SYNTHESIS OF THE FIRST MACROCYCLIC GLYCOTERPENOID BASED ON TREHALOSE AND THE DITERPENOID ISOSTEVIOL

B. F. Garifullin, R. R. Sharipova, I. Yu. Strobykina, O. V. Andreeva, and V. E. Kataev^{*}

A macrocyclic glycoterpenoid containing the diterpenoid dihydroisosteviol (16-hydroxy-ent-beyeran-19oic acid) and α, α' -trehalose linked by an ester spacer was synthesized.

Keywords: isosteviol, trehalose, diterpenoids, macrocycles, macrocyclic glycoterpenoids.

We recently reported the synthesis of a series of macrocyclic terpenoids constructed from one, two, and four molecules of the diterpenoid dihydroisosteviol 2 (16-hydroxy-*ent*-beyeran-19-oic acid) linked through polymethylene spacers containing esters, hydrazides, and hydrazonohydrazides [1, 2]. The present article is a continuation of our last publications on the synthesis of macrocyclic dihydroisosteviol derivatives [3, 4] and reports the synthesis of macrocycle 11 in which one of the spacers linking the diterpenoid 2 into the macrocyclic structure contains α, α' -trehalose 7. We called it a macrocyclic glycoterpenoid in analogy with the literature [5] because it contained a carbohydrate moiety in addition to the terpenoid fragments.

4: R = CH₂OH; **5:** R = COOH; **6:** R = C(O)Cl **8:** R₁ = Tr, R₂ = H; **9:** R₁ = Tr, R₂ = Ac; R₁ = H, R₂ = Ac

i. NaBH₄, CH₃OH; *ii*. ClC(O)(CH₂)₆C(O)Cl, DMAP, Py, CH₂Cl₂; *iii*. SOCl₂, 50°C; *iv*. HO(CH₂)₄OH, CH₂Cl₂, yield 60%; *v*. CrO₃, H₂SO₄, H₂O, Me₂CO, yield 88%; *vi*. SOCl₂, CH₂Cl₂, reflux; *vii*. Ph₃CCl, Py; *viii*. (CH₃CO)₂O, Py; *ix*. FeCl₃·6H₂O, CH₂Cl₂, H₂O, yield 60%

A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 420088, Kazan, Ul. Arbuzova, 8, fax: (843) 273 22 53, e-mail: kataev@iopc.ru. Ttranslated from *Khimiya Prirodnykh Soedinenii*, No. 5, September–October, 2015, pp. 760–763. Original article submitted March 18, 2015.

The macrocycle was prepared by a convergent synthesis consisting of two branches, the terpene one leading to difunctionalized dihydroisosteviol derivative 6 (terpene precursor) and the carbohydrate one leading to hexaacetylated trehalose 10 (carbohydrate precursor). Covalent binding of precursors 6 and 10 in the last step afforded target macrocyclic glycoterpenoid 11.

i. Et₃N, CH₂Cl₂, yield 7%

Precursor **6** was synthesized in six steps. First, the oxo group of the natural diterpenoid isosteviol **1** (16-oxo-*ent*-beyeran-19-oic acid) was reduced selectively and stereospecifically by a known method [6] into dihydroisosteviol **2** (100% *de*), two molecules of which were then bound covalently via a reaction with suberic acid dichloride as before [7]. The resulting diacid **3** was converted into the dichloride, which was then reacted *in situ* with a 30-fold excess of 1,4-butanediol. Then, diol **4** was isolated by column chromatography in 60% yield and oxidized by Jones reagent [8]. The order of addition of the reagents was atypical for this reaction [9], namely, slow addition of a dilute solution of **4** in Me₂CO to a solution of chromic acid. The constant deficiency of starting **4** in the reaction mixture avoided forming side macrocyclic products [9] and; therefore, column chromatography for working up the products. Diacid **5** was obtained in 88% yield. The dichloride **6** was used further as the terpene precursor.

2,2',3,3',4,4'-Hexa-*O*-acetyl- α,α' -trehalose (10) was synthesized by the known method [10]. First, the primary hydroxyls of trehalose (7) were protected with trityl groups. Then, the secondary hydroxyls of disaccharide 8 were acylated, after which the protecting groups were removed.

The last step of the convergent synthesis involved refluxing dichloride **6** and hexaacetylated trehalose **10** in CH_2Cl_2 at high dilution (10⁻⁴ M) in the presence of Et_3N . Macrocyclic glycoterpenoid **11** was isolated from the reaction mixture in 7% yield by column chromatography.

Only four natural macrocyclic glycoterpenoids (isolated from the sea hare *Syphonota geographica*) have been described in the literature [5, 11]. Synthetic macrocyclic glycoterpenoids had not been reported before our first publication [4] appeared.

