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ABSTRACT 
This paper proposes a method of studying and modcling the dielcctric absorption in capac- 
itors. Because of dielectric absorption, thc voltage on a charged capacitor partially recovers 
aftcr momentarily shorting its terminals. The magnitude of this voltage recovery depcnds 
mainly an the dielectric material. Dielcctric absorplian causes errors in some analog applica- 
tions based on charging and discharging of capacitors, such as samplc-and-hold circuits, inte- 
grators and active filters. Designing compensation circuits bawd on models of thc dielectric 
absorption can reduce these errors. This paper pments an analytical method to build a math- 
ematical model of the diclectric absorption, and an equivalent electrical circuit, The method 
is based on compartmental analysis theory, mostly used in medicine and biology to study the 
kinetics of substances in biological systems. 

1 INTRODUCTION 
IGLEC'I R ~ C  absorption can be observed by momentarily shorting D the terminals of a charged capacitor. Starting at 0 V, the volt- 

age on the capacitor rises slowly. Thc momentary short circuit dis- 
charged the conductivc plates of the capacitor but some energy still re- 
mained stored in the dielectric. This energy recharged the conductivc 
plates, causing thc voltage increase. Dielcctric absorption causes errors 
in applications based on charging and discharging of capacitors, such 
as sample-and-hold circuits, integrators and active filters. Designing 
compensation circuits based on models of the diclectric absorption can 
minimize these errors. Diclectric absorption, also called 'soakage' [l], 
has been known and studied for more than one hundred years [2]. The 
studies were focused on physical explanation and modeling. Thc ba- 
sic model of the dielectric absorption consists of resistor-capacitor time 
constants connected in parallel with the main capacitor [I], as shown 
in Figure 1. The number of time constants and the values of the resis- 
tors and capacitors are empirically detcrmined by measuring different 
experimental circuits. 

This papcr presents an analytic method to build a mathematical 
model of the dielectric absorption. Based on this model, the paper 
shows how to determine the numbcr of RC cells and to calculate the 
values of the resistors and capacitors for a circuit of the type shown in 
Figure 1. Thc method is based on thc compartmental analysis theory 
mostly used in medicine and biology, to study the kinetics of substances 
in biological systems. Thc compartmenta1 analysis divides a system in 
virtual compartments with specific storage capacities and with expo- 
nential transfer rate functions. The behavior of the whale system is 
dcscribed by mathematical equations, formed af terms corresponding 
to each compartment. 

Figure 1. The basic model of thc diclectric absorption in capacitors con- 
sisting of resistor-capacitor time constants RI, C1, R.2, C2, cnnnectcd in 
parallcl with the main capacitor C. 

2 DESCRlPTION OF THE 

The yroposcd analysis method is based on the measurement of the 
recovery voltage on a fully charged capacitor after momentarily short- 
ing its terminals. A capacitor consists of two conductive plates sepa- 
rated by a dielcctric material, as shown in Figurc 2(a), When connectcd 
to a voltage source, one conductive plate charges positively and thc 
other onc negatively. Thc capacitor rcmains charged after being dis- 
connected from the voltage source, and can be discharged by shorting 
its terminals. The voIfagc on the capacitor i s  proportional to the amount 
of charge on the conductive plates. Bccause of dielectric absorption, the 
voltage on tlw capacitor partially recovers aftcr momentarily shorting 
its terminals. The magnitude of this rccovery is lowcr if the short is 
maintained for a longer time. Thus, cncrgy still remains in the capaci- 
tor after a momentary short. To fully discharge the capacitor, the short 
nccds to be maintained for a Ionng time. This effect of fhe diclectric ab- 
sorption can bc modeled by adding an energy absorption element in 
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Figure 3. Tlic concept of the recovery voltage mcasurenient. The ca- 
pacitor is rcprcscntcd by hvo conductive plates a, scparatcd by an ideal 

parallel with tlic conductive plates, as shown in Figure 2(b). Thc elcc- 
tric current charges and discharges the energy absorption element at 
slow rates. Because of thcsc slow rates, a momentary short dischargcs 
only partially the cncrgy absorption element. 

