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Abstract The mineral chemistry, major and trace ele-
ment, and Sr—Nd isotopic composition of Cr-diopside,
spinel peridotite xenoliths from the Estancia Lote 17
locality in southern Patagonia document a strong car-
bonatitic metasomatism of the backarc continental
lithosphere. The Lote 17 peridotite xenolith suite con-
sists of hydrous spinel lherzolite, wehrlite, and olivine
websterite, and anhydrous harzburgite and lherzolite.
Two-pyroxene thermometry indicates equilibration
temperatures ranging from 870 to 1015 °C and the lack
of plagioclase or garnet suggests the xenoliths originated
from between ~40 and 60 km depth. All of the xenoliths
are LILE- and LREE-enriched, but have relatively low
87Sr/%6Sr (0.70294 to 0.70342) and high &ng (+3.0 to
+6.6), indicating recent trace element enrichment
(~25 Ma, based on the low ¥’Sr/**Sr and high Rb con-
centrations of phlogopite separates) in the long-term,
melt-depleted Patagonian lithosphere. Lote 17 peridotite
xenoliths are divided into two basic groups. Group 1
xenoliths consist of fertile peridotites that contain
hydrous phases (amphibole + phlogopite + apatite).
Group 1 xenoliths are further subdivided into three
groups (a, b, and c) based on distinctive textures and
whole-rock chemistry. Group | xenolith mineralogy and
chemistry are consistent with a complex metasomatic
history involving variable extents of recent carbonatite
metasomatism (high Ca/Al, Nb/La, Zr/Hf, low Ti/Eu)
that has overprinted earlier metasomatic events. Group
2 xenoliths consist of infertile, anhydrous harzburgites
and record cryptic metasomatism that is attributed to
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COy-rich fluids liberated from Group 1 carbonatite
metasomatic reactions. Extremely variable incompatible
trace element ratios and depleted Sr—Nd isotopic com-
positions of Lote 17 peridotite xenoliths indicate that the
continental lithosphere was neither the primary source
nor an enriched lithospheric contaminant for Neogene
Patagonian plateau lavas. Neogene plateau magmatism
associated with formation of asthenospheric slab win-
dows may have triggered this occurrence of ““intraplate-
type” carbonatite metasomatism in an active continental
backarc setting.

Introduction

Recent studies have demonstrated the importance of
both carbonatite- (Yaxley et al. 1991; Dautria et al.
1992; Hauri et al. 1993; Rudnick et al. 1993; Ionov et al.
1994) and adakite- (Kepezhinskas et al. 1995, 1996;
Schiano et al. 1995; Kilian 1995) metasomatized peri-
dotite xenoliths in mafic lavas for providing information
about lithospheric mantle processes and chemistry.
Carbonatitic metasomatism is associated with carbona-
tite magmas that are thought to represent melting of
mantle carbonate (Green and Wallace 1988) or are im-
miscible liquids exsolved from alkaline, CO,-rich silicate
magmas (Hamilton et al. 1979). Carbonatitic metaso-
matism is characterized by high whole-rock Ca/Al, Zr/
Hf, Nb/Ta, and very low Ti/Eu ratios in mantle xeno-
liths. Carbonatite metasomatized peridotite xenoliths
are dominantly found in intraplate settings (Tanzania,
Rudnick et al. 1993; Samoa, Hauri et al. 1993); howev-
er, rare occurrences have recently been documented in
the backarc of active margins where old oceanic litho-
sphere is subducting (southern Kamchatka, Kepezhins-
kas and Defant 1996). In contrast, adakitic
metasomatism is associated with adakite magmas
(Drummond and Defant 1990), which are melts of
broadly dacitic composition that represent small-per-
centage partial melts of subducted oceanic crust (Kay
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1978). Adakitic metasomatism is characterized by high
Na, Al, Sr/Y, and low Y, Yb, in mantle xenoliths and is
commonly found only in active arc regions where young
(<20 Ma) oceanic crust is presently subducting (i.e.,
southern Patagonia, Kilian 1995) or where subduction
has recently ceased (northern Kamchatka, Kepezhinskas
et al. 1995, 1996).

We have collected a suite of 20 peridotite xenoliths
from the Estancia Lote 17 locality in southern Pata-
gonia (48.5°S, 70.2°W; Fig. 1) that record strong car-
bonatite metasomatism of the backarc mantle
lithosphere. Lote 17 peridotite xenoliths are texturally
and chemically similar to other carbonatite metaso-
matized xenolith suites from continental intraplate
settings (e.g., Yaxley et al. 1991; Dautria et al. 1992;
Rudnick et al. 1993). The Lote 17 xenolith suite con-

Fig. 1 Location map showing mantle xenolith occurrences, tectonic
setting, and distribution of Neogene plateau lavas of southern
Patagonia (black, Panza and Nullo 1994). Cerro Pampa location
from Kay et al. (1993). Southern Volcanic Zone (SVZ) and Austral
Volcanic Zone (AVZ) (black triangles) are from Stern et al. (1990).
Xenolith localities include Estancia Lote 17, Pali-Aike (Stern et al.
1989), and Cerro del Fraile (Mufioz 1981; Kilian 1995), Tres Lagos
(Ramos et al. 1982), Meseta Buenos Aires (Niemeyer 1978), and La
Laurita (Ramos et al. 1982). Timing of ridge collisions are shown
between fracture zones on the Antarctic Plate (Cande and Leslie 1986;
Gorring et al. 1997)
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sists of a variety of anhydrous and hydrous (amphi-
bole + phlogopite = apatite) spinel peridotites that
display four distinct metasomatic styles. In this paper,
we report on petrographic, whole-rock and mineral,
and Sr—Nd isotope compositions for ten representative
Lote 17 peridotite xenoliths in order to constrain
metasomatic processes in backarc continental litho-
sphere and to assess the role of the lithosphere and
asthenosphere in the petrogenesis of Neogene Patago-
nian plateau lavas.

Geologic setting

Several peridotite xenolith localities are known in
southern Patagonia (Ramos et al. 1982; Fig. 1). The
three best characterized sites are the Estancia Lote 17
(48.5°S), Cerro del Fraile (50.5°S; Kilian 1995), and the
Pali—Aike localities (52°S; Stern et al. 1989, 1999). The
Estancia Lote 17 locality lies within the basaltic plateau
known as the Meseta Central. The site is located in the
southwestern corner of the Desecado Massif and is
~250 km behind the northernmost Austral Volcanic
Zone (AVZ) centers (Fig. 1). Lithosphere beneath the
Deseado Massif is thought to be as old as ~1100 Ma
(Pankhurst et al. 1994). This is considerably older than

late Proterozoic (~650 Ma) and mid-Paleozoic
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(~300 Ma) basement ages inferred to exist beneath the
Pali-Aike (Ramos 1988) and Cerro del Fraile (Hervé
1988) regions, respectively.

The major tectonic/magmatic events affecting the
evolution of the Patagonian lithosphere include: (1)
nearly continuous subduction since the early Cretaceous
and episodically since the mid-Paleozoic (Ramos et al.
1982), (2) the eruption of large volumes of Jurassic
rhyolite magmatism during the incipient stages of South
Atlantic rifting (Kay et al. 1989; Pankhurst and Rapela
1995), and (3) extensive Eocene and Neogene backarc
plateau magmatism (Ramos and Kay 1992; Gorring
et al. 1997; Gorring and Kay 2000). The Late Cenozoic
tectonics have been dominated by near-orthogonal
subduction of the Nazca Plate (Cande and Leslie 1986).
In the Lote 17 region, Neogene plateau magmatism
occurred in response to a series of Neogene ridge colli-
sions and the opening of asthenospheric slab windows
between the subducting Nazca and Antarctic Plates
(Gorring et al. 1997; Gorring and Kay 2000). Two
eruptive sequences are recognized: a voluminous, tho-
leiitic ““main-plateau” sequence of late Miocene age
(~10-8 Ma), and a less-voluminous, alkaline “post-pla-
teau” sequence of Pliocene age (~3.5 Ma) (Gorring
et al. 1997; Gorring and Kay 2000). Lote 17 xenoliths
were entrained in a basanitic surge deposit in the post-
plateau sequence.

Analytical methods

Samples were sawn into 1-cm-thick slabs. Fresh, interior sections of
slabs were broken into pieces and crushed in a hardened steel
mortar, then ground in a boron carbide mortar and pestle. Clino-
pyroxene and phlogopite separates were hand-picked under bin-
ocular microscope from the 0.5-1 mm size fraction, leached in cold
6 N HCI (cpx) or 10% acetic acid (phlog) for 30 min, and hand-
picked again. Final separates were acid leached for 15 min and
ground in boron carbide for trace element analysis. Unground
separates were dissolved for Sr—Nd isotope analysis.