EXPERIMENTAL

PMR spectra were recorded on an Avance-400 spectrometer (400 MHz, Bruker, Germany). MALDI mass spectra were obtained in linear mode using a Nd:YAG laser at 355 nm on an UltraFlex III TOF/TOF time-of-flight mass spectrometer (Bruker Daltonik GmbH, Bremen, Germany). Data were processed using the FlexAnalysis 3.0 program (Bruker Daltonik GmbH, Bremen, Germany). Masses were measured in the range m/z 200–6000 in positive-ion mode. The matrix was 2,5-dihydroxybenzoic acid (DHB) and *p*-nitroaniline (*p*-NA). Samples were dissolved in CH₂Cl₂ (10⁻³ M). The matrix solution in MeCN had a concentration of 10 mg/mL. Samples were deposited by the dried-drop method. Matrix solution (0.5 μ L) was pipetted onto an Anchor Chip target (Bruker Daltonik GmbH, Bremen, Germany). After the solvent evaporated, the target was treated with analyte solution (0.5 μ L). IR spectra were recorded in the range 400–4000 cm⁻¹ on a Vector 22 Fourier-spectrometer (Bruker). Samples were studied as films. The course of reactions and purity of products were monitored by TLC on Sorbfil plates (OOO Imid, Krasnodar, Russia). Compounds were detected by treatment with H₂SO₄ solution (5%)

followed by heating to 120°C. Specific rotation was measured on a Model 341 polarimeter (PerkinElmer Inc., Waltham, USA) at wavelength 589 nm in a cell thermostatted at 20°C. Melting points were measured on a Boetius apparatus.

Isosteviol (1) was prepared by the literature method [12] from the sweetener Sweta (Stevian Biotechnology Corp.), mp 235°C (lit. 234–235°C [12], 231–234°C [13]). Its spectral data agreed with the literature [12]. Dihydroisosteviol (2) was synthesized by the literature method [6] from 1, mp 199°C (lit. 198–200°C [6]). Diacid 3 was prepared from 2 by the literature method [7], mp 110°C (lit. 108–112°C [7]). 2,2',3,3',4,4'-Hexa-*O*-acetyl- α , α' -trehalose (10) was synthesized by the literature method [10], mp 95°C (lit. 102°C [10], 93–96°C [14]). Its spectral data agreed with the literature [10].

Bis[19-nor-4 α (ω -hydroxybutyloxycarbonyl)-*ent*-beyeran-16-yl]-1,6-hexanedicarboxylate (4). Diacid 3 (1.3 g, 1.67 mmol) was treated with SOCl₂ (5 mL) and heated at 50°C for 2 h under Ar. The excess of SOCl₂ was vacuum distilled. The residue was treated with anhydrous CH₂Cl₂ and stirred. The solvent was distilled off. The residue was dried *in vacuo*. Yield 1.36 g (100%). IR spectrum (KBr, v, cm⁻¹): 1732, 1796 (C=O).

A solution of 1,4-butanediol (4.5 g, 49.9 mmol) in anhydrous CH_2Cl_2 (10 mL) at 50°C under Ar was treated dropwise with a solution of freshly prepared **3** (1.36 g, 1.67 mmol) in anhydrous CH_2Cl_2 (50 mL), and refluxed for 4 h. The CH_2Cl_2 layer was separated, washed with H_2O (3 × 10 mL), and dried over $CaCl_2$. The solvent was removed. The residue was chromatographed over a dry column (petroleum ether–EtOAc eluent, 4:1, then 1:2) to afford diol **4** as a transparent oil. Yield 0.93 g (60%), $[\alpha]_D^{20}$ –54.0° (*c* 0.91, MeOH). PMR spectrum (400 MHz, CDCl₃, δ , ppm, J/Hz): 0.70 (6H, s, 2 × H₃-20); 0.90 (6H, s, 2 × H₃-17); 1.16 (6H, s, 2 × H₃-18); 0.83–1.90 [56H, m, *ent*-beyerane skeleton, (CH₂)₄ spacer, and two central (CH₂)₂ fragments of two 19-(O)O(CH₂)₄OH groups]; 2.16 (2H, d, J = 13.0, 2 × H_{eq}-3); 2.30 [4H, t, J = 7.4, 2 × 16-OC(O)CH₂]; 3.67 (4H, t, J = 6.2, 2 × CH₂OH); 3.95–4.04 [2H, m, 2 × 19-(O)OCH_A]; 4.06–4.13 [2H, m, 2 × 19-(O)OCH_B]; 4.71 (2H, dd, J = 10.5, 4.5, 2 × H-16). Mass spectrum: *m*/*z* 945.5 [M + Na]⁺, 961.5 [M + K]⁺; calcd 945.6 [M + Na]⁺, 961.6 [M + K]⁺. C₅₆H₉₀O₁₀.