Fig. 2a Fig. 2b 

P 
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Figure 2. (a) ' h c  capacitor is made of two conductive plates, CL and I ) ,  

separated by a dielcctric matcrial c. (b) The dielectric can be modelcd as 
an ideal material c in parallcl wlh an energy absorption clcmcnt d. 

of each circuit arccalculatcd from the i(l) decomposition terms. Based 
on the calculaicd values, a mathematical modcl of the dielectric ab- 
sorption is built. From the mathematical model it is then shown how to 
calculate the elements of an electrical circuit model of the type shown 
in Figure 1, 

3 MEASUREMENT SETUP AND 

"he experiment nicasures and records the recovcry voltage on the ca- 
pacitor after momentarily shorting its terminals. The cxyeriment setup 
consists of a voltage sourcc U, il voltmeter V, two switches K1 and Kz, 
and thecapacitor to be modclcd C, as shownin Figure 4. Thc capacitor 
C is chargedat a voltagc 1J with K1 closed andK1 open. Tlwn, KI opens 
and K2 momentarily closcs shorHng the capacitnr terminals. After the 
momentary short circuit, thc voltage rises slowly starting from 0 V, as 
shown in Figure 5. Thc recovery voltage is recordcd in uniformly timed 
samples as A series u(Y'), u(2T), ~ ( 3 7 ' ) ~ .  . . ti(n,T). 

DATA RECORDING 

The recovery voltage is measured with a voltineter connected in par- 
allei with thc capacitor, as shown in Figurc 3. It is assumed that the 
capacitoi is fully charged and the rcsistancc of the discharging path 
through the switch K is 0 W. If the switch K is momentarily turned 'on' 
for a time ideally cqual to zero, the coIiductive plates will discharge 
completely whilc the amount of charge stored in thhc absorption element 
will remain unchanged. This charge transfers to thc conductive plates 
at a slow rate, causing the voltage increase. The voltmeter V measures 
and records this voltage increase as a function v(t). The recording pc- 
riod is assumed to last until the charge transfer ends. Considcring an 
infinite impedance of the voltmeter, no current flows outside the capac- 
itor to the voltmeter. Thus, v{t)  represents thevoltage variation on the 
capacitor whilc bcing charged with an internal currcnt i(t), as shown 
in Figure 3. This iutemal curreilt is assumed to flow from the energy 
absorption clement to the conductive plates, and is cafculated using 
Equation (1) 

where C i s  the capacitance and I I  the recovery voltage. The current i (1 )  
is decamposcd into a sum of exponential decay tcrms. Each term rep- 
resents the current coming from a virtual compartmcnt of the cnergy 
absorption element. Thus, tlic energy absorption element is divided 
in compartments charactcriscd by energy storage capacitors and ex- 
poncntial transfer functions, similar to adding multiple or distributed 
relaxation times in dielectric theory The capacitance and time constant 

r- I 

1k, , , . , , I  -4 ------- 
0 
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Figure 5. The rwovcry voltage on the capacitor after momentarily 
shorting i t s  terminals. W c  level (a) represents initial charging voltage, @) 
rcprcscnts the momentary short, and (c) represents the voltagc variation 
on the capacitor after the short w a s  removed. 

Comparing this sctup with the ideal case presented in the previous 
Scction, the impedance of the voltmeter is no longer infinite and the 
rcsistance of the shorting path through Ki is no longcr cqual to zero. 
lhese diffcrcnccs cause errors in the measured values of the recovery 
voltage. To minimize the errors thc hollowing aspects need to be con- 
sidered. 

The input impedance of the voltmetcr nceds to be very high to mio- 
imize the current flowing outside the capacitor. The calculation of the 
recovery current assumes that current flows oidy from the energy ab- 
sorption element to the conductive plates and not outside the capacitora 
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Also, the resistancc of the shorting path nccds to be very low so that 
the conductive plates will fully discharge during the momentary short. 

The capacitor necds to be charged for a long time so that the diclec- 
tric, which has a longcr time constant, will absorb energy closc to its 
full capacity Because the timc constant of the dielectric i s  not known at 
the beginning of the experiment, an arbitrary charging period should 
be iiscd. To verify that the capacitor was fully charged, the experiment 
necds to bc repeated using a longcr charging period. Thus, two models 
are built for two different charging pcriads. If the capacitor was fully 
charged the two modcls would be identical. 