Major elements in whole rocks and minerals were determined
by electron microprobe analysis (WDS) at Cornell University using
a JEOL-733 Superprobe. Techniques and standards used for mi-
croprobe major element analyses are in Kay et al. (1987). Glasses
were prepared from peridotite xenoliths for whole-rock major ele-
ment analyses by fluxing 0.5 g of sample powder with 0.5 g of
lithium tetraborate and fusing in graphite crucibles at ~1000 °C.
Analyses were carried out on a JEOL-733 Superprobe in WDS
mode with a 15 kV accelerating voltage, 15 nA beam current, 40 s
count time, and a beam diameter of ~2 pum for minerals and 30 pm
for whole-rock glasses. Whole-rock analyses represent the mean of
four to six spot analyses; mineral compositions are means of one to
two analyses of four to six different grains. Whole-rock analyses for
TiO, and P,O5 were obtained by counting for 200 s and calibrated
against glasses made from USGS standards. Typical 2¢-precision
for microprobe analyses are +1-5% for elements at >1 wt% and
+10-20% at <1 wt% concentration levels, based on replicate
analysis of glass and mineral standards.

Trace element concentrations were determined by INAA and
ICP-MS at Cornell University. Techniques and standards are given
in Kay et al. (1987), Cheatham et al. (1993), and White and
Duncan (1996). INAA and ICP-MS analyses agree within analyt-
ical error. Total analytical blanks were subtracted from all analyses
and were typically <5-10% of the concentration in the most de-
pleted harzburgite xenoliths. INAA were performed on ~0.5 g of
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whole-rock and ~0.3 g of mineral separate powders. Samples and
standards were counted on a Ortec GeLi-detector and were
counted for 24 h each to improve in-run statistics. INAA precision
(20) based on replicate analyses of an internal basalt standard was
+ 5% for all elements in peridotite xenoliths, except for U, Sr, and
Nd, which were +10%. INAA precision is estimated at +10-20%
for all elements in depleted harzburgite xenoliths, except U, Th,
Nd, Lu, and Sr, which were below practical detection limits. ICP-
MS analyses were carried out on a VG PlasmaQuad PQ2+. Ap-
proximately 250 mg of whole-rock and 80 mg of mineral separate
powders were dissolved in ultrapure, concentrated HF-HNO;.
Spinel resisted all acid attacks. Excellent correspondence between
INAA and ICP-MS analyses, particularly for the HFSE, indicates
that spinel did not contribute significantly to the total incompatible
trace element budget of the xenoliths (e.g., Eggins et al. 1998). ICP-
MS precision (20), based on replicate analyses of BIR and an in-
ternal basalt standard, was +5% for LREE, HFSE, Sr, Ba, and
Rb, and +£10% for HREE, U, Th, Pb, and Cs. ICP-MS precision
for depleted harzburgite xenoliths is estimated at +10-20% for all
elements.

Sr and Nd isotopes were analyzed at Cornell University on a
multi-collector VG Sector 54 TIMS. Chemistry and analytical
techniques are from White and Duncan (1996). Approximately
250 mg of whole-rock xenolith powder and unground mineral
separates were leached in hot 6 N HCl for 15 min (cold 10% acetic
acid for phlogopite separates) and then dissolved in sealed 15 ml
Savillex capsules with HF-HCI-HNOj; acid mixtures. Sr and REE
were separated using cation exchange columns with AG50W-x12
resin and 2.5 N and 6 N HCI as eluants. Neodymium was eluted
using organically coated PFTE cation exchange resin and 0.16 N
HCI. Total procedural blanks for Sr and Nd were less <100 pg,
and thus negligible. No blank corrections were made.

Petrography

Lote 17 peridotite xenoliths are incompatible trace ele-
ment-enriched, Type 1B, Cr-diopside peridotites (Frey
and Green 1978; Wilshire et al. 1988). The collected
suite consists of 20 samples of anhydrous harzburgite
and lherzolite (8 samples) and hydrous (amphibole +
phlogopite + apatite) spinel lherzolite (6 samples),
wehrlite (4 samples), and olivine websterite (2 samples).
The hydrous types are most likely over-represented
because samples were obtained to maximize the textural
and mineralogic diversity of the collected suite. Table 1
summarizes the main petrographic and mineralogic
features of ten Lote 17 xenolith samples analyzed for
this paper.

The xenoliths average ~10 cm in diameter and are
very fresh. Textures range from coarse-grained (~3—
6 mm) protogranular to medium-grained (~1-3 mm)
porphyroclastic. Olivine and orthopyroxene occur as
large, subhedral grains. Clinopyroxene occurs as small
to large, anhedral-subhedral, bottle-green Cr-diopside.
In most samples, clinopyroxene has spongy, jadeite-poor
rims that are best developed in contact with olivine.
Minor phases include Cr-spinel, amphibole, phlogopite,
apatite, glass, and carbonate. Hydrous xenoliths contain
amphibole £+ phlogopite and, thus, are modally
metasomatized peridotites (Dawson 1984). Hydrous
xenoliths typically contain light brown, silicate glass in
small (~1 mm) melt pockets and thin, grain-boundary
veinlets. The glass is vesicular and some vesicles are filled
with secondary carbonate.
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Table 1 Summary of petrography and mineralogy of Lote 17
peridotite  xenolith groups. Fo# (ol) = [Mg/(Mg + Ca +
Fe)[*100; Mg# (sp) = [Mg/(Mg + Fe’ )] x 100; Cr# (sp) = [Cr/
(Cr + AD] x 100 where Fe, Fe?*, Ca, Mg, Cr, and Al are cation
proportions. Fe>* by charge balance (Lindsley 1983). r* = sum of
the square of the residuals between the calculated element analyses

and the measured analyses. /ierz lherzolite; ol webst olivine web-
sterite; harz harzbugite; protogr protogranular; porphyr porphyr-
oclastic; interst interstitial; + present; — absent; ol olivine; opx
orthopyroxene; cpx clinopyroxene; amph amphibole; phlog phlo-
gopite

Group Group la Group 1b Group lc Group 2
Sample GBX-5 GBX-6 GBX-4 GBX-7 GBX-8 GBX-2 GBX-10 GBX-3 GBX-12
Rock type Wehrlite Wehrlite Lherz Lherz Lherz Lherz Ol webst Harz Harz
Texture Protogr Porphyr Porphyr Porphyr Protogr  Protogr Protogr Protogr  Protogr
Grain size (mm) 34 34 1-2 2-3 4-6 34 34 4-6 4-6
Special features Large, Euhedral  Interst amph Interst amph — Anhedral  Reacted - -
anhedral phlog + phlog + phlog amph spinel;
amph amph +
apatite
Glass, carbonate +, - +, + - + - - - - +, - +, + - - - -
Fo# (ol) 90.0 89.5 89.0 90.8 90.9 90.1 91.1 91.7 92.1
Mg# (sp) - - 72 72 78 79 76 70 64
Cr# (sp) 53 - 22 35 16 9 24 35 56
Equilibration temperatures (°C)
From Wells (1977) 979 973 1005 1015 972 973 973 871 861
Calculated modes %; by least squares mixing using mineral and whole-rock analyses
Ol 75.0 69.2 55.6 70.9 66.0 52.7 33.0 74.6 73.5
Opx Trace 3.0 21.1 19.2 24.8 32.2 36.0 19.8 24.3
Cpx 159 254 20.3 6.2 7.5 7.4 25.6 4.2 1.6
Spinel 1.0 - 0.4 0.3 1.7 2.1 2.4 1.4 0.6
Amph 8.1 - 1.4 2.5 - 5.6 2.7 - -
Phlog - 2.4 1.0 0.7 - - - - -
Apatite - - 0.2 0.2 - - 0.3 - -
r? 0.23 0.33 0.07 0.01 0.05 0.10 0.20 0.26 0.07

Lote 17 xenolith groups

Lote 17 spinel peridotite xenoliths are divided into two
basic groups. Group 1 consists of fertile, hydrous peri-
dotites, and Group 2 are infertile, anhydrous harz-
burgites (Table 1). Textures of Group 1 xenoliths are
consistent with a complex metasomatic history involving
variable extents of reaction of refractory lherzolite or
harzburgite with carbonatitic melts. The reaction in-
volves orthopyroxene + spinel + carbonatite melt that
reacts to form Cr-, Na-rich diopside + olivine + par-
gasite/phlogopite + CO, (Green and Wallace 1988).
Group 1 xenoliths are similar to amphibole—phlogopite—
apatite lherzolite and wehrlite xenoliths from southeast
Australia (Yaxley et al. 1991) and the Sahara Basin
(Dautria et al. 1992), whose textures and mineralogy
are attributed to carbonatite metasomatism. Group 1
xenoliths are further divided into three subgroups (a, b,
c¢) based on distinctive textures and trace element
chemistry (Table 1).

Group la xenoliths consist of protogranular to por-
phyroclastic, olivine-rich wehrlites that have a medium
to coarse grain size (2-4 mm) and disseminated phlo-
gopite (GBX-6) or amphibole (GBX-5). Sample GBX-6
has a weak planar fabric defined by tabular olivine and
aggregates of phlogopite. Silicate glass is present mostly
as small (~1 mm) melt pockets and veinlets. Carbonate
fills vesicles in the glass. Group la xenoliths have a

texturally well-equilibrated assemblage of olivine + Na-
rich clinopyroxene + amphibole/phlogopite with minor
amounts of orthopyroxene and spinel that indicate an
advanced stage of carbonatite—peridotite reactions as
suggested for southeast Australian (Yaxley et al. 1991)
and Tanzanian (e.g., Rudnick et al. 1993) peridotite
xenoliths.

