Phytochemistry 78 (2012) 179-189

Contents lists available at SciVerse ScienceDirect

Phytochemistry

journal homepage: www.elsevier.com/locate/phytochem

# Verticillosides A–M: Polyoxygenated pregnane glycosides from *Asclepias verticillata* L.

Juan J. Araya<sup>a</sup>, Franklin Binns<sup>b</sup>, Kelly Kindscher<sup>c</sup>, Barbara N. Timmermann<sup>a,\*</sup>

<sup>a</sup> Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, United States

<sup>b</sup> Facultad de Farmacia, Programa de Posgrado en Química, Universidad de Costa Rica, San Jose, Costa Rica

<sup>c</sup> Kansas Biological Survey, University of Kansas, KS 66047, United States

#### ARTICLE INFO

Article history: Received 3 November 2011 Received in revised form 11 January 2012 Available online 23 March 2012

*Keywords: Asclepias verticillata* Pregnane glycosides Verticillosides

#### ABSTRACT

As part of our ongoing effort to explore the chemical diversity of plants of the United States Midwest region, the isolation and identification of 13 pregnane glycosides named verticillosides A–M from *Asclepias verticillata* L. are reported. The structures of these compounds were elucidated by various spectroscopic techniques, including 1D and 2D NMR, IR, UV, and HRMS. The cytotoxicity of the isolates was evaluated against paired breast cell lines Hs578T (cancer) and Hs578Bst (normal), however, no significant growth inhibition was observed.

© 2012 Elsevier Ltd. All rights reserved.

PHYTOCHEMISTR

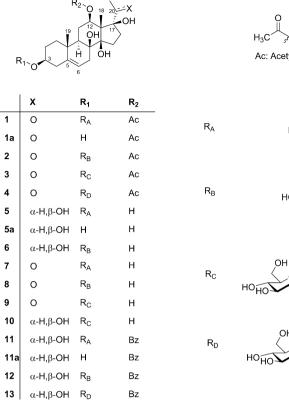
#### 1. Introduction

Pregnane glycosides are  $C_{21}$  steroidal compounds conjugated with sugars that commonly occur in the family Asclepiadaceae. They comprise a structurally diverse group that combines an aglycone skeleton and a variable number and type of sugar units, typically attached at the 3-position (Panda et al., 2006). Anticancer and immunomodulating activities have been reported for this class of compounds (Cao et al., 2006; Chen et al., 2010; Kim et al., 2005; Kuroda et al., 2010; Li et al., 2006; Peng et al., 2008; Ye et al., 2005).

Members of the Asclepias genus, commonly known as "milkweeds", are widely distributed across the United States. They are especially abundant in the Midwest, with over 130 plant species and subspecies reported, many of them endemic to this geographical region. Although Asclepias is a rich source of cardiac and pregnane glycosides, it has been poorly investigated chemically and biologically. For instance, Asclepias verticillata has not been investigated phytochemically despite its traditional use as medicine and food. The leaves and young shoots were boiled with meat and eaten by the Hopi (Fewkes, 1896). The most common medicinal use was the consumption by the Lakota and Hopi of a tea made from the whole plant to increase the production of mother's milk (Fewkes, 1896; Rodgers, 1980). This may have been a Doctrine of Signatures type use as the milky sap might indicate its value for this purpose (Kindscher, 1992). The Choctaw used the root as a diaphoretic to promote sweating, and the root tea as both a stimulant, and in a stronger concentration, as an external and internal snakebite remedy (Campbell et al., 1951).

As part of the ongoing effort to explore the biodiversity of the American Great Plains, reported herein is the isolation and identification of 13 new pregnane glycosides named verticillosides A–M (Fig. 1) from *A. verticillata* L. This report represents the first phytochemical investigation of this species.

## 2. Results and discussion


Dried aerial parts of *A. verticillata* were extracted and subjected to a series of purification steps, including a variety of chromatographic techniques, to afford 13 new pregnane glycosides: verticillosides A (**1**; 38 mg), B (**2**; 42 mg), C (**3**; 10 mg), D (**4**; 36 mg), E (**5**; 27 mg), F (**6**; 37 mg), G (**7**; 11 mg), H (**8**; 19 mg), I (**9**; 10 mg), J (**10**; 13 mg), K (**11**; 12 mg), L (**12**; 9 mg), and M (**13**; 14 mg).

