, small in comparison with unity and 

characterizing the degree to which the polygon differs from a circle and the perturbation of static boundary conditions, tx 1 > oz. 

We will search for the solution in the form 
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Fig. 1 

C p = C p  

u=u~ 1, 0 = O ~  p k = R o + S R l ,  P s = l + 8 ~ ,  (4) 

where c o are the components of the stress tensor, u and O are displacements along the axes r and 0, respectively, Ps is the boundary 

of the plastic zone, and Pk is the fine of contact between the inclusion and plate. Quantities having dimension of stresses are 

referred to the kth shear yield strength of the material of the plate. The displacements are referred to rso. 

We assume that the pressure appearing on the contacting surfaces of the plate and inclusion is reduced to the normal 

pressure Q acting on the contours of the hole and inclusion. Let us consider the case of an elastic inclusion. 

As a zero approximation, we consider the axisymmetric state of the plane with a circular hole of radius o~ tightly 

filled with a ring of outer radius ~x 1 and inner ~ and loaded by a force of intensity Polk. 

PI + P2.. Following [3] and allowing for the The resultant structure is uniformly stretched at infinity by the force p = 2k 

incompressibility of the material, for the plane we have 

o:l 
= ~  u 0 e_  k o 0 e = 0 ,  (5) 

2 G p  ' 

cp0e=-q +2  In p ,  a 0 p = c 0 P + 2 ,  x~Po=O , uOe=u Oe, o 0 P = 0 ,  (6) 

where q = Q/k,  P t * P2, and G is the shear modulus of the material of  the plate. The subscript "e" stands for the elastic zone, and 

"p" for the plastic zone. For the elastic ring, we have 

0 1 Iqo 21_Po 2 (q_po)Ot2 2), 
) 

o (q C0B--{]20Z2 ~ 

o k ( q - e o ) ~ 2 1 ~  2 
, o~ UB-2GI ([3 2_0~2) p 

(7) 
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where G 1 is the shear modulus of the inclusion and P0 is the force applied to the inner contour of the ring. 

Since the quantity e = tx 1 - t x  is small, we can assume that the contact line coincides with the boundary of the 

inclusion, i.e., 

R 0 = o~1, R 1 = (X 1 d! cos m 0 .  (8) 

From the conditions of compatibility of the deformations of the plane and ring along the contact line and from the condition of 

conjugation on the boundary of the plastic zone, we have 

q = l - p + 2 ~ - - ,  

2 2 r s o ( [ 3 - 0 C  2) G(0~I-(~)(~2-~ 2) 
2 0~0~1 ~ 2 t~l ~ 2 k  

G P0 G 
+ - ~ 1  ( 1 - p -  2 In t~ ) - - ~ 1 1 n  rs0 �9 (9) 

From (9), we determine q and rs0. 

We proceed to the determination of the first approximation for unknown quantities. The boundary conditions at 

infinity have the form 

t•le• l e ~  �9 p - - d 3 cos 2 0, x p O = d3 sm 2 0, (10) 

P1 - P2 
where ~ d 3 = 2k and d 3 is a dimensionless constant. 

On the boundary of the plastic zone, according to [3], we have 

le lp le lp le = u lp le lp 
~ p  = t ~ p ,  "Cp0= 'Cp0 ,  u , O = O  , 

1 (~le 0.1p for =1 .  (11) - ) p 

If the inclusion makes an interference fit in the hole, and the friction along the contact line is absent, then along the 

contact line we have 

(Y ln + d ty d t~ O 1 
P R I = C l ~ +  P B R 1 ,  - ( r  0 ) S l = 0 ,  d p  P d p  "gp0B OB 

lp 6~ ~ =0  for "Cp0B-(  ) s  1 P=Ro, 

II ( l d u O  II 
d 1 cos m 0 u B + W 0~1 cos m , p=ct= d I 0 P=ctl 

(12) 

(13) 
lu lP + d u Op 

dp 

where s I = RI/R o. 
If the inclusion is tightly soldered in the hole, we have 

d6~ p 1 d~~ 1 R1 ~+ PBR1 ' .C~PoB_((yOPB_(y~PB)Sl:~pOB_ ((yO B (I~B)Sl, crOP+ d p  = 6 p  d p  

olP+u~ for p = R  0, (12") 
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I II I )1 dp ~dlcosmO p=a= l+--~-p oqd lcosmO 
P=~I 

(13") 

Thus, we assume that the jump of the displacement vector is identical in value for all points of the contour of the inclusion and 
directed along the normal to the contour at any of its point. 