Group 1b xenoliths consist of porphyroclastic lherz-
olites (GBX-4 and GBX-7) that have a medium grain
size (~1-3 mm), and have interstitial amphibole and
phlogopite. Accessory apatite is inferred to be present
based on least squares analysis of mineral and whole-
rock data (Table 1), but has not been identified in thin
section. These samples also lack glass. Group 1b textures
and mineralogy are consistent with an intermediate stage
of carbonatite metasomatism, although interstitial am-
phibole + phlogopite may reflect previous metasomatism
involving basaltic melts (e.g., Menzies et al. 1987) or
H,O-rich fluids (e.g., O’Reilly and Griffin 1988).

Group lc xenoliths consist of a lherzolite (GBX-2)
and an olivine websterite (GBX-10) that have coarse-
grained (4-6 mm), protogranular textures. Anhydrous
lherzolite GBX-8 is included in this group because of
similar trace element chemistry. GBX-10 contains small
(~0.5 mm), inclusion-rich, euhedral apatite. Group Ic
xenoliths are interpreted to record an incipient stage of
carbonatite metasomatism, based primarily on the
presence of apatite and reacted Cr-spinels rimmed by
relict amphibole and a fine-grained aggregate of silicate



glass, olivine, and clinopyroxene. Similar features have
been observed in other carbonatite metasomatized xe-
noliths (e.g., Ionov et al. 1994; Chazot et al. 1996;
Wiechert et al. 1997; Yaxley et al. 1997).

Group 2 consists of anhydrous harzburgites (GBX-3
and GBX-12) with coarse-grained (~4-6 mm), proto-
granular textures. Group 2 xenoliths are cpx-poor and
lack hydrous phases, silicate glass, or carbonate. They
are classed as cryptic metasomatized xenoliths (Dawson
1984) because they have anomalous enrichments in
LILE and LREE.

Results
Mineral chemistry

Mineral and glass chemistry for Lote 17 xenoliths is
presented in Tables 1-4. Olivine and orthopyroxene
compositions range from Fogg to Fog, and Mg# = 88 to
91 (Tables 1 and 2). Olivine and orthopyroxene are
more magnesian and spinel has higher Cr# in Group 2
harzburgites compared to Group 1 xenoliths, consistent
with the former being residues from higher percentages
of melt extraction. Amphiboles are pargasitic with 0.8—
1.6% K,0, 1.3-4.3% TiO,, and 0.9-2.0% Cr,03 (Ta-
ble 3) and phlogopites are Cr-rich with 1.5-1.7% Cr,03
and 2.6-3.5% TiO, (Table 3).

Clinopyroxene in Lote 17 xenoliths are Cr-diopsides
with 0.65-2.1% Cr,03, 0.6-2.9% Na,O, and 1.9-6.7%
Al,O5 (Table 2). Group 2 harzburgites have clinopy-
roxene with the lowest Na,O (<1%) and Al,O3 (<2.5%)
and highest CaO (>22%) contents. Spongy clinopyroxene
rims have lower Na,O and Al,Os, higher CaO and
Cr,03, and slightly higher MgO and TiO, than corre-
sponding core compositions (Table 2). These character-
istics are similar to clinopyroxene in peridotite xenoliths
from Mongolia (Ionov et al. 1994; Wiechert et al. 1997)
and the Sahara Basin (Dautria et al. 1992), and are
thought to be caused by initial stages of carbonatite
metasomatism-induced partial melting. Lote 17 clino-
pyroxenes are compared in Fig. 2 with clinopyroxenes
from adakitic metasomatized peridotite xenoliths from
northern Kamchatka (Kepezhinskas et al. 1995, 1996)
and carbonatite metasomatized peridotite xenoliths from
northern Tanzania (Rudnick et al. 1993), southeast
Australia (Yaxley et al. 1991), Sahara Basin (Dautria
et al. 1992), and Mongolia (Ionov et al. 1994). The high
Si0,, Na,0, and Cr,O3 (not shown) at a given Al,O3
content of Lote 17 Group 1 clinopyroxenes are most
similar to those in carbonatite metasomatized xenoliths.

Glass compositions in Lote 17 Group 1 xenoliths are
Na,O-rich (4.7-7.7%), Al,O5-rich (20.5-22.8%) silicate
melts with high CaO (4.3-10.4%) and TiO, (2.1-2.8%)
and relatively low SiO, (50-53%; Table 4). They are
strikingly similar to glass in carbonatite metasomatized
peridotite xenoliths from Yemen (Chazot et al. 1996),
southeast Australia (Frey and Green 1978; Yaxley et al.
1997; Eggins et al. 1998), and Mongolia (Ionov et al.

Table 2 Microprobe analyses of pyroxenes (wt%). Opx, Cpx core analyses; Cpx rim spongy rims. Mg# = [Mg/(Mg + Fe*")] x 100. Fe>" by charge balance (Lindsley 1983)

Group 2
GBX-3

Group lc
GBX-2

Group 1b
GBX-+4

Group la

Type

GBX-12

GBX-10

GBX-8

GBX-7

GBX-6

Sample GBX-5

Cpx Cpx Opx Cpx Cpx Opx Cpx Opx Cpx Opx Cpx Opx Cpx Cpx Opx Cpx Cpx Opx Cpx Opx Cpx
rim rim rim rim

Opx

Phase

54.22
0.14
1.90
1.09
1.70
0.08

17.18

22.81
0.93

100.05

0.01
1.39
0.42
5.37
0.09
0.39
0.07

16.93 34.84
100.35  99.92

5429 57.33
0.14
2.43
0.74
1.90
0.06
23.25
0.61

56.37
0.06
2.37
0.31
5.57
0.14

34.92
0.40
0.03

0.63

51.50
0.27
3.95
1.54
2.78
0.09

16.62

99.39

1.34
2.75
0.14 0.08

34.12 15.27
0.68 19.36 22.02

389 6.13
0.14 2.16
101.00 99.55
91.5

0.55
5.68

55.74 52.20
0.06 0.25

0.55

51.63
0.60
4.60
1.23
2.85
0.06

16.90

99.29

5.72
0.96

5.57 2.69
0.12  0.07

33.29 15.55
0.72 19.89 20.89
1.82

0.09

55.61 52.54
100.20 99.63

0.09 0.40

4.25
0.45

51.96
0.59
6.65
0.65
2.77

14.88

19.41
1.80

0.11

54.89
0.12
4.28
0.28
5.95
0.15
0.69
0.11

32.57

0.42
5.54
1.55
15.22

0.83 17.97

0.17 231

55.83 52.97
100.18 99.08

0.11
3.26
0.62
5.52 298
0.13 0.11
33.71

0.11
15.20

52.65
0.71
5.22
1.34
3.74

18.43
2.15

54.73
0.25
3.71
0.36
7.04
0.16

32.29
0.74
0.13

0.32
2.31
2.13
3.22
0.12
16.72

1.18

56.97 53.72 52.84
0.09 0.28
1.61 4.45
0.38 1.82
6.34 352
0.19 0.13
33.70 15.27
0.73 17.89 21.34
021 2.86

0.51
2.87
1.84
3.42
0.12
16.28
1.06

52.37

0.33
1.68
3.66
15.63
0.74 18.92 21.19

56.51 53.11
0.11
227 4.12
0.18 0.15
34.01
0.17 230

0.51
6.36

S102
TiO,
A1203
Cl‘203
FeO
MnO
MgO
CaO
NaZO

100.17

99.02 98.81

90.7

99.56

99.41

100.21 99.95 100.17

100.85 99.89  99.66
90.4

Total

91.4 91.8 94.1 92,0 94.8

90.8

91.4

91.4 91.2

90.5

91.6 90.1

90.3 8.1 879

88.5

88.4 894

90.5

Mgt

59
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Table 3 Microprobe analyses (Wt%) of amphiboles and phlogopites

Sample GBX-5 GBX-4 GBX-7 GBX-2 GBX-10 GBX-6 GBX-7

Amphibole Phlogopite
SiO, 4495 42.66 43.66 43.23 44.03 40.03  38.84
TiO, 1.77 427 230 236 1.31 2.61 3.53
AlLO; 12.85 1420 14.09 1589 1521 16.20 16.82
Cr,0; 2.08 1.36 1.96  0.90 1.83 1.48 1.71
FeO 4.61 474 388 4.1 3.94 4.59  4.01
MnO 0.11 0.05 0.08 0.08 0.09 0.04  0.00
MgO 17.92 16.11 17.53 17.19 18.13 22.10 21.21
CaO 9.88 10.10 10.18 10.61 10.29 0.04  0.04
Na,O 3.63 3.23 3.43 3.52 3.86 079 0.72
K,0 1.45 1.61 1.56  0.81 0.72 8.62 8.65
Total  99.24 98.34 98.67 98.70 99.39 96.50 95.54