Verticilloside A (1) was obtained as a white, amorphous powder. The HRMS displayed a  $[M+Na]^+$  ion at m/z 1055.5276 consistent with a molecular formula of  $C_{50}H_{80}NaO_{22}$  (calcd 1055.5039). The <sup>1</sup>H NMR spectrum showed four singlet signals ( $\delta$  2.49, 2.08, 1.94, 1.35) and an olefinic proton ( $\delta$  4.99) that indicated the presence of an acetylated pregn-5-en-20-one skeleton (Table 2). The proposed carbon skeleton was supported by the HMBC correlations (Fig. 2) between the proton signal  $\delta$  1.94 (Me-18) and the carbon resonances  $\delta$  58.3 (C-13), 73.9 (C-12), 89.8 (C-14), and 92.8 (C-17); and proton signal  $\delta$  1.35 (Me-19) and carbon resonances of  $\delta$ 39.2 (C-1), 139.6 (C-5), 44.8 (C-9), and 38.0 (C-10). Also, the HMBC correlations between the methyl signal of the acetyl group ( $\delta$  2.49) and C-12 ( $\delta$  73.9) clarified the attachment position of the methyl



<sup>\*</sup> Corresponding author. Tel.: +1 785 864 4844; fax: +1 785 864 5326. *E-mail address:* btimmer@ku.edu (B.N. Timmermann).

<sup>0031-9422/\$ -</sup> see front matter © 2012 Elsevier Ltd. All rights reserved. doi:10.1016/j.phytochem.2012.02.019



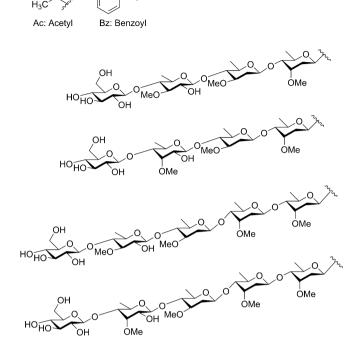



Fig. 1. Structure of compounds 1-13.

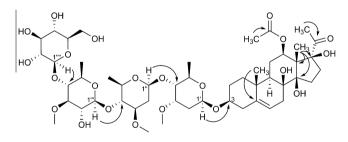



Fig. 2. Selected HMBC correlations observed in compound 1.

ester functionality. Finally, <sup>1</sup>H,<sup>1</sup>H DQFCOSY, HSQC and HMBC spectra allowed for the full assignment of the <sup>1</sup>H and <sup>13</sup>C signals (Tables 1 and 2), and the aglycone moiety was deduced to be metaplexigenin (1a). The NMR spectroscopic data were in good agreement with previously reported values for metaplexigenin (Warashina and Noro, 2000; Ye et al., 2004). The initially proposed stereochemistry was based on dipolar interactions observed in the ROESY spectrum (Fig. 3) and further confirmed by X-ray crystallography of the aglycone obtained by acid hydrolysis of the glycoside (Fig. 4). In addition, four anomeric protons were observed in the <sup>1</sup>H NMR spectrum ( $\delta$  5.29, 5.16, 4.90 and 4.70) suggesting that the same number of sugars were attached at the 3-position. Furthermore, the presence of three methyl doublets in the aliphatic region of the <sup>1</sup>H NMR spectrum ( $\delta$  1.78, 1.68 and 1.44) and three methoxy groups ( $\delta$  3.96, 3.56 and 3.49), indicated the presence of 6-deoxy-3-methoxy sugars, commonly found in the Asclepias glycosides. Using <sup>1</sup>H, <sup>1</sup>H DQFCOSY, <sup>1</sup>H, <sup>1</sup>H-TOCSY, and HSQC-TOCSY spectra, the proton spin systems and the carbon resonances of each sugar were fully assigned (Tables 1 and 2). The sugar units were then identified as cymarose, oleandrose, thevetose, and glucose by