Thc rccovery voltage should bc recorded for cnough time to cover 
the longest time constant of the dielectric. Because the longest timc 
constant is not. known at the beginning of the experiment, an arbitrary 
recording period should be used. To verify that thc recording period 
was enough long, tlic experiment necds to bc repeated using a longer 
recording period. Thus, two modcls are built for the two recording pe- 
riods. If thc periods are long cnaugh, the two models will be identical. 

4 DATA PROCESSING AND 
MATHEMATICAL MODEL 

CONSTRUCTION 
The rccovery voltage ~ ( d )  was rccnrded as a series Q'), 4 2 2 7 ,  

~ ( 3 1 1 ) ~  . .i. u(nT),  measured with a sampling pcriod 2". The intcriinl 
current i ( ~ )  that rccharged the conductivc plates is calculated as a se- 
ries Q), i(2T), i (37'),  . . . , i ( (n - :LIT), using the discretc form of 
Equation (1) 

A! = I ,  2,  3 , .  . . (n  - 1) 
rvbcrc Cis the capacitaiicc, ?$(VI') the recovery voltagc samples, n the 
iiumber of samples, and ?' is the sampling period. The series i(kII') 
represents the variation of the current i ( t )  flnwing from the cncrgy 
absorpkion element to the coiiductive plates, This currcnt decreases 
continuously with time and approaches zero corrcsponding to an equi- 
librium in'thc charge transfer, Ihcrcfore, i(t) can bc represented as a 
sun1 of exponential decay currents coming lrom virtual compartments 
of the energy absorption element. Each compartment is characterized 
by storage capacitance and time constant. It is also assumed that thcin- 
dividual currents flow only into the conductive plates andnot between 
cnmpartments. Each individual current i s  described by an cquation of 
t k f o r m  

(3) ,ij(L) = rj clxp -- [ ::I 

i ( t )  = rj exp [-:I (4 

where Ij is the value of the current coming from the compartment j 
at time t = 0, and ~j is the rcspcctivc time constant. The recharging 
current i ( t )  i s  the slim of all individual currents 

7i1 

j =  1 

where m is the number of compartments. Considcring that the C;I- 

pacitances and time constants arc different fur each compartment, the 
rccliargiqg currents i i  ( t )  will end successivcly with time during thc 
rccording period. Thcrcfore, it can be assumed that the last scction of 

the i(k7') series rcprcscnts the current coining from a single comyart- 
mcnt. This current decreases exponentially and can be representcd on  a 
semi-logarithmic graph paper as a straight linc. Thus, representing the 
i(kT) points on a scmi-logarithmic graph paper, thcrc i s  a set of points 
at the tnd of the graph that can be approximated with a straight linc. 
lherefore, the asymptotic tangent to the end of the graph rcpresen'rs 
the current coming from the last compartment. This current decreases 
exponentially and is dcscribcd by Equation (3). Tlie paramctcrs l j  and 
q of Equation (31 arc calculatcd from the slope and the intcrccpt of the 
asymptotic taugcnt. 

0 00 170 100 

Figure 6. Semi-logarithmic plot showing uxpunential decay functions 
as straight lines. Thc line corresponding to the current coining hum a 
single compnrtmoiit (b) is subtracted from the ctirvc rcprcsenting thc total 
current (a). Thc resulting ciirve ( c )  represents tkc discharging current from 
the rest of compnrtinciils. 

t ime (6) 

1J 
Figure 7. Schcmatic diagram showing the discharging of capacitor C, 

into C: through the resistor 

By subtracting the asymptotic tangent from the i ( k T )  graph, a ncw 
Curve rcsults, rcpresentiiig the currciit coming from the rest of the 
compartments, as shown in Figure 6. This curve is processed in the 
same way, considering that the last points rcprcsent the current coming 
from another single compartmcnt. Thus, continuing this algorithm, one 
straight linc corresponding to a single compartment results with each 
step. This iterative proccss ends when the curve resulting from the 
stibtraction can bc approximated with a straight linc, meaning that i t  
represents the current coming from the fastest compartment. Thus, tlic 
i ( k T )  graph was dccomposed into a slim of straight lines representing 
individual currents coming from virtual compartments. Thc number 
of compartments is equal to thc number of straight lines. Because the 
currents I,, start flowing out of compartmenfs when the short is ap- 
ylicd, the Ij terms represent the values of the currents flowing after the 
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shorting period. Thus I, can bc replaced with 