1994). In contrast, Lote 17 xenolith glasses are very dif-
ferent from glass in adakite metasomatized xenoliths
from northern Kamchatka (Kepezhinskas et al. 1995)
indicating a metasomatic component other than a slab-
derived melt. Lote 17 xenolith glass is also distinct from
the host basanite, ruling out any direct origin by host lava
infiltration (compare host lava in Table 5). Glass com-
positions in Lote 17 amphibole-bearing xenoliths are
CaO- and Na,O-rich, whereas glass in the phlogopite-
bearing xenoliths are distinctly K,O-rich. This supports
the interpretation that the glass formed by the breakdown
of amphibole + phlogopite (& clinopyroxene) just prior to
or during ascent in the host magma (e.g., Francis 1976;
Chazot et al. 1996; Yaxley et al. 1997) or by metasoma-
tism-induced partial melting (e.g., lonov et al. 1994).
Equilibration temperatures were calculated using
two-pyroxene thermometry (Wells 1977) and are given
in Table 1. Group 2 anhydrous harzburgites yield the
lowest temperatures at 860 to 8§70 °C, whereas Group 1
peridotites yield higher temperatures of 970 to 1015 °C
(Table 1). Equilibration pressures cannot be reliably
calculated because Lote 17 peridotite xenoliths lack
garnet; however, spinel peridotites with Cr# < 35 are
only stable in the pressure range of 0.8 to 2.5 GPa
(Webb and Wood 1986). Lote 17 spinel peridotites are

Table 4 Microprobe analyses of glass (wt%) from Lote 17
xenoliths compared to other peridotite xenolith localities. Glass
analyses from hydrous spinel lherzolite xenoliths from southeast
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Fig. 2a,b Plots of ALOs; a and SiO, b vs. Na,O (wt%) in
clinopyroxene from Lote 17 peridotite xenoliths. Symbols are given
in the SiO, vs MgO plot (open circles Group 1a; open diamonds Group
1b; open squares Group 1c; filled triangles Group 2). Lines connect rim
(small symbols) and core analyses (large symbols). Fields for
clinopyroxene from adakite metasomatized xenoliths from northern
Kamchatka (open; Kepezhinzkas et al. 1995, 1996) and carbonatite
metasomatized xenoliths from northern Tanzania (stipple; Rudnick
et al. 1993), southeast Australia (solid gray; Yaxley et al. 1991),
Sahara Basin (diagonal lines; Dautria et al. 1992), and Mongolia (thick
horizontal lines; Tonov et al. 1994)

Australia (Yaxley et al. 1997) and Yemen (Chazot et al. 1996).
Mean adakitic glass from adakite metasomatized peridotite xeno-
liths from northern Kamchatka (Kepezhinskas et al. 1995)

Sample GBX-5 GBX-6 GBX-2 GBX-10 SE Australia SE Australia Yemen N Kamchatka
glass (71004) glass (70997) mean glass adakite glass
Amph Phlog Amph Amph Amph + phlog Amph Amph

SiO, 51.18 52.90 51.22 49.89 51.32 52.25 52.44 64.76

TiO, 2.58 2.11 2.84 1.71 2.73 2.30 1.39 0.60

AL O3 20.76 20.71 20.56 22.75 20.99 21.05 20.27 18.52

FeO 3.52 2.98 3.79 3.17 3.08 5.16 3.41 241

MnO 0.08 0.09 0.07 0.08 - 0.12 0.05

MgO 3.41 2.56 4.28 3.61 2.81 2.86 3.00 0.70

CaO 7.11 4.26 10.38 8.49 4.18 5.96 7.01 2.13

Na,O 7.60 7.74 4.70 7.11 6.82 5.7 6.95 6.88

K,0 3.08 6.07 1.16 1.87 5.81 3.61 1.54 1.54

P,Os 0.19 0.02 0.04 0.32 0.54 1.16 0.63 -

Total 99.50 99.43 99.04 99.00 98.27 100.12 96.76 97.59




Table 5 Major (wt%) and trace element (ppm) concentrations for
Lote 17 peridotite xenoliths. Major elements normalized to 100%.
Trace elements by INAA are Sc, Cr, Ni, Co, Ba, Cs, Ta, Hf, La,
Sm, Eu, Yb, and those with *. Trace elements by ICP-MS are Y,
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Rb, Sr, Nb, Zr, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Lu, U, Th, Pb,
and those with . — below detection limits; blank spaces element not
determined

Type Group la Group 1b Group lc Group 2 Host lava
Sample GBX-5 GBX-6 GBX-4 GBX-7 GBX-8 GBX-2 GBX-10 GBX-3 GBX-12 GB-1
Si0, 42.28 42.97 45.27 44.17 44.18 45.37 47.85 43.49 44.56 44.92
TiO, 0.23 0.11 0.36 0.09 0.07 0.15 0.10 0.03 0.04 2.98
AlLO4 1.83 1.50 2.20 1.55 2.36 3.96 3.80 0.99 0.64 13.91
FeO 8.78 8.93 9.30 7.76 7.83 7.93 6.50 7.98 6.94 10.08
MnO 0.19 0.08 0.04 0.13 0.20 0.18 0.00 0.17 0.14 0.17
MgO 40.64 39.79 37.21 43.56 42.74 39.02 34.33 45.39 46.48 7.56
CaO 4.26 4.68 4.20 1.70 1.68 2.27 5.16 1.06 0.44 12.41
Na,O 0.72 0.86 0.45 0.26 0.20 0.42 0.64 0.10 0.07 3.33
K,0 0.15 0.18 0.16 0.10 0.06 0.12 0.09 0.02 0.02 2.59
P,Os - - 0.08 0.06 - - 0.12 - - 1.19
Sc 17.7 12.7 7.5 9.7 10.6 17.3 18.4 8.2 7.3 11.8
Cr 3846 4423 2680 2424 2734 2187 7570 3139 2823 229
Ni 2069 2072 2177 2070 2330 2228 1772 2582 2350 214
Co 112 109 115 109 116 112 99 129 113 42

Y 4.23 4.18 2.90 2.00 1.17 4.22 3.68 0.22 0.12

Ba 9.4 54.6 15.6 16.4 7.27 2.2% 6.6 347 32 754
Cs 0.004 0.088 0.013 0.011 0.030 0.014 0.016 0.002 0.011 0.91
Rb 0.27 3.14 1.15 0.90 0.13 0.06 0.26 0.11 0.10

Sr 86.3 97.7 50.1 32.0 15.2 33.0 146 2.4 3.7 1279
Nb 12.2 9.2 1.4 1.4 0.41 0.98 0.72 0.35 0.21

Ta 1.31 0.95 0.108 0.047 0.010 0.045 0.009 0.023 0.012 4.6
Zr 105 91 15 5.5 4.0 8.0 8.7 2.1 1.8

Hf 1.50 1.59 0.487 0.128 0.108 0.243 0.217 0.037 0.044 8.1
La 2.59 2.99 1.30 0.77 1.50 2.06 10.4 0.134% 0.2027 53.4
Ce 7.51% 8.94 4.09* 2.53 2.17 4.86 22.1 0.28 0.38 111
Pr 0.680 0.430 0.163 0.541 2.21 0.032 0.051

Nd 5.65% 6.78* 3.50* 2.32 0.617 1.99* 7.36 0.128 0.193 51.2
Sm 1.62 2.05 1.09 0.637 0.144 0.550 0.859 0.031% 0.045% 10.5
Eu 0.539 0.679 0.404 0.200 0.053% 0.191 0.2337 0.0117 0.0187 3.40
Gd 1.00 0.523 0.198 0.656 0.574 0.038

Tb 0.189 0.252 0.155% 0.079 0.035 0.119* 0.099 - - 1.20
Dy 0.829 1.083 0.770 0.379 0.238 0.788 0.508 0.046

Ho 0.129 0.163 0.131 0.062 0.050 0.171 0.104 0.010

Er 0.272 0.319 0.288 0.154 0.148 0.495 0.281 0.026

Yb 0.205 0.213 0.165 0.144 0.181 0.488 0.273% 0.031 1.46
Lu 0.028 0.027 0.022* 0.023 0.031 0.073* 0.043 - - 0.178
U 0.051 0.111 0.069 0.043 0.061 0.102 0.396 - 0.006* 2.01
Th 0.137 0.114 0.036 0.032 0.310 0.370* 1.94 0.071 0.050 7.39
Pb 0.125 0.119 0.047 0.035 0.172 0.096 0.148 0.105 0.041

Ca/Al 3.14 4.21 2.58 1.48 0.96 0.77 1.84 1.45 0.94

Na/Al 0.55 0.80 0.29 0.23 0.12 0.15 0.24 0.14 0.16

Nb/Ta 9.3 9.7 12.6 29.9 41.2 21.8 79.9 15.0 17.1

Sm/Hf 1.08 1.29 2.23 4.98 1.34 2.26 3.96 0.83 1.02

Zr/Hf 69.7 57.5 31.3 43.2 37.1 329 40.2 55.5 40.9

Ti/Eu 2539 1007 5360 2638 8031 4802 2575 18530 11657

assumed to have equilibrated at pressures ranging from
1 to 2 GPa. This is consistent with minimum pressures
of ~1.9 GPa for Pali-Aike garnet peridotite xenoliths
(Stern et al. 1999).