NMR spectroscopic data analysis and comparison with previously reported values. The connectivity of the sugars was established by the following key HMBC correlations: cymarose anomeric proton H-1' ( $\delta$  5.29) and C-3 ( $\delta$  77.9): oleandrose anomeric proton H-1" ( $\delta$  4.70) and C-4' ( $\delta$  83.6); therefore anomeric proton H-1" ( $\delta$  4.90) and C-4" ( $\delta$  83.6), and glucose anomeric proton H-1" ( $\delta$ 5.16) and C-4<sup>''</sup> ( $\delta$  83.8) (Fig. 2). The  $\beta$ -linkages of the four sugars were established by the large coupling constants (I = 7.8-9.7) observed for the anomeric protons. Finally, after acid hydrolysis of compound **1**, the optical rotation of the purified monomeric sugars was measured in aqueous solution after 24 h equilibration period and compared with previously reported values showing that the sugars present in this compound had D-configuration. Therefore, the structure of **1** was determined to be metaplexigenin  $3-O-\beta-D$ glucopyranosyl- $(1 \rightarrow 4)$ - $\beta$ -D-thevetopyranosyl- $(1 \rightarrow 4)$ - $\beta$ -D-oleandropyranosyl- $(1 \rightarrow 4)$ - $\beta$ -D-cymaropyranose. To the best of our knowledge, compound 1 represents a previously unreported metaplexigenin glycoside that we named verticilloside A.

Verticilloside B (**2**), an amorphous white powder, showed a HRMS  $[M+Na]^+$  ion at m/z 1052.5271, suggesting the same molecular formula of  $C_{50}H_{80}NaO_{22}$  (calcd 1055.5039) as for compound **1**. First, the aglycone present in **2** was determined to be metaplexigenin and it was identified as described before. Second, the <sup>1</sup>H NMR spectroscopic also showed the presence of four anomeric protons ( $\delta$  5.27, 5.26, 5.00 and 4.67); however, only the chemical shift of H-1<sup>'''</sup> changed significantly when compared with the anomeric protons of **1**. After analysis of the spin systems of each sugar aided by analyses of <sup>1</sup>H, <sup>1</sup>H DQFCOSY, and <sup>1</sup>H, <sup>1</sup>H-TOCSY and HSQC-TOCSY spectra, the <sup>1</sup>H and <sup>13</sup>C signals were completely assigned and the four sugars were elucidated as cymarose, oleandrose, 6-deoxy-3-*O*-methyl allopyranose, and glucose. The HMBC correlations unambiguously established the connectivity of the sugars: anomeric proton of cymarose H-1' ( $\delta$  5.26) with C-3 ( $\delta$  78.1); anomeric

| <b>Table 1</b><br><sup>13</sup> C NMR (1) | 25 MHz, C₅ | D <sub>5</sub> N) spectr | oscopic data | for compou | ınds <b>1–13</b> . <sup>a,b</sup> |
|-------------------------------------------|------------|--------------------------|--------------|------------|-----------------------------------|
| A +                                       | 1          | 2                        | 2            | 4          | -                                 |