Following [1] and satisfying conditions (10), in the elastic zone of the plate we have 

le ffp = - ( d 3 + 6 a 2 1 p - 4 + 4 a 2 2 p - 2 ) c o s 2 0 - ( m ( m + l ) a m l p - m - 2 )  

+ ( m - l ) ( m + 2 ) a m 2 p - m c o s m O  

- ( n ( n +  l ) a n l p - n - 2 + ( n - 1 ) ( n +  2 ) a n 2 p - n ) c o s n O ,  (14) 

t~ l e=(d3+6a21  p"4)cos 2 0 + ( m  (m+ 1 )aml p-m-2) 

+ ( m - 2 ) ( m - 1 ) a m 2 P - ' m c o s m O  

+ ( n  ( n +  1 )anl p - n - 2 +  ( n - 2 ) ( n -  1 )an2p-n )cosnO,  

l e  XO0=(d3-6a21 p-4-2a22P -2) s i n 2 0 - m ( m +  1 )aml p-m-2  

+ ( m - 1 ) am2 p -m sin m 0 - n ((n + 1)anl p -n- 2 + (n - l)an2 p --n ) sin n 0, 

k (_3 -3+ -1) ink .  -ro- le =.3__~ ~ p d3+3a21P 3a22 p cos 20 +.~_~ (aml p 

nk -n - 1 n + +am2p-m+l)  c o s m O + ' - ~ ( a n l P  +an2 p 1) cosn 0, 

0 le k /2 -3) k -m- 1 = - ~  p d3 + 3a21P + 3a21P -1 sin 20 + - ~  ( maml p 
J 

+ ( m -  2 )am2P -m+ l ) s i n m O +  ~G ( nanl p - n - l  +(  n -  2 )a2nP -n+ l )sinnO, (15) 

where a21, a22, aml, am2, anl, and an2 are unknown constants. 
Following [3] and satisfying condition (11), in the plastic zone of the plate we have 

lp_ 2 [d  (~/ _ 3 )_  2~-a21 sin (,yl _ 3 )+  2a22cos ~/1] cos 2 0 tYp - a ~  p = -  3 c~ 1 

1 
+- - [m(  m ~ - I  s i n ' ~ 2 - ( m + l ) e o s ' Y 2 ) a m l  

P 

+('~m-~-l- l ( m - 2  ) s i n 7 2 - (  m - 1 ) (  m+ 2 )cosT2 )am2 ]cosmO 

1 + - - [ n ( ~ n 2 - 1  sin~[3-( n+ l )cos73 )anl + ( ~ n  2 - 1 (  n -  2 )sin73 
P 

- ( n - 1 ) ( n  + 2) cos 73 ) an2 ] cos n O, 
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lp 2 (gl + 3)+  2a22cos ( 7 1 - - ~  cos " ~ p O = - p [ - d 3 c o s ( 7 1 + 3 ) + 2 ~ [ 3 a 2 1  sin rc g 20 

1 D - - -  m [ aml ( m + l ) cos 72 + ~m 2 1 sin72 
P 

+ ( ( m -  1 ) cos72+Nrmm 2 -  1 sin72)am2]sinmO 

1 
- - - n  [anl ( n +  1 ) cos y2+'4n 2 -  1 sing3 

P 

+ ( ( n - 1 ) cos Y3 + n ~  - 1 sin % ) an2 ]sin n 0, (16) 

where 

7,=q3-1np, 72=~/m2-11np,  %= n ~ - l l n p .  