Major element chemistry

Whole-rock major element analyses of Lote 17 perido-
tite xenoliths are given in Table 5. Lote 17 xenoliths
form negative correlations on plots of Al,O;, CaO,
Na,0, and TiO, versus MgO (Fig. 3) that are similar to
those for spinel peridotites on a global basis (Maalee

and Aoki 1977; McDonough 1990). The negative trends
in Fig. 3 indicate variable extents of melt depletion of
fertile mantle (McDonough 1990). Group | Lote 17
xenoliths are more fertile with respect to basaltic com-
ponents (e.g., high Al,O3, CaO, Na,O, TiO,, and K,O)
than Group 2 xenoliths, consistent with their higher
modal abundance of clinopyroxene and minor abun-
dances of amphibole + phlogopite + apatite. Carbon-
atite metasomatism is recognized by anomalously high
Ca/Al (3.1-4.2) and Na/Al (0.55-0.80) in Group la xe-
noliths compared to the global average (1.28 and 0.15,
respectively; McDonough 1990) and are similar in major
element composition to carbonatite metasomatized
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Fig. 3a—d Variation diagram for whole-rock CaO a, Al,O3 b, Na,O c,
and TiO, d (Wt%) plotted against MgO (wt%) for Lote 17 peridotite
xenoliths. Fields and symbols as in Fig. 2. Open white area shows
global trend from Maalge and Aoki (1977) and McDonough (1990).
Large cross is the global median spinel peridotite xenolith composition
of McDonough (1990). Large, open arrows indicate trends predicted
for carbonatite metasomatism (in a, b, and ¢) (e.g., Yaxley et al. 1991).
Thin, black arrows in d indicate trend for Fe-Ti basaltic melt
metasomatism (e.g., Menzies et al. 1987)

xenoliths from southeast Australia (Yaxley et al. 1991).
Overall, Groups 1b and 1c xenoliths are similar to global
average spinel peridotite compositions in terms of major
elements. One exception is sample GBX-4 from Group
1b. This sample has moderately high Ca/Al (2.58) and
Na/Al (0.29), but also has high whole-rock FeO (9.3%)
and TiO, (0.36%) concentrations (Fig. 3 and Table 5)
and has amphibole with the highest TiO, concentration
(4.27%, Table 3). These characteristics are consistent
with an earlier basaltic melt metasomatism (e.g., Men-
zies et al. 1987) that was overprinted by more recent
carbonatite metasomatism.

Trace element chemistry

Trace element analyses are given in Tables 5 and 6 and
illustrated in Figs. 4 and 5. All Lote 17 peridotite xe-
noliths are LILE- and LREE-enriched, but Group 1

MgO  (wt%)

xenoliths have significantly higher incompatible trace
element concentrations than Group 2 xenoliths.

Group la xenoliths are distinguished by slight LREE-
depleted ((La/Sm), = 0.9-1) and very steep MREE to
HREE [(Gd/YDb), = 6-8] patterns (Fig. 4a). HREE are
~0.8x chondrite. They have large positive Nb, Ta, Zr,
and Hf, and negative Th and Ti anomalies relative to
LILE and LREE (Fig. 5a) that lead to low Sm/Hf
(~1.2) and Ti/Eu (1000-2500) ratios. HFSE are also
fractionated from each other as Nb/Ta (~9.5) and Zr/Hf
(57-70) ratios are significantly lower and higher, re-
spectively, than chondritic ratios (Nb/Ta = 17.6; Zr/
Hf = 36; McDonough 1990). High concentrations of
HFSE reflects the high modal abundance of clinopy-
roxene, amphibole, and phlogopite. High Ba and Rb in
GBX-6 reflects modal phlogopite. Trace element ana-
lyses of clinopyroxene and phlogopite separates from
GBX-6 show that clinopyroxene can account for most of
the REE, Sr, Ti, and Hf concentration in the whole rock
(Table 6 and Fig. 6a). Mass balance deficiencies in Ba,
Rb, Nb, and Ta are probably an artifact of small errors
in the least squares calculation for modal phlogopite or
possibly due to presence of undetectably thin reaction
coatings of Ti-oxides and phlogopite on spinel or an
enriched grain boundary component (e.g., Bodinier
et al. 1996; Bedini and Bodinier 1999). Significant mass
balance deficiencies in Th and U could be explained by
undetected accessory apatite or an enriched grain
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Fig. 4a—d Leedy chondrite normalized REE patterns for whole-rock
Lote 17 peridotite xenoliths: a Group la wehrlites, b Group 1b
amphibole—phlogopite lherzolites, ¢ Group lc amphibole peridotites,
and d Group 2 anhydrous harzburgites. Also shown is the range of
mantle compositions (light gray pattern) suitable for the Neogene
Patagonian plateau lavas, based on trace element modeling of Gorring
and Kay (2000). Normalization factors are from Masuda et al. (1973)
and are La (0.378), Ce (0.978), Nd (0.716), Sm (0.23), Eu (0.0866), Gd
(0.311), Tb (0.0589), Dy (0.385), Ho (0.0858), Er (0.251), Yb (0.249),
Lu (0.0387). Factor for Ho was extrapolated

boundary component (e.g., O’Reilly et al. 1991; Bedini
and Bodinier 1999).

Group 1b xenoliths have concave downward LREE
[(La/Sm),~0.75] and moderately steep HREE [(Gd/
YD), = 2.54] patterns (Fig. 4b). HREE are ~0.5x
chondrite. They also have negative Th and small positive
P anomalies (Fig. 5¢). GBX-4 has near chondritic ratios
for Zr/Hf (31) and Nb/Ta (12.6), slightly subchondritic
Ti/Eu (5360) ratios, and small depletions in Zr, Hf, and
Ti relative to LILE and REE. In contrast, GBX-7 has
large negative Zr, Hf, and Ti anomalies that lead to high
Sm/Hf (5) and low Ti/Eu (2640) ratios. Modal phlogo-
pite and amphibole in Group 1b xenoliths explains high
concentrations of Rb, Ba, and K. Apatite was not
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identified, but 0.2% modal apatite is calculated to
account for ~0.07% P,0s5 (see Table 1).

Group lc xenoliths are easily recognized by their
pronounced concave upward LREE pattern with steep
LREE [(La/Sm), = 3-6] and flat MREE to HREE [(Gd/
Yb), = 1-1.5] (Fig. 4c). HREE are 0.7-2x chondrites.
They also have large negative Rb, Ba, Nb, Ta, Zr, and
Hf anomalies and positive Th and U anomalies (Fig. 5¢)
that result in high Sm/Hf (2-4) and Nb/Ta (21-80), and
low Nb/La (0.07-0.5). Near-chondritic ratios for Zr/Hf
(~38) and variably negative Ti anomalies lead to Ti/Eu
ratios from ~2600 to ~4800. Figure 6b shows that
clinopyroxene separates from GBX-10 can account for
100% of the REE, Sr, and Hf, and ~75% of Th, U, Ta,
Zr, and Ti in the whole rock. The high Th, U, and LREE
contents of the cpx separates is likely due to micro-in-
clusions of apatite that were not identified when hand-
picked. The small amount of amphibole (~3%) and
apatite (~0.3) in GBX-10 can account for mass balance
deficiencies in Rb, Ba, K, Nb, Ta, Zr, and Ti (e.g.,
O’Reilly et al. 1991; Rudnick et al. 1993; Ionov and
Hofmann 1995).

Group 2 harzburgite xenoliths (GBX-3 and GBX-12)
have LREE-enriched patterns [(La/Yb), = 3-5] at very
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Fig. 5a—d Primitive mantle normalized trace element patterns for
whole-rock Lote 17 peridotite xenoliths (a, ¢, e, g) compared to other
carbonatite metasomatized xenoliths (b, d, ) from southeast Australia
(O’Reilly and Griffin 1988; Yaxley et al. 1991), Sahara Basin (Dautria
et al. 1992), and northern Tanzania (Rudnick et al. 1993). Also
plotted for comparison h are arc fluid/melt metasomatized spinel
peridotites from the Luzon arc (Maury et al. 1992). Symbols for Lote
17 xenoliths as in Fig. 4. Also shown is the range of mantle
compositions (/ight gray) suitable for the Neogene Patagonian plateau
lavas (Gorring and Kay 2000). All abundances normalized to the
primitive mantle composition of Sun and McDonough (1989). Dashed
vertical lines are for highlighting HFSE behavior

low concentrations of 0.1-1x chondrite (Figs. 4d and
5g). Ba, Th, and Ta are enriched relative to LREE, and
HREE are very depleted at 0.1-0.2x chondrite.