Bis[19-nor-4 α (ω -carboxypropyloxycarbonyl)-*ent*-beyeran-16-yl]-1,6-hexanedicarboxylate (5). A solution of CrO₃ (0.5 g, 5 mmol) in H₂SO₄ (38%, 5 mL) was cooled to 3°C and treated slowly dropwise with a solution of 4 (1.16 g, 1.26 mmol) in Me₂CO (50 mL) over 20 h. The precipitate was filtered off. The filtrate was concentrated *in vacuo* to 10 mL, poured into H₂O (100 mL), and extracted with Et₂O (5 × 20 mL). The Et₂O extract was washed with acidified H₂O (3 × 20 mL) and H₂O (3 × 20 mL) and dried over CaCl₂. The solvent was removed to afford diacid **5**. Yield 1.05 g (88%), mp 56–57°C, [α]_D²⁰ –45° (*c* 0.24, MeOH). PMR spectrum (400 MHz, CDCl₃, δ , ppm, J/Hz): 0.69 (6H, s, 2 × H₃-20), 0.89 (6H, s, 2 × H₃-17); 1.16 (6H, s, 2 × H₃-18); 0.80–1.90 [48H, m, *ent*-beyerane skeleton, (CH₂)₄ spacer]; 1.94–2.01 (4H, m, 2 × 19-(O)OCH₂CH₂]; 2.15 (2H, d, J = 14.4, 2 × H_{eq}-3); 2.25–2.36 [4H, m, 2 × 16-OC(O)CH₂]; 2.40–2.53 [4H, m, 2 × 19-(O)OCH₂CH₂CH₂]; 3.99–4.06 [2H, m, 2 × 19-(O)OCH_A]; 4.09–4.15 [2H, m, 2 × 19-(O)OCH_B]; 4.73 (2H, dd, J = 10.5, 4.2, 2 × H-16). Mass spectrum: *m/z* 973.6 [M + Na]⁺, 989.6 [M + K]⁺; calcd 973.6 [M + Na]⁺, 989.6 [M + K]⁺. C₅₆H₈₆O₁₂.

2,11,14,19,22,25,30-Heptaoxa-1,12(16,4 α)di(19-nor-*ent*-beyerane)-21,23(2,6)di(3,4,5-tri-*O*-acetyltetrahydropyran)cyclohentriacontaphane-3,10,13,18,26,31-hexaone (11). A solution of 5 (0.34 g, 0.36 mmol) in CH₂Cl₂ (8 mL) was treated with SOCl₂ (1 mL) and refluxed under Ar for 5 h. The excess of SOCl₂ was vacuum distilled. The residue was treated with CH₂Cl₂ and stirred. The solvent was distilled off. The residue was dried *in vacuo* to afford 6 (0.35 g, 100%). IR spectrum (KBr, v, cm⁻¹): 1727, 1801 (C=O).

A solution of **10** (0.21 g, 0.36 mmol) in CH₂Cl₂ (250 mL) was treated with Et₃N (0.073 g, 0.72 mmol), refluxed under Ar, treated dropwise with a solution of freshly prepared **6** (0.35 g, 0.36 mmol) in CH₂Cl₂ (80 mL) over 4 h, refluxed for 10 h, washed with H₂O (3×60 mL), and dried over CaCl₂. The solvent was removed. The residue was chromatographed over silica gel (100/160) using CH₂Cl₂–MeOH (100:0.3 and 100:1). Yield 0.04 g (7.4%), mp 103–104°C, [α]_D²⁰ 16.8° (*c* 0.78, CH₂Cl₂). PMR spectrum (400 MHz, CDCl₃, δ , ppm, J/Hz): 0.70 (6H, s, $2 \times H_3$ -20), 0.90 (6H, s, $2 \times H_3$ -17), 1.16 (6H, s, $2 \times H_3$ -18), 0.80–1.90 [48H, m, *ent*-beyerane skeleton, (CH₂)₄ spacer], 1.95–2.00 [4H, m, 2×19 -(O)OCH₂CH₂], 2.03 [6H, s, $2 \times CH_3C(O)$], 2.04 6H, s, $2 \times CH_3C(O)$], 2.08 [6H, s, $2 \times CH_3C(O)$], 2.15(2H, d, J = 14.5, $2 \times H_{eq}$ -3), 2.27–2.34 [4H, m, 2×16 -OC(O)CH₂], 2.44 [4H, t, J = 7.5, 2×19 -(O)OCH₂CH₂CH₂], 3.91–4.11 [8H, m, 2×19 -(O)OCH₂, $4 \times H$ -6′], 4.21–4.30 (2H, m, $2 \times H$ -5′), 4.75 (2H, dd, J = 10.5, 3.8, $2 \times H$ -16), 5.0–5.05 (4H, m, $2 \times H$ -2′, $2 \times H$ -4′), 5.32 (2H, d, J = 3.8, $2 \times H$ -1′), 5.50 (2H, t, J = 9.7, $2 \times H$ -3′). Mass spectrum: *m*/z 1531.9 [M + Na]⁺, 1547.8 [M + K]⁺; calcd 1531.8 [M + Na]⁺, 1547.7 [M + K]⁺. C₈₀H₁₁₆O₂₇.