.. . . .  

where .Ij0 is the current flowing from compartmcnt j at the moment 
the mommtary short is applicd, t,, the shorting period, and ~j is the 
timc constant of compartment j. By replacing Ij  in Equation (4), the 
recovery current is described by Equation (6) 

The recovery voltage is calculated as 

The paramctcr 130 is the initial value of the current corresponding 
to the virtual compartment j, Experimental results show that the I,, 
value is proportional with the charging voltage while the ~j time con- 
stant is fixed. Thus, the parameter I j o  can bc cxpresscd as the charging 
voltage U over a constant Rj 

The Xj constant is a rcsistance because it is defined as a voltage over 
a currcnt. By replacing I j ,  in Equation (7), the recovery voltage can be 
expressed as 

where U i s  thc charging voltagc, C the capacitance, t,, the momentary 
shorting period, ~j the timc constant and Zt j  is the rcsistancc of com- 
partment j .  After thc parameters Rj and ~j are calculated lor a par- 
ticular charging voltage U ,  Equation (9) can be generalizcd to describe 
the recovery voltage for any charging voltage. Thus, after a capacitor 
is discharged from a voltagc fl to V2 whcrc it is held for a period of 
time th, the voltage across its terminals rises following the cquation 

where IVZ - VL I is the absolute value of the voltage change on the 
capacitor. The hold time t h  is the equivaleiit of the momentary short. 
Similarly, after a capacitor is charged from a voltage VI to V2 whcrc it 
is held for a period of timc th, the voltage across its terminals decreases 
following the cquation 

Equations (10) and (ll} represent the mathematical model of the voltage 
variation on a capacitor due to dielectric absorption. The parameters 
Rj and -rj characterize each virtual compartment: and m is the number 
of compartments. Based on the mathematical model, specific equations 

can be written for different charging and discharging patterns used in 
particular applications. The only constraint. is the initial state of the 
capacitor which should be considered either fully charged or fully dis- 
charged. 

10M 
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Figure 8. Semi-logarithmic pIot showing the decomposition of the di- 
clcctric discharging current (a) in straight lincs (b), (c), (d), (e), corrcspond- 
ing to exponential decay currents coining from four virtual compartments, 

The equivalent circuit was built using the procedure described in 
Section (5}, and is shown in Figure 9. 

1 1 1 U 4 n F T  446nF T 324nF T 390nf T 

Figure 9. The equivalent electrical circuit of a 10 pLF Z5U type ceramic 
capacitor. 

70D I 

1 81 121 111 241 341 381 

TlmB (8 )  

Figure 10. l h  inathematical modci rcsdt (a) compnred with the mcn- 
sured recovery voltage @) during the data recording cxpcrimcnt. 

5 THE EQUIVALENT 

The electrical circuit model is based on the similarity betwccii tlic 
terms of Equation (4) and the discharging current of a capacitor through 
a resistor. To emphasize this similarity consider a capacitance C;j which 
discharges through a resistor Rj into a capacitor C, as shown in Fig- 
ure 7. Thc initial voltage on the capacitor 15' is 0 V and on Cj is U, b! 
Current starts flowing through the resistor Rj charging the capacitor 

ELECTRICAL CIRCUIT 
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Figure 11, PSPICE simulation of tlw rccovery voltngc using the equiva- 
lent clcctrical circuit (a) compared with thc measured rccovcry valtage (b) 
during the data recording experiment, 

Cwith  cncrgy stored in r:j. This charging process cnds when the volt- 
age on capacitor C equals that on Cj, The voltage variation on C is 
described by the equation 

Thus, thc currenk irtl can be calcdated as .., 

] (13) [ lZ3CjC/(Cj + C )  
CEZl wj 

dt R j  
i(L) = c- = -f?xp - 

Equation (13) has the same form as thc tcrms in Equation (4). Thus, 
the circuit shown in Figure 7 can be uscd to model thc discharging 
current from a single compartment:, reprcscnted by Il,; and C,j, into 
the conductive plates represented by C. From the equivalence between 
Equation (13) and the terms inEquation (4), I?, and Cj, are catculated 
as 

Thc electrical circuit model contains the samc number of compart- 
ments as the mathcmatical modcl. Each compartment consists of a se- 
rics resistor-capacitor circuit, and all compartmcnts are connected in 
parallcl with the main capacitor, This equivalcnt circuit is similar to 
thc onc shown in Figure 1, where C is the capacitor value, ,172 the nun- 
ber of compartments, and Cj and Rj, with j = 1, 2,3. . . m, are the 
capacitance and resistance corresponding to each compartment. 