Sr—Nd isotopes

Sr and Nd isotope data for Lote 17 xenoliths and the
host basanite are presented in Table 7 and plotted in
Fig. 7. Lote 17 xenoliths have ’Sr/%°Sr ratios that range
from 0.70294 to 0.70342 and &ng values from +3.0 to
+6.6 for whole-rock and mineral separates. Isotopic
data for Pali-Aike peridotite xenoliths and Neogene

Carbonatite metasomatized xenoliths
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Patagonian plateau lavas are shown as fields on Fig. 7
for comparison. Group la xenolith GBX-6 has the
lowest whole-rock 3’Sr/%¢Sr ratio (0.70294) and a rela-
tively high eng (+6.2) value. Clinopyroxene separates
from GBX-6 also have low ¥’Sr/*®Sr ratios (0.70297) and
the highest eng (+6.3). Phlogopite separates from GBX-
6 have a slightly higher ®’Sr/*Sr ratio (0.70315) and
considerably lower eng (+3.4). Except for sample GBX-
2 (YSr/*®Sr = 0.70304), samples from Groups 1b, Ic,
and GBX-17 all have significantly higher whole rock
87Sr/86Sr (~0.7034) and lower &ng (~+3.1) ratios than
Group la xenoliths.

The highly variable and enriched trace element sig-
natures of Lote 17 xenoliths coupled with their isotop-
ically “depleted” signatures suggests that metasomatism
was a relatively recent event. The low %’Sr/*Sr ratio of
GBX-6 phlogopite places some constraints on the timing
of carbonatite metasomatism. An %’Rb/*'Sr ratio of
1.61, and assuming a MORB-like initial *’Sr/*®Sr ratio
of ~0.7026, yields a maximum model age of ~25 Ma for
crystallization of the phlogopite in GBX-6. We suggest
that carbonatite metasomatism beneath Lote 17 was
associated with extensive Neogene plateau magmatism
in this region. Similarly, the timing of lithospheric
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metasomatism in the Pali-Aike region is thought to as-
sociated with young (~1 Ma) plateau magmatism (Stern
et al. 1999). However, unlike the Pali—Aike locality, the
metasomatic fluids that affected the Lote 17 xenoliths
were not cogenetic with the host lava (Fig. 7). As with
most Patagonian post-plateau lavas, the host lava lacks
chemical evidence for crustal contamination (Gorring
and Kay 2000); thus the mantle source of the host lava
was more isotopically ‘“‘enriched” than that of the
metasomatic component in the xenoliths.

Discussion and implications
Styles of lithospheric metasomatism

All Lote 17 peridotite xenoliths show evidence of meta-
somatic enrichment of an initially melt-depleted litho-
sphere. The overall pattern of metasomatic enrichment is
a function of (1) modal mineralogy, (2) composition of
the metasomatic fluids (e.g., carbonatitic, adakitic, and
basaltic melts; H,O- or CO,-rich fluids), and (3) whether
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metasomatism occurs by closed-system addition (e.g.,
bulk mixing) or by open-system exchange (e.g., high
melt/rock ratios; see Rudnick et al. 1993). The preser-
vation of metasomatic reactions (e.g., reacted spinels,
opx- and spinel-poor wehrlites with Na-rich cpx), high
Ca/Al, Na/Al, La/Yb, Nb/La, Zr/Hf, and low Ti/Eu
ratios, extreme fractionation of HFSE from LREE and
LILE, and accessory amphibole, phlogopite, and apatite
provide strong evidence for carbonatite-dominated me-
tasomatism. In the next section, we discuss the four
metasomatic styles displayed by the Lote 17 xenolith
groups and give our preferred interpretations.

Group la wehrlites

The high Ca/Aland Zr/Hf and low Ti/Eu ratios like
those in Lote 17 Group la wehrlites are commonly in-
terpreted to result from carbonatite metasomatism
(Yaxley et al. 1991; Dautria et al. 1992; Rudnick et al.
1993). Trace element patterns of Group la also show a
striking similarity to carbonatite metasomatized
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Table 6 Trace element (ppm) concentrations of mineral separates
from Lote 17 xenoliths. Symbols as in Table 5

Sample GBX-10 GBX-6 Phlogo
Phase Cpx Cpx

Sc 67 43 2.7
Cr 9690 13843 11278

Ni 367 366 1554

Co 23 21 55

Y 9.67 12.2 0.40
Ba 2.7 1.3 1117

Cs 0.029 0.049 1.67
Rb 0.35 0.11 56.2

Sr 497* 396* 101

Nb 0.60 3.0 232

Ta 0.026 0.647 16.3

Zr 24 236 30

Hf 0.822 5.41 0.381
La 41.3 10.3 0.739%
Ce 82.6* 29.5% 0.631
Pr 8.6 5.3 0.158
Nd 27.0* 30.0* 0.653
Sm 3.24 7.66 0.1217
Eu 0.793 2.24 0.166F
Gd 2.15 6.62 0.104
Tb 0.285 1.00* 0.013
Dy 1.58 4.36 0.074
Ho 0.367 0.644 0.012
Er 1.06 1.20 0.031
Yb 1.05 0.637 0.030
Lu 0.147* 0.069* 0.005
U 1.17% 0.091 0.048*
Th 5.84% 0.319 0.018
Pb 0.472 0.418 0.559

amphibole—phlogopite wehrlites and lherzolites from
southeast Australia (O’Reilly and Griffin 1988; Yaxley
et al. 1991) and the Sahara Basin (Dautria et al. 1992)
(Fig. 5a, b). Similarities include LREE enrichment with
slightly concave downward REE pattern, positive Nb—
Ta anomalies, negative Ti anomalies, and high Zr/Hf
ratios. Like the Lote 17 Group la wehrlites, southeast
Australian amphibole—phlogopite-bearing lherzolites
have low Nb/Ta ratios and lack negative Zr and Hf
anomalies (Fig. 5a, b).

Group la wehrlites are interpreted as the result of
clinopyroxene, amphibole, and/or phlogopite precipita-
tion during open-system carbonatite metasomatism. The
low Nb/Ta ratios are best explained by precipitation of
phlogopite or amphibole from a carbonatite melt (e.g.,
Ionov and Hofmann 1995). This is supported by ex-
perimental work that suggests Ta has higher K *mP"
values than for Nb in equilibrium with carbonatitic
liquids (Green et al. 1992; Sweeney et al. 1992). Evi-
dence for open-system carbonatite metasomatism also
includes higher Ti/Eu at a given Ca/Al than would be
expected for bulk mixing of carbonatitic melt with a
depleted harzburgite (Fig. 8; Rudnick et al. 1993). The
anomalously high Ti/Eu reflects open-system partition-
ing of Ti between carbonatite melt and newly formed
clinopyroxene and amphibole, as these phases have a
higher K4 values for Ti than for Eu (Rudnick et al. 1993
and references therein). Open-system metasomatism
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Fig. 6a,b Mass balance results for a Group la sample GBX-6, and
b Group lc sample GBX-10 showing the net deficit or excess (%).
Mass balance is calculated from modal abundance in Table 1 and
trace element data for whole-rocks and mineral separates given in
Tables 5 and 6. All other phases are assumed to have zero
concentration. Significant net deficits for Rb, Ba, Nb, Ta, U, Th,
and Zr in GBX-6 reflects two factors (1) small errors in the least
square analysis for phlogopite; (2) modal glass + apatite (not
identified). Large net deficits for Rb, Ba, K, Nb, Ta, and Ti in
GBX-10 reflects modal amphibole+ glass. The fairly good mass
balance for Th, U, and REE in GBX-10 suggests that the cpx
separates contained apatite inclusions

may also explain the high Zr/Hf and positive Zr
anomalies (Fig. 5a) in Group la wehrlites. Zr has higher
K and K&™" values than KYRFE in equilibrium with
carbonatite melt (Green et al. 1992; Sweeney et al.
1992), thus precipitation of clinopyroxene and amphi-
bole could generate positive Zr anomalies. The high Zr/
Hf ratios suggests that the metasomatizing carbonatite
melt had even higher Zr/Hf because K™ and Kﬁmph are
likely to be higher for Hf than for Zr in equilibrium with
carbonatite melt (Hamilton et al. 1989).

