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Abstract This paper is devoted to exploring approaches to understanding the stochastic 
characteristics of particle-fluid two-phase flow. By quantifying the forces dominating the particle 
motion and modelling the less important andlor unclear forces as random forces, a stochastic 
differential equation is proposed to describe the complex behavior of a particle motion. An 
exploratory simulation has shown satisfactory agreement with phase doppler particle analyzer 
(PDPA) measurements, which indicates that stochastic analysis is a potential approach for 
revealing the details of particle-fluid flow phenomena. 
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Particle-fluid two-phase flow exists extensively both in nature and in technological processes. 
Heterogeneity and randomness are the most prominent characteristics of the flow and they are also the 
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baffling problems in accurate hydrodynamic modelling and fundamental flow analysis. This presents 
difficulties not only in studying the physics of multiphase flow but also in determining the performance 
of engineering devices"'. The development of a variety of physical and chemical processes has to take a 
long way to come into industrialization; and in the scale-up of the multiphase flow processes still exists 
a very complicated task. The accurate modelling and the better understanding of the flow properties are 
urgently needed for improving existing processes and for designing optimal future processes involving 
applications of particle-fluid flows. 

At present, four different models, such as the empirical and semi-empirical model, the two-phase 
structural model, the pseudo-fluid model and the discrete particle (trajectory) model, are commonly 
utilized to conduct the modelling of particle-fluid flows. These models have both advantages and 
disadvantages. However, none of them seems to be able to describe the complex phenomena of the 
particle-fluid flows perfectly. The reason for this is that the existing models and the experiments carried 
out are too simple to grasp the multi-parameter coupling and randomness of multiphase flows. The lack 
of effective mathematic-physical methodology and microscopic measuring instruments can also create 
difficulties in developing quantitative models. The discrete particle model, which resembles physical 
phenomena of immersing particles into fluid directly, should provide precise and exhaustive description 
of most flows in engineering theoretically. However, existing models have deficiencies in considering 
all the forces affecting the motion of a particle. Simplified treatments of this problem unavoidably 
damage the validity of the models. Even for a very simple flow, the computation involved is again too 
expensive to achieve engineering purposes. 

In this note, a new modelling approach is proposed based on the stochastic analysis of the motion 
of particles. An exploratory simulation has shown a satisfactory agreement with PDPA measurements. 

1 Analysis 

The motion of a particle is a combined result of the various forces applied to it. The entire 
behavior of a moving particle should be grasped if every such force could be quantified. However, we 
only have a little knowledge of them. It has been quite hard to enumerate all forces influencing the 
motion of a particle up to now. Every force differs significantly in each flow. Therefore, it is impossible 
and also not necessary to compute all the force's effects quantitatively in a specific flow. The most 
feasible way is to treat each force according to its contributions to the particle motion, that is, to 
quantify the forces dominating the particle's motion and then to model the less important andlor 
presently unclear forces as random forces. In this way, a stochastic differential equation can be 
established to describe the complex motion of a particle. 

For example, in most publications the motion equation for a small, rigid sphere particle in an 
unbounded, uniform and incompressible turbulent gas flow is generally simplified as: 

where u8 and up are the velocities of the gas and particle respectively; zp is the particle relaxed 

time; g is acceleration of the gravity; t is the time. The subscripts g and p denote the gas and particle 
respectively. Obviously, many forces are neglected in eq. (1). The motion equation only presents the 
balance of the fluid drag and the particle gravity. This negligence is usually justifiable and offers 
convenience to most incompressible gas-particle systems since the particle density is much greater than 
the fluid density. But, eq. (1) is not adequate for a precise description of a detailed particle flow 
structure and, in some case, it may even lead to some incorrect results. 

Recent researches have shown that more additional terms should be added to the particle motion 
equation in order to reflect the influences of the neglected forces. This means the following stochastic 
differential equation should be used: 
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In principle, eq. (2) can be thought as a general particle motion equation, which should be more precise 
than eq. (1) in characterizing the complex particle motion if the stochastic parts could be determined. 
Evidently, the random force identification varies with particle-fluid systems and with flow conditions as 
well. 