There is  a limitation of the equivalent circuit model. This limitation is 
caused by the current flowing between compartments. The equivalcnt 
circuit model is bawd on the mathematical model, and the mathemati- 
cal model assumes that the current flows only from compartmcnts into 
the condiictive plates not between compartments, In the equivalcnt 
circuit. modcl the first conipartment that discharges will then recharge 
with current coming from the rest of the compartments. This rccharge 
causes errors and limits thc usage of the cquivalent electric circuit to 
a timing less or equal to thc discharging period of thc fastest compart- 
ment. However, this period is much longer than thc timing used in most 
analog applications. Thus, for thesc applications, the electrical model 

accurately represents the rcal capacitor, and it can be used to design 
compcnsatioii circuits. 

6 ERROR ANALYSIS 
Thc crrors affecting thc compartmental analysis of the dielectric ab- 

sorption arc due to the experimental data recording and the graphical 
curvc fitting method. "hc data recording mors  are caused by the in- 
put: bias current into the voltmeter, the accuracy of the measured val- 
LIE., and the accuracy of the sampling period. The input bias current 
is subtractcd from the recovcry current during thc experimental data 
recording. Thus, less current will recharge tho conductive platcs caus- 
ing errors in the measured values. The accuracy of the voltmcter and 
the sampling period affects the measured values and the calculation 
of the recovery current. The curve fitting mcthod adds errors due to 
the tangent drawing and thc slope and intercept calculation. A good 
mderstnnding of these errors help in setting up thc experiment and 
building a more acciiratc model. 

7 EXPERIMENTAL RESULTS 
This Section prcscnts a study done on a 10 jlF E U  type ceramic 

capacitor. The circuit presented in Figure 4 was used to charge thc ca- 
pacitor for 1 h and discharge it for 3 s, The voltage on the capacitor was 
measured using i? voltmeter with 10 pA maximum input bias currcnt 
and 0.1 mV accuracy. The data was recorded with a 1 s sampling rate 
for a pcriod of 1 h. The recovery current was calculated using Bgua- 
tion (2) and was plotted on scmi-logarithmic graph paper, The curve 
decomposition into straight lines followed the procedure described in 
Section 4 and the result is shown in Figure 8. It can be observcd that 
the dccomposition of the curve contains four straight lines. Only the 
first six minutes of recording period are shown to emphasizc the sec- 
tion were the last thrcc straight: lines are located (lines c, d and e). The 
model coiisists of four compartments corresponding to each straight 
line. The discharging inodcl was calculated following the proccdure 
presented in Section 4 and is dcscribed by 

1 = Av[lflfie-n.mxh (1 - e-u.oI i f i~  

(14 
(1 - e-0.n2z'L) 

+ 42e--0.U22ti,  

11 + 37e-u.311:3i'& (1 - C-0.Y33t  

+ 3 l e - - U . U 8 t f L ( l  - e-0.08t) 

whcrc u( l )  (in mV) is the voltage increase on the capacitor after a AV 
discharge and a i~~ hold time of thc final volhge valuc. The charging 

Thc mathematical and clectrical circuit models were evaluated us- 
ing tbc cxperiment setup shown in Figurc 4. Thc measured and cal- 
culated voltage variations on the capacitor arc presented in Figure 10. 
The equivalcnt circuit was cvaluated using PSPICE [51 simulatinn. The 
mcasurcd and simulated data are shown in Figure 11. It ran be ob- 
scrvcd khat the error incrcases after thc first compartment is discharged 
and cturent starts to flow between compartments. 
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8 CONCLUSIONS REFERENCES 

yrcscnted in this paper can bc used to studyand model any type and 
valuc of capacitor, at  slow or fast charging and discharging rates. 