| Atom                                                    | 1                                                                                                                                                      | 2                                                                                                                                      | 3                                                                                                                                                                                                                   | 4                                                                                                                                                                                                           | 5                                                                                                                                                                       | 6                                                                                                                                      | 7                                                                                                                                                      | 8                                                                                                                                      | 9                                                                                                                                                                                                           | 10                                                                                                                                                                                                | 11                                                                                                                                                                      | 12                                                                                                                                     | 13                                                                                                                                                                                                             |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                         | 39.2 t                                                                                                                                                 | 39.4 t                                                                                                                                 | 39.3 t                                                                                                                                                                                                              | 39.3 t                                                                                                                                                                                                      | 39.4 t                                                                                                                                                                  | 39.4 t                                                                                                                                 | 39.3 t                                                                                                                                                 | 39.3 t                                                                                                                                 | 39.3 t                                                                                                                                                                                                      | 39.4 t                                                                                                                                                                                            | 39.2 t                                                                                                                                                                  | 39.2 t                                                                                                                                 | 39.2 t                                                                                                                                                                                                         |
|                                                         | 30.2 t                                                                                                                                                 | 30.4 t                                                                                                                                 | 30.2 t                                                                                                                                                                                                              | 30.2 t                                                                                                                                                                                                      | 30.3 t                                                                                                                                                                  | 30.3 t                                                                                                                                 | 30.3 t                                                                                                                                                 | 30.3 t                                                                                                                                 | 30.3 t                                                                                                                                                                                                      | 30.3 t                                                                                                                                                                                            | 30.3 t                                                                                                                                                                  | 30.3 t                                                                                                                                 | 30.3 t                                                                                                                                                                                                         |
|                                                         | 77.9 d                                                                                                                                                 | 78.1 d                                                                                                                                 | 78.0 d                                                                                                                                                                                                              | 78.0 d                                                                                                                                                                                                      | 78.1 <i>d</i>                                                                                                                                                           | 78.1 <i>d</i>                                                                                                                          | 78.1 <i>d</i>                                                                                                                                          | 78.1d                                                                                                                                  | 78.1 d                                                                                                                                                                                                      | 78.1 d                                                                                                                                                                                            | 78.0 d                                                                                                                                                                  | 78.0 d                                                                                                                                 | 78.1 d                                                                                                                                                                                                         |
|                                                         | 39.5 t                                                                                                                                                 | 39.7 t                                                                                                                                 | 39.6 t                                                                                                                                                                                                              | 39.6 t                                                                                                                                                                                                      | 39.7 t                                                                                                                                                                  | 39.7 t                                                                                                                                 | 39.7 t                                                                                                                                                 | 39.7 t                                                                                                                                 | 39.7 t                                                                                                                                                                                                      | 39.7 t                                                                                                                                                                                            | 39.6 t                                                                                                                                                                  | 39.6 t                                                                                                                                 | 39.6 t                                                                                                                                                                                                         |
|                                                         | 139.6 s                                                                                                                                                | 139.8 s                                                                                                                                | 139.6 s                                                                                                                                                                                                             | 139.6 s                                                                                                                                                                                                     | 139.5 s                                                                                                                                                                 | 139.5 s                                                                                                                                | 139.5 s                                                                                                                                                | 139.5 s                                                                                                                                | 139.7 s                                                                                                                                                                                                     | 139.5 s                                                                                                                                                                                           | 139.5 s                                                                                                                                                                 | 139.5 s                                                                                                                                | 139.5                                                                                                                                                                                                          |
|                                                         | 119.6 d                                                                                                                                                | 119.7 d                                                                                                                                | 119.5 d                                                                                                                                                                                                             | 119.5 d                                                                                                                                                                                                     | 120.2 d                                                                                                                                                                 | 120.2 d                                                                                                                                | 119.9 d                                                                                                                                                | 120.2 d                                                                                                                                | 119.9 d                                                                                                                                                                                                     | 120.1 d                                                                                                                                                                                           | 120.0 d                                                                                                                                                                 | 120.0 d                                                                                                                                | 120.0                                                                                                                                                                                                          |
|                                                         |                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                                     |                                                                                                                                                                                                             |                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                             |                                                                                                                                                                                                   |                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                                                                                                |
|                                                         | 35.0 t                                                                                                                                                 | 35.2 t                                                                                                                                 | 35.0 t                                                                                                                                                                                                              | 35.0 t                                                                                                                                                                                                      | 35.7 t                                                                                                                                                                  | 35.7 t                                                                                                                                 | 35.4 t                                                                                                                                                 | 35.4 t                                                                                                                                 | 35.4 t                                                                                                                                                                                                      | 35.6 t                                                                                                                                                                                            | 35.4 t                                                                                                                                                                  | 35.4 t                                                                                                                                 | 35.4 t                                                                                                                                                                                                         |