2 Exemplification 
Particles suspended in a flowing fluid are simultaneously subject to various forces. The force 

analysis is certainly very complex. Consequently, the governing equation for the motion of a particle 
varies with each flow situation and the general expression of the random forces cannot be worked out at 
present. In order to test the feasibility of the above proposed approach, a relatively simple particle-fluid 
flow in a dilute circulating fluidized bed (CFB) riser is analyzed in this section and simulated in next 
section as an exemplification. In a dilute riser flow, gas drag force, gravity of particles and the Saffman 
force near the riser wall are thought to dominate the motion of particles. These forces contribute to the 
deterministic terms in the particle motion equation. Other forces, such as collisions among particles and 
fluid turbulence, which were not considered in the deterministic part, are the component parts of the 
stochastic term and can be integrally modelled by a random force F(t). Therefore, the following 
stochastic differential equations are established for a particle flowing in a CFB riser: 

Axially: 

Horizontally: 

for ~~ ' (30 ,  (3b) 

n P  
C ,  -d2  L/V, -vP1(vg -Vp)+ FY(t) for ~ ' 3 3 0 .  

4 , 2  

Laterally: 

where, U,  V and W are the axial velocity, horizontal velocity and lateral velocity respectively. CD is the 
24 gas drag coefficient, C,  = - 24 

for Re, < 1 ; CD = - (1 + 0.15 for 1 <Rep< 1000, where 
Re, Rep 

d p p , I ~ ,  - u p 1  
* 

- U - , Y + = - -  Y* - -, y is the distance from the particle to the riser wall. u* is 
s Y "g 

the friction velocity between the fluid and the riser wall, d p  is the particle diameter, p is its density, 

pg and v are the gas viscosities. F, ( t ) ,  F~ (t) and ~ , ( t )  are the three components of the random 
g 

force F(t). Since the Reynolds' number Rep is usually not very small in most CFB riser flows, eq. (3) 

tend to be strongly nonlinear. The solution of the corresponding nonlinear equations depend on the 
properties of nonlinear terms and random terms. 

In eq. (3), many forces, such as, the pressure gradient force, virtual mass force, Basset history 
integral, Faxen's modification to Stokes' drag force, are not quantitatively considered. These forces, of 
course, have made contributions to the randomness of the particle-flow. One common character of these 
forces is that the effect of each force is directly proportional to the square or cube of the particle size. A 
better understanding of these forces is helpful for determining the random force F(t). Furthermore, the 
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motion of a small particle is often modelled as a kind of Gaussian white noise process, such as 
Brownian motion in physics. Thus, as the first attempt, the random force F(t) in eq. ( 3 )  could be 
assumed as a modified Gaussian random process. 

where B - t  is the Gaussian white noise process. 
[:&: 1 

3 Simulation 
The governing eq. ( 3 )  can be solved by Monte Carlo method when the random force term F(t) is 

expressed as a modified white noise process. In order to compare the simulation results with the 
measurements by the phase doppler particle analyzer (PDPA)~~], the same CFB riser model was selected 
for simulation and for PDPA measurement. This riser model has a rectangular cross-section of 100 mm 
X 15 mm and a height of 2.4 m. The particles are glass beads with diameters ranging from 2 to 90 pm 
and the particle density p p  is 2 470 kglm3. The collision between particles and the CFE3 riser wall are 

modelled as sliding collisions according to Sommerfeld's re~earch'~]. 
Fig. 1 shows a comparison of axial pprticle velocity profiles gained by simulation and by the 

PDPA measurements. These are the typical flow characteristics in the fully developed zone of a CFB 

Fig. I. Comparison of axial particle velocity profiles between simulation and PDPA measurements. (a) Local average axial 
particle velocity; (b) local average axial particle rms velocity. -, Gas without particles; W ,  PDPA measured; b, simulated 
with random force: -----, simulated without random force. 

riser. W is the half width of the riser section. Fig. 2 
depicts the local particle mean diameter profiles 
acquired by the PDPA measurements and by 
simulation. The results obtained, when we ignor 
the random forces, are also illustrated in these two 
figures. It is manifest that the simulated profiles 
are much better when the random force is 
considered. These preliminary simulations 
demonstrate the validation of the present approach 
and the rationality of the presumed random force 
(eq. (4)). Fig. 3 is the comparison of the temporal 
evolution of the local axial particle velocities 
obtained by simulation and the PDPA 
measurements. The simulation and experiment fit 
each other quite well. Further work is still under 
the way. 

Fig. 2. Comparison of mean particle diameter profiles gained 
by simulation and by PDPA measurements. , PDPA 
measured; o, simulated with random force; ---, simulated 
without random force. 
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Fig. 3. Comparison of the temporal evolution of local axial particle velocities obtained by 
simulation (a) and by PDPA measurement (b). 
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