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Measurements of the growth d&’ center precursor and hole trap precursor densities versus
postoxidation anneal time show that both approach saturation values and that the approach to these
values is more rapid at higher temperatures. Our results, at least qualitatively, show that a kinetic
component can be added to a predictive thermodynamics-based model of oxide hole trapping. The
results also indicate quite strongly that a thermodynamics approach to oxide hole trap precursor
modeling is appropriate, i.e., the relevant defect densities approach thermodynamic equilibrium or
quasiequilibrium in reasonable times. ®98 American Institute of Physics.

[S0003-695(198)04141-2

The use of semiconductor technology-computer-aidedwas determined thatH;=1.5+0.1 eV }~3a result generally
design(TCAD) software tools to aid the design of integrated consistent with theoretical studig&:*® Note thataccurate
circuits promises significant potential savings in time andcalculation of the formation energy of a vacancy is difficult;
cost. Successful TCAD tools will require predictive physi- the results generally can only be considered estintates.
cally based models of the effects of process variations on  Equation(1) was calibrated using arrays of poly-capped
semiconductor device performance and reliability. In metalioxides which were annealed for 30 minNi at temperatures
oxide/semiconductor field-effect transistors, the dominanhigherthan the oxidation temperature and then rapidly pulled
semiconductor technology, performance, and reliability argrom the furnace. It was necessary to assume that the 30 min
known to be dominated by thin oxide films and their inter- anneal time would allowE’-precursor density to approach
faces with Si. Recently, we introduced a quantitative and{hermodynamic equilibrium and that the rapid pull step
process dependent model which allows prediction of radiawould quench this quasiequilibrium density Bf-precursors
tion induced oxide charge densityNq]) in thin film Si0,  jnto the SiQ. Although these kinetics assumptions proved
via computation of E'-precursor density:® This “E’ {5 work splendidly for the arrays of oxides in those
model” is based on the thermodynamic properties of vacansydies!3it was recognized that time at a given anneal tem-
cies in a solid and the widely corroborated observation thaberature would determine the MOS system’s approach to
E’ centers(O vacanciesdominate hole trapping in a wide equilibrium E’-precursor density. One would expect that the
variety of thermally grown Si@films.*~** (The structure of ~ approach to equilibrium would followdt)Y/2~1, whereD
theE’ center, shown as an inset in Fig. 2, consists of a holg¢s an activated diffusion coefficient, is time, andl, is a
trapped at an oxygen vacancy sit®ur earlier work demon-  characteristic length. In this study, we have begun to inves-
strated that temperature is a dominant process variable iﬁ’gate the kinetics ofE’-precursor formation during post-
determiningE’ and hole trap precursor density in “intrin- oyxigation high temperature anneals to provide initial esti-

sic” (clean SiO,. E' precursor density was found to be mates of the times required for MOS systems to approach
exponentially dependent on the final maximum process temgquilibrium at various temperatures.

perature The oxides used in this study were grown on 38-62
, . Q) cm (100 Si substrates to approximately 50 nm in dry O
[E" Jorecurso= A" eXp(— AH/KT), (D ats75°C. Following deposition of 180 nm of poly-Si, oxides

. ] ) . ) were then rapid thermal anneal€@TA) for either 3, 30,
where [E' Jorecursor IS the density ofE” precursorsAis @ — 500, or 300 s at either 950, 1050, or 1100 °C in dry N
constant A~5X 10'%cn for the oxides used in this inves- 5j1owed by a rapid pull(see Fig. 1 The rapid pull was

tigation. In general@ will depend weakly on oxide thickness e rformed in order to “quench” in the quasiequilibrium de-
and process parametgrsAHy is a formation enthalpyk is  fect density at the anneal temperattftelhe poly-Si layer
Boltzmann’s constant, an@l is the absolute temperature. It 55 removed before any measurements were taken. Electron
spin resonancéESR measurements dfE’| density were
¥Electronic mail: jconley@stt3.com determined on a state of the art Bruker Instruments ESP
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FIG. 3. Plot of [Ny] (symbols and theory as calculated from E)
30 sec (dashed lingsvs anneal time for oxides grown at 875 °C and subsequently
300 sec annealed al .o €qual to either 950, 1050, or 1100 °C.
FIG. 1. Oxide array used for Figs. 2 and 3. 1050, and 1100 °C annealed oxides. In Fig. 3, the density of