|                                                         | 74.6 s                                                                                                                                                 | 74.1 s                                                                                                                                 | 74.6 s                                                                                                                                                                                                              | 74.6 s                                                                                                                                                                                                      | 74.4 s                                                                                                                                                                  | 74.4 s                                                                                                                                 | 74.6 s                                                                                                                                                 | 74.6 s                                                                                                                                 | 74.1 s                                                                                                                                                                                                      | 74.1 s                                                                                                                                                                                            | 74.6 s                                                                                                                                                                  | 74.6 s                                                                                                                                 | 74.6 s                                                                                                                                                                                                         |
| _                                                       | 44.83 d                                                                                                                                                | 45.0 d                                                                                                                                 | 44.8 d                                                                                                                                                                                                              | 44.8 d                                                                                                                                                                                                      | 44.9 d                                                                                                                                                                  | 44.9 d                                                                                                                                 | 45.3 d                                                                                                                                                 | 45.3 d                                                                                                                                 | 44.9 d                                                                                                                                                                                                      | 44.9 d                                                                                                                                                                                            | 44.5 d                                                                                                                                                                  | 44.4 d                                                                                                                                 | 44.5 d                                                                                                                                                                                                         |
| 0                                                       | 38.0 s                                                                                                                                                 | 38.2 s                                                                                                                                 | 37.7 s                                                                                                                                                                                                              | 37.7 s                                                                                                                                                                                                      | 37.7 s                                                                                                                                                                  | 37.7 s                                                                                                                                 | 37.7 s                                                                                                                                                 | 37.7 s                                                                                                                                 | 37.7 s                                                                                                                                                                                                      | 37.7 s                                                                                                                                                                                            | 37.7 s                                                                                                                                                                  | 37.6 s                                                                                                                                 | 37.6 s                                                                                                                                                                                                         |
| 1                                                       | 25.2 t                                                                                                                                                 | 25.4 t                                                                                                                                 | 25.2 t                                                                                                                                                                                                              | 25.2 t                                                                                                                                                                                                      | 29.5 t                                                                                                                                                                  | 29.5 t                                                                                                                                 | 29.8 t                                                                                                                                                 | 29.8 t                                                                                                                                 | 29.8 t                                                                                                                                                                                                      | 29.5 t                                                                                                                                                                                            | 26.0 t                                                                                                                                                                  | 26.0 t                                                                                                                                 | 26.0 t                                                                                                                                                                                                         |
| 2                                                       | 73.9 d                                                                                                                                                 | 74.8 d                                                                                                                                 | 73.9 d                                                                                                                                                                                                              | 73.9 d                                                                                                                                                                                                      | 71.1 d                                                                                                                                                                  | 71.1 d                                                                                                                                 | 69.2 d                                                                                                                                                 | 69.3 d                                                                                                                                 | 69.2 d                                                                                                                                                                                                      | 71.1 d                                                                                                                                                                                            | 75.7 d                                                                                                                                                                  | 75.7 d                                                                                                                                 | 75.7 d                                                                                                                                                                                                         |
| 3                                                       | 58.3 s                                                                                                                                                 | 58.4 s                                                                                                                                 | 58.3 s                                                                                                                                                                                                              | 58.2 s                                                                                                                                                                                                      | 59.2 s                                                                                                                                                                  | 59.2 s                                                                                                                                 | 60.7 s                                                                                                                                                 | 60.7 s                                                                                                                                 | 60.7 s                                                                                                                                                                                                      | 58.4 s                                                                                                                                                                                            | 57.8 s                                                                                                                                                                  | 57.8 s                                                                                                                                 | 57.8 s                                                                                                                                                                                                         |
| 4                                                       | 89.8 s                                                                                                                                                 | 90.0 s                                                                                                                                 | 89.8 s                                                                                                                                                                                                              | 89.8 s                                                                                                                                                                                                      | 89.2 s                                                                                                                                                                  | 89.2 s                                                                                                                                 | 89.7 s                                                                                                                                                 | 89.7 s                                                                                                                                 | 89.7 s                                                                                                                                                                                                      | 89.2 s                                                                                                                                                                                            | 89.0 s                                                                                                                                                                  | 89.0 s                                                                                                                                 | 89.0 s                                                                                                                                                                                                         |
| 5                                                       | 34.1 t                                                                                                                                                 | 34.3 t                                                                                                                                 | 34.1 t                                                                                                                                                                                                              | 34.1 t                                                                                                                                                                                                      | 34.9 t                                                                                                                                                                  | 34.9 t                                                                                                                                 | 34.6 t                                                                                                                                                 | 34.6 t                                                                                                                                 | 34.6 t                                                                                                                                                                                                      | 34.9 t                                                                                                                                                                                            | 34.6 t                                                                                                                                                                  | 34.6 t                                                                                                                                 | 34.6 t                                                                                                                                                                                                         |
| 5                                                       | 33.2 t                                                                                                                                                 | 33.4 t                                                                                                                                 | 33.2 t                                                                                                                                                                                                              | 33.2 t                                                                                                                                                                                                      | 34.6 t                                                                                                                                                                  | 34.6 t                                                                                                                                 | 33.1 t                                                                                                                                                 | 33.1 t                                                                                                                                 | 33.2 t                                                                                                                                                                                                      | 34.6 t                                                                                                                                                                                            | 33.2 t                                                                                                                                                                  | 33.2 t                                                                                                                                 | 33.2 t                                                                                                                                                                                                         |