Group 1b lherzolites

Group 1b lherzolites have trace element characteristics
that are transitional between Groups la and lc. Strongly
concave downward LREE patterns and high Rb, Ba, K,
U, and P contents reflect modal amphibole + phlogo-
pite = apatite. Sample GBX-7 has low Ti/Eu and high
Nb/Ta ratios, and sample GBX-4 has high Ca/Al ratios.
These characteristics are consistent with carbonatite
metasomatism (Yaxley et al. 1991; Rudnick et al. 1993).
Group 1b lherzolites also have trace element patterns
similar to amphibole—phlogopite lherzolite xenoliths
from the Sahara Basin (Fig. 5d). However, unlike
other carbonatite metasomatized xenoliths, GBX-7 has



Table 7 Sr—Nd isotopic compositions for Lote 17 xenoliths,
minerals, and host lava. wr Whole-rock; ¢px clinopyroxene
separate; phlog phlogopite separate. Sr—Nd isotopes by thermal
ionization mass spectrometry at Cornell. Isotope ratios corrected
for mass fractionation assuming ®°Sr/®8Sr = 0.1194 and
M46Nd/"*Nd = 0.7219. Average measured value for NBS987 Sr
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standard was ¥’Sr/%°Sr = 0.710237 + 23 (20) from April 1996 to
August 1997 based on 28 analyses. The LaJolla Nd standard was
SNd/'"*Nd = 0.511864 + 14 (20) based on 10 analyses and
0.511817 + 12 (26). Ames Nd standard was '*Nd/'*Nd =
0.512131 £+ 14 (20) based on 10 analyses. e&ng values calculated
assuming LalJolla eng = —15.15 (Wasserburg et al. 1981)

Type Sample Phase Rb (ppm) Sr (ppm) 3Rb/*Sr ¥7Sr/*Sr Nd (ppm) Sm (ppm) '*’Sm/'**Nd '43Nd/144Nd ENd
Group la GBX-6 Wr 3.14 97.7 0.0930 0.70294 6.78 2.05 0.1834 0.512958 +6.2
Cpx 0.105 396 0.0008 0.70297  22.1 6.2 0.1701 0.512981 +6.6
Phlog 56.2 101 1.6103 0.70315 0.653 0.121 0.1124 0.512816 +34
Group 1b  GBX-4 Wr 1.15 50.1 0.0664 0.70342 3.5 1.09 0.1889 0.512805 +3.2
Group Ic  GBX-2 Wr 0.060 33.0 0.0053 0.70305
GBX-10 Wr 0.260 146 0.0052 0.70339 7.36 0.859 0.0708 0.512793 +3.0
Cpx 0.347 497 0.0020 0.70338  20.5 2.36 0.0698 0.512805 +3.2
Host lava GB-1 Wr 1279 0.70380  51.2 10.5 0.1244 0.512726 +1.7

chondritic Ca/Al and Zr/Hf ratios and sample GBX-4
has near chondritic Zr/Hf and Ti/Eu ratios. These trace
element signatures and the relatively high-Ti amphibole
and phlogopite in Group 1b xenoliths (Table 3) indicate
an older, Fe-Ti-rich, basaltic melt metasomatic com-
ponent (e.g., Menzies et al. 1987) that was partially
overprinted by more recent carbonatite metasomatism.

Group 1c lherzolites and websterite
The trace element characteristics of Group lc xenoliths
are consistent with the bulk addition of a small amount

of HFSE-depleted, carbonatite melt (< 0.2%; Fig. 8) and
the precipitation of apatite in the case of sample GBX-
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Fig. 7 Plot of exg versus ’Sr/*Sr for Estancia Lote 17 and Pali-Aike
peridotite xenoliths (Stern et al. 1999) showing the relatively depleted
isotopic signature of the southern Patagonian lithosphere compared to
most Neogene Patagonian plateau lavas (Hawkesworth et al. 1979;
Ramos and Kay 1992; Gorring and Kay 2000). Pali-Aike lava data
from Stern et al. (1990). “Primitive mantle” composition (large cross)
is from Zindler and Hart (1986). MORB data is compiled from the
literature

10. We envision metasomatism of Group lc xenoliths by
a carbonatite melt that had previously precipitated
phlogopite + amphibole + clinopyroxene in associa-
tion with Groups la and 1b. Thus, the fractionated
carbonatite melt would be strongly depleted in all
HFSE, Rb, and Ba and enriched in Th, U, and LREE,
had high Nb/Ta ratios, and may have been saturated
with respect to apatite. Group lc xenoliths also have
lower Zr/Hf and Ca/Al (both near chondritic), and
much higher Ti/Eu ratios than in Group la xenoliths
that indicate a much smaller carbonatitic component
(Fig. 8). The extreme enrichment in Th, U, and LREE,
and depletion in HFSE is characteristic of apatite-
bearing lherzolite and wehrlite xenoliths from southeast
Australia (O’Reilly and Griffin 1988; Yaxley et al. 1991)
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Fig. 8 Plot of Ca/Al versus Ti/Eu (after Rudnick et al. 1993) for
Estancia Lote 17 peridotite xenoliths showing the overall similarity to
other carbonatite metasomatized xenoliths from southeast Australia
(gray field, Yaxley et al. 1991), northern Tanzania (stippled field,
Rudnick et al. 1993), and the Sahara Basin (diagonal ruled field,
Dautria et al. 1992). Bulk mixing curve is between average Ca-
carbonatite (Wooley and Kempe 1989) and pyrolitic harzburgite
(Harz.; after Rudnick et al. 1993). Numbered ticks on bulk mixing
curve indicates percent of carbonatite in the mixture. Chondritic Ca/
Al and Ti/Eu ratios from McDonough (1990)
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and northern Tanzania (Rudnick et al. 1993), and am-
phibole harzburgites and lherzolites from the Sahara
Basin (Dautria et al. 1992; Fig. 5e, f). Other possible
interpretations include metasomatism by slab-derived,
H,O-rich fluids or arc-related silicate melts (e.g., basalts,
adakites). These metasomatic agents would be LREE-
enriched and HFSE-depleted, but would have difficulty
explaining low LILE contents in Group lc xenoliths.
This is illustrated by comparing the pattern of metaso-
matized spinel lherzolites (both anhydrous and hydrous)
from the Luzon arc (Maury et al. 1992) with Group 1c
xenoliths (Fig. Se, h).

Group 2 — anhydrous harzburgites

The anhydrous Group 2 harzburgite xenoliths (GBX-3
and GBX-12) have pronounced enrichments of LILE,
HFSE, and LREE that are superimposed on an other-
wise depleted chemistry and mineralogy. Thus, Group 2
harzburgites fit the definition of cryptic metasomatism
(Dawson 1984). Cryptic metasomatism by H,O- or CO,-
rich fluids enriched in LILE and LREE (e.g., Kempton
1987 and references therein), coupled with intrinsic
positive HFSE anomalies in olivine and orthopyroxene
(Rampone et al. 1991; McDonough et al. 1992; Sun and
Kerrich 1995) could explain the data. Metasomatic re-
actions that affected the Group 1 xenoliths could have
released CO»,-rich fluids (Green and Wallace 1988) to
modify Group 2 harzburgites.

Model for metasomatism in the Patagonian
lithosphere

We envision a model similar to those developed for the
Saharan Basin (Dautria et al. 1992) and the West Eifel
(Thibault et al. 1992) xenoliths, where thermal events
caused partial melting of carbonated and/or hydrated
components stored in the basal continental lithosphere.
The model requires an initial melt-depleted, refractory
harzburgitic or lherzolitic mantle beneath Patagonia
(e.g., Stern et al. 1999) that has been recently metaso-
matized. The low %’Sr/*°Sr ratios of Group la wehrlites
indicate that the carbonatite metasomatic component
was asthenosphere-derived and probably stored in the
lithosphere during the early Neogene (~25 Ma). As-
thenospheric upwelling associated with late Miocene
main-plateau magmatism may have triggered partial
melting of the stored carbonatite components and con-
verted some of the mantle lithosphere into a heteroge-
neous assemblage of fertile, hydrous peridotites
represented by Lote 17 Group 1 xenoliths. Most of the
mantle lithosphere probably remains essentially as in-
fertile, anhydrous peridotites with minor cryptic me-
tasomatism similar to Group 2 xenoliths.

According to Wallace and Green (1988), small vol-
umes of carbonatite melt are generated in equilibrium
with amphibole lherzolite under CO, + H,O-undersat-

urated conditions at depths between 60 and 90 km and
temperatures of 950 to 1080 °C. Lithospheric thickness
is thought to have been approximately ~70 km at this
time, based on inferred melting depths of the Neogene
plateau lavas (Gorring and Kay 2000). Therefore, LILE-,
LREE-, Nb-enriched, and Ti-depleted carbonatite melts
could easily have been generated and percolated upward
through the lithosphere. Upon reaching ~60 km depth,
reaction of carbonatite melt with refractory anhydrous
harzburgite or lherzolite would produce amphibole- or
phlogopite-bearing wehrlites and liberate CO,-rich fluids
(Wallace and Green 1988; Yaxley et al. 1991; Yaxley
and Green 1996). In Patagonia, this process may have
been continually fed by open-system addition of fresh
carbonatite melts during extensive late Miocene main-
plateau magmatism, thus producing the Group la am-
phibole and phlogopite wehrlites. Precipitation of
phlogopite and amphibole to form Group la wehrlites,
coupled with chromatographic effects during percolation
through the lithosphere (e.g., Navon and Stolper 1987;
Kelemen et al. 1990; Hauri and Hart 1994), would de-
plete the metasomatizing fluids in HFSE, Rb, and Ba.
This would produce the systematic changes observed
from Group la wehrlites to Group 1b amphibole—
phlogopite lherzolites, and lead to the HFSE-depleted,
LREE-, Th-, and U-enriched, Group lc¢ amphibole—
apatite lherzolites. CO,-rich fluids liberated from car-
bonatite—peridotite reactions may have caused cryptic
metasomatism in the most infertile harzburgites and
lherzolites.