oxide hole traps[N.], versus anneal time is plotted for the

300E spectrometer by comparison with a calibrated “weaksame oxides.
pitch” spin standard. Absolute accuracy of spin densities is From Figs. 2 and 3, we note thail) At each anneal
estimated to be better than a factor of 2; relative accuracy i§ombination,[E'] is approximately equal t§Ny]. (Note
+10%. Oxide trapped charge densiti{,], was determined that the extremely close agreement between absolute densi-
from the midgap shift of high frequendyl00 kH2 capaci- ties here may be fortuitous since ESR defect density esti-
tance versus voltage measurements performed with a HPates have an absolute precision of only a little better than a
4284A and a Hg probe. For the extraction[®f,,], we as- factor of 2; the relative correspondence, however, is not for-
sumed that the defects are near the SijSierface. During  tuitous as relative ESR precision is approximatei§0%)
the high temperature postoxidation RTAs there will likely be This validates the basic assumption tRatcenters dominate
some buildup of defect precursors near the poly-Si gate inbole trapping in these oxides2) Initially at each anneal
terface; this would result in a shift in the defect precursortemperature, longer anneal times result in higeedensity;
centroid. However, the shift in thehargecentroid would be ~ at short timesE'-precursor formation is a function of time.
somewhat less as hole injection is performed under positivé3) For the 1100 °C annealed oxides, bgta’'] and [Ny]
gate bias. approach saturation within 300E; -precursor density even-
Samples of oxide from each RTA combinatigime and tually saturates as the system approaches thermodynamic
temperaturgfrom the array of oxides shown in Fig. 1 were €quilibrium at the anneal temperaturel) The measured
flooded under bias with approximately &@0* holes/cnrd ~ Saturation density ofE’] and[N,] generated in the oxides
using a vacuum-ultraviolet hole flooding technique described@nnealed for 300 s at 1100 and 1050 °C agrees extremely
elsewheré:*® (Oxide hole flooding serves to fill existing’  Well with the thermodynamic equilibrium densipredicted
precursors and render them ESR detectable and electricalliib’l_3
active; several studies have shown that the formation of ad- B
ditional E’ precursors does not occur at this dose 1989 [E"1(7) =[E Jprecurst 1 =€~ 7"7), @

ESR measurements PE’] and CV measurements gfN] YVhere[E']precursoriS given by Eq.(1) with T=the absolute

were then obtained on all samples. In Fig. 2, the density Oannealtemperature the hole capture cross sectiofi‘ogen
E’ centers[E’], versus anneal time is plotted for the 950, ) 4 . ; -
(E'] P ters, o, is 3x10 * cn?, and 7 is the hole fluencéin this

case ~8.6x 10'%cnm?). This excellent agreement further

40 - validates the predictive power of tHe' model. (5) Close
35 1 inspection of Figs. 2 and 3 reveals that the time to approach
30 4 e equilibrium is temperature dependent.
= 25 | In order to quantify the kinetics of the approach to equi-
== a0 S A librium, we assume thaE’-precursor density must move
= ¥ e & 1100C Anneal from equilibrium at the oxidation temperature to an equilib-
) 15 1 [ A el rium at the higher anneal temperature and that this will fol-
10 . T 10908 90 s low a characteristic temperature dependent time constant,
54" o S0 O50see) E’-precursor density as a function of tinjé&s’](t), is
N T .

0 1(;0 2(I)O 3(;0 400 [E,]precurso(t) =[E"Jroxt ([E' Jtannear [E' J1ox)

Time (sec) X[1—exp —t/ Tranneal 1 (©)]

FIG. 2. Plot of[E'] (symbols and theory as calculated from E) , . A . , .
(dashed linesvs anneal time for oxides grown at 875 °C and subsequentiyWhere[ E' ], is the equilibrium density oE’ at the oxida-

annealed al ,,nea€qual to either 950, 1050, or 1100 °C. tion temperature, £’ JtanneaiS the equiiibrium density ok’
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at the anneal temperaturtas time, andranneaiS the anneal  quality, performance, and reliability without the need for ex-
temperature dependent time constant. An equivalent expregensive testing.

sion can be written fofN].
For the 1100 °C annealed oxides grown at 875 °C, we The authors wish to thank E. Kelley of SPAWAR for the

rewrite Eq.(3) as use of fabrication facilities and B. Pomrenke of Dynamics
Research Corporation for performing ESR and CV measure-
[E' lprecursoft) =[E' lg75t ([E " J1100—[E" 1879 ments. The portion of the work performed at The Pennsyl-

vania State University was supported by DRC.
X[1—exf —t/71109]- 4) y PP y

(Similar expressions are used for the other anneal tempera-
tures) Both[E' Jg;sand[ E' ]1190are calculated directly from

: / 1-3 ; i
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