| 7                                                       | 92.8 s                                                                                                                                                 | 92.0 s                                                                                                                                 | 92.8 s                                                                                                                                                                                                              | 92.8 s                                                                                                                                                                                                      | 89.4 s                                                                                                                                                                  | 89.3 s                                                                                                                                 | 92.9 s                                                                                                                                                 | 92.9 s                                                                                                                                 | 92.9 s                                                                                                                                                                                                      | 89.4 s                                                                                                                                                                                            | 89.2 s                                                                                                                                                                  | 89.2 s                                                                                                                                 | 89.2 s                                                                                                                                                                                                         |
|                                                         |                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                                     |                                                                                                                                                                                                             |                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                             |                                                                                                                                                                                                   |                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                                                                                                |
| 8                                                       | 10.8 q                                                                                                                                                 | 11.0 q                                                                                                                                 | 10.8 q                                                                                                                                                                                                              | 10.8 q                                                                                                                                                                                                      | 11.8 q                                                                                                                                                                  | 11.8 q                                                                                                                                 | 9.8 q                                                                                                                                                  | 9.8 q                                                                                                                                  | 9.8 q                                                                                                                                                                                                       | 11.8 q                                                                                                                                                                                            | 12.2 q                                                                                                                                                                  | 12.1 q                                                                                                                                 | 12.1 q                                                                                                                                                                                                         |
| 9                                                       | 18.5 q                                                                                                                                                 | 18.7 q                                                                                                                                 | 18.5 q                                                                                                                                                                                                              | 18.5 q                                                                                                                                                                                                      | 18.6 q                                                                                                                                                                  | 18.7 q                                                                                                                                 | 18.7 q                                                                                                                                                 | 18.7 q                                                                                                                                 | 18.8 q                                                                                                                                                                                                      | 18.7 q                                                                                                                                                                                            | 18.5 q                                                                                                                                                                  | 18.5 q                                                                                                                                 | 18.5 g                                                                                                                                                                                                         |
| 0                                                       | 210.6 s                                                                                                                                                | 210.8 s                                                                                                                                | 210.6 s                                                                                                                                                                                                             | 210.6 s                                                                                                                                                                                                     | 73.5 d                                                                                                                                                                  | 73.5 d                                                                                                                                 | 209.9 s                                                                                                                                                | 209.9 s                                                                                                                                | 209.9 s                                                                                                                                                                                                     | 73.5 d                                                                                                                                                                                            | 71.3 d                                                                                                                                                                  | 71.3 d                                                                                                                                 | 71.3 a                                                                                                                                                                                                         |
| 1                                                       | 28.0 q                                                                                                                                                 | 28.2 q                                                                                                                                 | 28.0 q                                                                                                                                                                                                              | 28.0 q                                                                                                                                                                                                      | 18.2 q                                                                                                                                                                  | 18.2 q                                                                                                                                 | 28.2 q                                                                                                                                                 | 28.2 q                                                                                                                                 | 28.2 q                                                                                                                                                                                                      | 18.2 q                                                                                                                                                                                            | 19.8 q                                                                                                                                                                  | 19.8 q                                                                                                                                 | 19.8 g                                                                                                                                                                                                         |
|                                                         | 12-Ac                                                                                                                                                  | 12-Ac                                                                                                                                  | 12-Ac                                                                                                                                                                                                               | 12-Ac                                                                                                                                                                                                       |                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                             |                                                                                                                                                                                                   | 12-Bz                                                                                                                                                                   | 12-Bz                                                                                                                                  | 12-Bz                                                                                                                                                                                                          |
| -                                                       | 170.3 s                                                                                                                                                | 170.5 s                                                                                                                                | 170.3 s                                                                                                                                                                                                             | 170.3 s                                                                                                                                                                                                     |                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                             |                                                                                                                                                                                                   | 167.0 s                                                                                                                                                                 | 167.0 s                                                                                                                                | 167.0                                                                                                                                                                                                          |
|                                                         |                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                                     |                                                                                                                                                                                                             |                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                             |                                                                                                                                                                                                   |                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                                                                                                |
|                                                         | 21.1 q                                                                                                                                                 | 21.3 q                                                                                                                                 | 21.1 q                                                                                                                                                                                                              | 21.1 q                                                                                                                                                                                                      |                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                             |                                                                                                                                                                                                   | 132.1 s                                                                                                                                                                 | 132.1 s                                                                                                                                | 132.1                                                                                                                                                                                                          |