Considering the case of plane deformation and assuming that the material is incompressible, we have the following 
system of linear equations for determination of displacements in the plastic zone: 

o lP  o lP  1 ~ulP 0u0P lp ~ulP ulP 
- - + -  - - -  2 x bp p p a0  ~ po, ap  p 

1 Ou lp 
- -  + - -  -0. ( 1 7 )  

p a0  

Solving this system and satisfying condition (11), we have 

U lp= k - ~  [ d3Ml( p )+a21N 1 ( p ) - a22 N3 ( p ) ] cos 2 0 

_ !  
4G [ aml Nlm( p ) - am2 N3m ( p ) ] cos m0 - ~G [ anl Nln( p ) - an2 N3n ( p ) ] cos nO, (18) 

0 lp=___k [ d3M2 (p)+a21 N2 ( p ) _ a 2 2 N  4 ( p )  ] sin 2 0 
G 

- 4"--G [ aml N2m( p ) - am2 N4m ( p ) ] sin m0 - [ anl N2n ( p ) - an2 N4n ( p ) ] sin nO, 

where 

Niz (p  ) = z (  z -  1 ) c o s x + ( - 1 ) i z ~ ( z 2 -  1) s inx  

_ ( _ 1 ) i  Z ~4Z 2 )i ( --1 s i n x + ( - I  ( z + I ) c o s x ) ,  i=1 ,2 ,  

( Z 3 - Z 2 + Z - 2 )  sin X -  (z+  1 ) ( z - 2 )  cos X 
N3z ( P ) = 4Z 2 _ 1 

_ !  _ 2 ( ( Z - 2 ) ~ Z  2 1 s i n x - ( z - 1 ) ( z + 2 ) c o s x ) ,  
P 

N 4 z ( p ) = ( 2 z  z 2 2 ) c o s x _ ( z 3 - 4 z + 2 )  �9 - - s m  X 

+ p--~(4Z 2 -  1 s inx+(Z--  1 ) COS X), (19) 
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f13- �9 l) , i 3 )  i 1 l, Y i 3 )  Mi ( p ) =-'~- sm - ( - 1 )  + ( - 1 )  cos 1 + ( - 1 )  1 2p 2 

where z = 2, m, n and X = ~/1, ~/2, Y3. 
Following [1], for the elastic ring, we have 

i= 1,2, 

1 1~4 --4 2p-2 4p-2_1~6 --4 CYpB=-2[Cl(I+3 p --46 )+6C2(1~ p )]COS20 

- [ m  ( m -  1 )Clm(pm-2+(m+ 1 )~2m p - m - 2 - ( m +  2)~2m-2p-m)  

+ ( m +  1 )C2m(m2~2m+2p-m-2+(m-2)pm-(m - 1 )(m+ 2) [3 2m p-m)] cos m 0 

+[n(n-1)Cln( (n+ 2 )~j 2n-2p-n+(n+ l )~ 2n p -n -2 -p  n-2) 

+ (n + l )c2n(n 2 ~ 2n + 2 p -n- 2 - (n - 2)p n + ( n - 1 ) (  n + 2 )~ 2n p -n ) 

+A ( ( l + n ~ ) ( n +  2 )~n p - n + n ( n ~ +  2~+ l )~n+2 p-n-2)  ]cosnO, 

C ~ B = [ 2 C l ( l + 3 ~ 4 p  -'4)+ 3 c2 (4 ~6 p "4+4 p 2) ] cos 20 

- I r a ( m -  1 )Clm(pm-2+(m+l  ) 1$ 2m p - m - 2 -  ( m -  2) 132m-2 p-m) 

+(m+ 1 )C2m(m2~2m+2p-m-2+(m+2)pm-(m-1 ) ( m -  2) ~ 2m p--m)] cos m 0 

+ [n(n - 1)Cln ( 13 n -2_  ( n +  1 ) [32n p - n - 2 _  ( n _  2 ) ~2n-2 p-n ) 

+ ( n + l  ) C 2 n ( ( n + 2 ) p n - n 2 ~ 2 n + 2 p - n - 2 - ( n - 1  ) ( n -  2) [$ 2n p - n ) +  

- A  (n(n[~+ 2~+ l )~n+2 p-n-2 + ( n - 2  )( l +n~)~n  p-n) ]cosnO, 

zlpoB=2[ Cl (1- -3~4 p-4)+ 2~ 2 p-2 + 3c2(p 2--2~6 p--4 +~4 p-2) ]sin20 

+ [ m ( m -  1 ) C l m ( p m - 2 + m ~ 2 m - 2 p - m - ( m + l  ) ~ 2m p--m-2) 