ACKNOWLEDGMENT

The work was sponsored by the Russian Science Foundation (Grant No. 14-50-00014).

REFERENCES

- 1. B. F. Garifullin, O. V. Andreeva, I. Yu. Strobykina, V. M. Babaev, and V. E. Kataev, *Macroheterocycles*, 6, 184 (2013).
- 2. O. V. Andreeva, I. Yu. Strobykina, O. N. Kataeva, O. B. Dobrynin, V. M. Babaev, I. Kh. Rizvanov, D. R. Islamov, and V. E. Kataev, *Macroheterocycles*, **6**, 315 (2013).
- R. R. Sharipova, B. F. Garifullin, O. V. Andreeva, I. Yu. Strobykina, O. B. Bazanova, and V. E. Kataev, *Zh. Org. Khim.*, 51, 437 (2015); R. R. Sharipova, B. F. Garifullin, O. V. Andreeva, I. Yu. Strobykina, O. B. Bazanova, and V. E. Kataev, *Russ. J. Org. Chem.*, 51, 424 (2015).
- O. V. Andreeva, R. R. Sharipova, B. F. Garifullin, I. Yu. Strobykina, and V. E. Kataev, *Chem. Nat. Compd.*, 51, 689 (2015).
- M. Gavagnin, M. Carbone, P. Amodeo, E. Mollo, R. M. Vitale, V. Roussis, and G. Cimino, J. Org. Chem., 72, 5625 (2007).
- V. A. Al'fonsov, G. A. Bakaleinik, A. T. Gubaidullin, V. E. Kataev, G. I. Kovylyaeva, A. I. Konovalov, I. A. Litvinov, I. Yu. Strobykina, S. I. Strobykin, O. V. Andreeva, and M. G. Korochkina, *Zh. Obshch. Khim.*, **70**, 1018 (2000);
 V. A. Alfonsov, G. A. Bakaleinik, A. T. Gubaidullin, V. E. Kataev, G. I. Kovylyaeva, A. I. Konovalov, I. A. Litvinov, I. Yu. Strobykina, S. I. Strobykin, O. V. Andreeva, and M. G. Korochkina, *Russ. J. Gen. Chem.*, **70**, 1318 (2000).
- V. E. Kataev, O. I. Militsina, I. Yu. Strobykina, G. I. Kovylyaeva, R. Z. Musin, O. V. Fedorova, G. L. Rusinov, M. N. Zueva, G. G. Mordovskoi, and A. G. Tolstikov, *Khim.-farm. Zh.*, 40 (9), 12 (2006); V. E. Kataev, O. I. Militsina, I. Yu. Strobykina, G. I. Kovylyaeva, R. Z. Musin, O. V. Fedorova, G. L. Rusinov, M. N. Zueva, G. G. Mordovskoi, and A. G. Tolstikov, *Pharm. Chem. J.*, 40 (9), 473 (2006).
- B. P. Mundy, M. G. Ellerd, and F. G. Favaloro, *Name Reactions and Reagents in Organic Synthesis*, John Wiley & Sons, New Jersey, 2005, pp. 352, 793.
- 9. B. C. Holland and N. W. Gilman, Synth. Commun., 4, 203 (1974).
- 10. T. C. Baddeley and J. L. Wardell, J. Carbohydr. Chem., 28, 198 (2009).
- 11. M. Carbone, M. Gavagnin, E. Mollo, M. Bidello, V. Roussis, and G. Cimino, *Tetrahedron*, 64, 191 (2008).
- R. N. Khaibullin, I. Yu. Strobykina, V. E. Kataev, O. A. Lodochnikova, A. T. Gubaidullin, and R. Z. Musin, *Zh. Obshch. Khim.*, **79**, 795 (2009); R. N. Khaibullin, I. Yu. Strobykina, V. E. Kataev, O. A. Lodochnikova, A. T. Gubaidullin, and R. Z. Musin, *Russ. J. Gen. Chem.*, **79**, 967 (2009).
- 13. E. Mosettig and W. R. Nes, J. Org. Chem., 20, 884 (1955).
- 14. H. Bredereck, *Chem. Ber.*, **63**, 959 (1930).