Mantle metasomatism and Neogene plateau
magma petrogenesis

The extreme chemical heterogeneity and the depleted
Sr—Nd isotopic composition of Lote 17 xenoliths suggest
that metasomatic components stored in the mantle
lithosphere are neither the primary source nor an ap-
propriate isotopically enriched contaminant for most
Neogene Patagonian plateau lavas. This strongly con-
trasts with the close correspondence of regional isotopic
and geochemical compositions of Cenozoic basalts and
their entrained lithospheric mantle xenoliths from east-
ern Australia (e.g., O’Reilly and Zhang 1995) and east-
ern China (e.g., Tatsumoto et al. 1992). This difference is
thought to reflect a larger contribution from OIB-like
asthenospheric sources in the Patagonian slab window
setting, the interaction with a younger, more ‘“‘depleted”
Patagonian continental lithosphere, and crustal con-
tamination (Stern et al. 1990; Zartman et al. 1991;
Gorring and Kay 2000).

Trace element evidence argues against carbonatite
metasomatized lithosphere as the main source for Neo-
gene Patagonian plateau lavas. First, primary mantle
melts should have ratios of highly incompatible trace
elements that reflect the mantle source composition
provided that the bulk distribution coefficient is less than
the melt fraction. Group 1 Lote 17 xenoliths have highly



variable incompatible trace element ratios that are out-
side the relatively narrow range displayed by Patagonian
plateau lavas (Gorring and Kay 2000) and those of
MORB and OIB (Sun and McDonough 1989). Second,
Group 1 xenoliths are significantly more enriched in
LILE and LREE and depleted in HREE compared to
the inferred source of Patagonian plateau lavas based on
trace element modeling (see Figs. 4 and 5; and Gorring
and Kay 2000). However, the lithospheric mantle may
represent a source for additional trace element-enriched
components that could modify asthenospheric melts as
they pass through the lithosphere.

Based on data presented here and on data for Pali—
Aike peridotite xenoliths (Stern et al. 1989, 1999), there
is little direct evidence for isotopically enriched com-
ponents in the Patagonian backarc lithosphere from
either slab-derived components or from ancient enrich-
ment events (Fig. 8). Enriched and heterogeneous iso-
tope ratios (*’Sr/*¢Sr = 0.7036-0.7047; eng = + 5-0) for
most Late Miocene main-plateau lavas can be explained
by crustal contamination of asthenosphere-derived
melts (Gorring and Kay 2000). However, most of the
younger, Pliocene post-plateau lavas have relatively
homogeneous isotopic compositions  (¥’Sr/*®Sr=
~0.7038; eng~+12) and lack chemical evidence for
crustal contamination (Ramos and Kay 1992; Gorring
and Kay 2000). Thus, the source of their OIB-like iso-
topic signatures must reside in deeper, unsampled levels
of the lithosphere or more likely in the asthenosphere.
The only indirect evidence for enriched lithospheric
components in this region comes from Pliocene main-
plateau lavas from the northeastern sector of the Des-
eado Massif (Gorring and Kay 2000) and Pleistocene
post-plateau lavas from the Meseta del Lago Buenos
Aires (Hawkesworth et al. 1979; Stern et al. 1990; Ra-
mos and Kay 1992). These lavas lack evidence for
crustal contamination and have *’Sr/**Sr = 0.7046-
0.7048; eng = +1-0.

Significance of carbonatite metasomatism
in Patagonia

The discovery of carbonatite metasomatism in southern
Patagonia is significant because it occurs where extensive
Neogene intraplate plateau magmas erupted in response
to ridge—trench collision and the opening of astheno-
spheric slab windows between the subducting Nazca and
Antarctic Plates (Gorring et al. 1997; Gorring and Kay
2000). Carbonatite metasomatism in this region is un-
expected because young oceanic crust of the Nazca Plate
was subducting during the mid-Miocene; thus adakitic
metasomatism might be expected to dominate. In fact,
some of the best examples of adakite lavas have erupted
in the southern Patagonian backarc at Cerro Pampa (see
Fig. 1) during this time (Kay et al. 1993). Furthermore,
adakite metasomatized xenoliths have been reported
farther south in the near Patagonian backarc (<75 km
behind the arc) at Cerro del Fraile (Kilian 1995), where
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young oceanic crust of the Antarctic Plate is currently
being subducted (see Fig. 1). In this same region, Qua-
ternary arc lavas of the Austral Volcanic Zone (AVZ)
also have strong adakitic signatures (Stern and Kilian
1996). The data presented here do not lend strong sup-
port for the preservation of adakitic metasomatism in the
far backarc of southern Patagonia. Stern et al. (1999) has
also documented a lack of adakitic metasomatism in
peridotite xenoliths from Pali-Aike (>200 km from the
arc). We interpret this to reflect nearly complete over-
printing of any prior adakite metasomatism by carbon-
atitic fluids/melts triggered by vigorous heating of the
lithospheric mantle by upwelling slab window astheno-
sphere during Neogene plateau magmatism.

Carbonatite metasomatism has affected the southern
Kamchatkan backarc mantle lithosphere at a distance of
~100 km behind the arc where relatively old oceanic
lithosphere (~100 Ma) is subducting at present (Ke-
pezhinskas and Defant 1996). They attribute this to
melting of subducted carbonated basalt or carbonate-
rich sediment. A similar style of carbonatite metaso-
matism was previously documented by Mclnnes and
Cameron (1994) in subarc mantle xenoliths from the
Tabar-Lihir—-Tanga—Feni arc, Papua New Guinea.
Here, the metasomatizing fluid is a SO,—CO,—H,O-rich
phonolitic melt. The low Ca/Al ratio (~1) of this melt
and reactions that convert harzburgite or lherzolite to
olivine-poor, phlogopite = amphibole websterite or
clinopyroxenite (McInnes and Cameron 1994) make it
difficult to explain features of carbonatite metasomatism
like those observed in Tanzanian, southeast Australian,
or the Lote 17 xenoliths. This suggests that two types of
carbonatite metasomatism may occur in active backarc
regions. The first type is a SO,~CO,—H,O-rich phono-
litic melt derived from partial melting of carbonated
oceanic crust or sediment in normal arc settings (e.g.,
Mclnnes and Cameron 1994; Kepezhinskas and Defant
1996). The second type is a CO,-rich, sodic—dolomitic
carbonatite melt derived from the asthenosphere or the
continental lithosphere that occurs in intraplate (e.g.,
Hauri et al. 1993; Rudnick et al. 1993) and slab window
settings, like southern Patagonia.

Conclusions

Major and trace element whole-rock and mineral sepa-
rate data for spinel peridotite xenoliths from the Es-
tancia Lote 17 locality indicate that carbonatite
metasomatism has affected the continental lithosphere
beneath southern Patagonia. Two distinct groups of
peridotite xenoliths have been identified. Group 1 con-
sists of a suite of fertile, hydrous peridotite xenoliths and
Group 2 consists of infertile, anhydrous harzburgite
xenoliths. Group 1 xenoliths are further divided into
three subgroups based on the style and extent of car-
bonatite metasomatism.

Metasomatism of Group la xenoliths occurred by the
open-system reaction of carbonatite melts with harz-
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burgite and lherzolite to produce amphibole- or phlogo-
pite-bearing wehrlites with high Ca/Al, Zr/Hf, Nb/La,
and low Ti/Eu ratios. Chromatographic fractionation
during transport through the lithosphere and precipita-
tion of HFSE-, Rb-, Ba-rich phlogopite and amphibole in
Group la xenoliths depleted the carbonatite melt in these
elements. This fractionated carbonatite melt ultimately
resulted in the metasomatism of Groups 1b and Ic hy-
drous xenoliths. Group 1b xenoliths have transitional
characteristics that are attributed to an older H,O-rich
fluid and/or basaltic melt metasomatic event(s) that was
overprinted by recent carbonatite metasomatism. Group
Ic amphibole—apatite lherzolite xenoliths have strong
HFSE depletion, strong enrichment of LREE, Th, and U,
and “reacted” spinels that all indicate bulk addition of
small amounts (~0.2%) of the fractionated carbonatite
melt that metasomatized Group la and 1b xenoliths.
COy-rich fluids liberated by metasomatic reactions that
generated Group 1 xenoliths may have caused the cryptic
metasomatism recognized in the Group 2 anhydrous
harzburgites. Timing of the carbonatite metasomatism is
constrained to be <25 Ma, based on the low *’Sr/**Sr and
high ¥’Rb/3°Sr ratios of Group la phlogopite separates.
Thus, extensive Neogene plateau magmatism associated
with the formation of asthenospheric slab windows is
inferred as the primary thermal event that triggered car-
bonatite metasomatism in the Patagonian lithosphere.
The lack of adakite metasomatism in the far Patagonian
backarc suggests efficient mixing of adakitic slab melts in
upwelling slab window asthenosphere or that adakite
metasomatism only occurs immediately beneath the
main-arc and near-backarc environment. Extremely
variable trace element ratios and the depleted Sr—Nd
isotope ratios (¥’Sr/*°Sr = 0.70294-0.70342; eng =
+3.0-6.6) of Lote 17 xenoliths indicate that the Pata-
gonian mantle lithosphere is an unlikely primary source
or an isotopically enriched contaminant for most
Neogene Patagonian plateau lavas.
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