+ m( m + 1 ) C2m(p m ( m - 1 ) ~ 2m p-m)_m ~ 2m+2 p -m- 2] sin m 0 

+ [n( n-1)Cln(p n-2 +(n+ l)~ 2n p-n-2 +n ~ 2n-2 p -n) 

+n(n+ 1 )c2n(pn+(n - 1 ) 1~ 2n p - n + n  ~ 2n+2 p - n - 2 )  

+A ( n ( n ~ +  2~+ l )~n+2 p-n-2 +n( l +n~)~n  p-n) ]sinnO, 

k -3 2p- I  ~6 p-3_1-3 - ~4 -1 u l = ~ l l [ C l ( ~ 4 P  -21~ - p ) + c 2 ( 2  3 P )]cos20 

/on 2m p--m- 1 2m-2p-m+l  m-l) 
+'-~l [ Clm( ( m - 1 ) ~  - m ~  - p  

+C2m( m ~ 2m+2 p - m - l _ p  m+ l _ (  m+ l ) ~ 2m p-m+l )]cosmO 

(20) 
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k [ n-1 2 n p - n - I  2n-2 - n + l  
2G 1 nCln(p + ( n - 1 ) ~  +nl3 p ) 

+nC2n(pn+l +(n+ l )~2n p-n+l +n~2n+2 p -n-1 ) 

(n(l+n [J) -n+ l  (1 +n ~+2  ~)i~n+2 p - n -  1]]cos n 0, 
+A~,  ( n - l )  ~n9 +n ( n + l )  )J 

o l= -~ l l  [ Cl (p + [~ 4 p-3 ) + 2 c2 (~ 6 p-3 + p 3)] sin 2 0 

k 
+ ' ~ 1  [mClm(P 

m- 1 + ( m _  1 ) ~ 2rap-m- 1 _ ( m _  2) ~ 2m-2 p-m+ 1 ) 

+C2m(m 2 ~ 2 m + 2 + ( m + 2 )  pm+l - ( m - 2 ) ( m +  1 ) ~2rnp-m+l)]  sinm0 

+~1 nCln(pn-l+(n-1)[]2np-n-l-(n-2)~2n-2p-n+l) 

+C2n((n+2)pn+l-n(n-2)~32n-2p-n+1-n2~32n+2p -n-1 ) 

-A( (n -2 )  l+n~ ~np-n-2+((l+ 
~. ( n - l )  

n ~ ) -  ( n +  1 ))P sin n 0,  

where 

A =(po-q ) - -  

C 1, C2, C l m ,  C2m , Cln  , and c2n are unknown constants. 

From (11), (14), and (16), we have 

4 = + 3 a21 +a22 cos20+--~((m+l)aml+(m-1)am2) cosmO 

(21) 
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n + ( n - 1 ) an2 ) cos n O. (22) + ~ ( ( n + l  )anl 

Using conditions (12) and (13) for determination o f c p  c 2, Clm, C2m, Cln, c2n, a21, a22, aml, anl, and an2, we obtain a 

system of equations, which, being solved, yields the desired characteristics. 

For d 3 = 0. we have the case of uniform stretching of the structure at infinity, for d 1 -- 0, we have a circular hole in 

the plate and the circular outer boundary of the inclusion, for d 2 = 0, we have the circular inner boundary of the inclusion, 

and for G 1 = oo, we have the case of a rigid inclusion. Let us illustrate the method by an example. 

Example .  Let 

o~ = 0.02 m, r I = 0.021 m, a = a 1 = 820 M N / m  2, d I = 1, d 2 = -  2, d 3 = 8. 

P l = 3 k ,  P2=2.8k, k=12/ '~-3MN/m 2, P0=2 ,  m = 6 ,  n = 4 ,  5=0.04.  

Figure 2 shows the boundary of the plastic zone (r~0 = 0.07402). Figure 3 presents the distribution of stresses in the 

plate for 0 = 0, the expressions for the stresses and displacements being omitted for brevity. In Fig. 3, curve I is for c o and 

curve 2 for Op. 

Perturbation of the inner and outer contours of  the prismatic inclusion affects significantly the shape of the 
elastoplastic boundary. 
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