|                                                         |                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                                     |                                                                                                                                                                                                             |                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                             |                                                                                                                                                                                                   | 130.8 d                                                                                                                                                                 | 130.8 d                                                                                                                                | 130.8                                                                                                                                                                                                          |
|                                                         |                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                                     |                                                                                                                                                                                                             |                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                             |                                                                                                                                                                                                   | 129.2 d                                                                                                                                                                 | 129.2 d                                                                                                                                | 129.2                                                                                                                                                                                                          |
|                                                         |                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                                     |                                                                                                                                                                                                             |                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                             |                                                                                                                                                                                                   | 133.6 d                                                                                                                                                                 | 133.6 d                                                                                                                                | 133.6                                                                                                                                                                                                          |
|                                                         | D-Cym                                                                                                                                                  | D-Cym                                                                                                                                  | D-Cym                                                                                                                                                                                                               | D-Cym                                                                                                                                                                                                       | D-Cym                                                                                                                                                                   | D-Cym                                                                                                                                  | D-Cym                                                                                                                                                  | D-Cym                                                                                                                                  | D-Cym                                                                                                                                                                                                       | D-Cym                                                                                                                                                                                             | D-Cym                                                                                                                                                                   | D-Cym                                                                                                                                  | D-Cyn                                                                                                                                                                                                          |
| -                                                       | 96.7 d                                                                                                                                                 | 96.9 d                                                                                                                                 | 96.7 d                                                                                                                                                                                                              | 96.7 d                                                                                                                                                                                                      | 96.7 d                                                                                                                                                                  | 96.7 d                                                                                                                                 | 96.7 d                                                                                                                                                 | 96.7 d                                                                                                                                 | 96.7 d                                                                                                                                                                                                      | 96.7 d                                                                                                                                                                                            | 96.7 d                                                                                                                                                                  | 96.7 d                                                                                                                                 | 96.7 a                                                                                                                                                                                                         |
|                                                         | 37.6 t                                                                                                                                                 | 37.7 t                                                                                                                                 | 37.3 t                                                                                                                                                                                                              | 37.6 t                                                                                                                                                                                                      | 37.6 t                                                                                                                                                                  | 37.6 t                                                                                                                                 | 37.6 t                                                                                                                                                 | 37.5 t                                                                                                                                 | 37.6 t                                                                                                                                                                                                      | 37.5 t                                                                                                                                                                                            | 37.6 t                                                                                                                                                                  | 37.6 t                                                                                                                                 | 37.6 t                                                                                                                                                                                                         |
|                                                         |                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                                     |                                                                                                                                                                                                             |                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                             |                                                                                                                                                                                                   |                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                                                                                                |
|                                                         | 78.2 d                                                                                                                                                 | 78.4 d                                                                                                                                 | 78.4 d                                                                                                                                                                                                              | 78.4 d                                                                                                                                                                                                      | 78.2 d                                                                                                                                                                  | 78.7 d                                                                                                                                 | 78.2 d                                                                                                                                                 | 78.2 d                                                                                                                                 | 78.4 d                                                                                                                                                                                                      | 78.4 d                                                                                                                                                                                            | 78.2 d                                                                                                                                                                  | 78.2 d                                                                                                                                 | 78.4 0                                                                                                                                                                                                         |
|                                                         | 83.6 d                                                                                                                                                 | 84.0 d                                                                                                                                 | 83.7 d                                                                                                                                                                                                              | 83.7 d                                                                                                                                                                                                      | 83.6 d                                                                                                                                                                  | 83.8 d                                                                                                                                 | 83.9 d                                                                                                                                                 | 83.8 d                                                                                                                                 | 83.7 d                                                                                                                                                                                                      | 83.7 d                                                                                                                                                                                            | 83.5 d                                                                                                                                                                  | 83.8 d                                                                                                                                 | 83.8 a                                                                                                                                                                                                         |
| ,                                                       | 69.3 d                                                                                                                                                 | 69.2 d                                                                                                                                 | 69.4 d                                                                                                                                                                                                              | 69.4 d                                                                                                                                                                                                      | 69.3 d                                                                                                                                                                  | 69.3 d                                                                                                                                 | 69.3 d                                                                                                                                                 | 69.2 d                                                                                                                                 | 69.4 d                                                                                                                                                                                                      | 69.4 d                                                                                                                                                                                            | 69.3 d                                                                                                                                                                  | 69.3 d                                                                                                                                 | 69.4 a                                                                                                                                                                                                         |
| /                                                       | 19.0 q                                                                                                                                                 | 19.0 q                                                                                                                                 | 18.8 q                                                                                                                                                                                                              | 18.8 q                                                                                                                                                                                                      | 19.0 q                                                                                                                                                                  | 19.0 q                                                                                                                                 | 19.0 q                                                                                                                                                 | 19.0 q                                                                                                                                 | 18.7 q                                                                                                                                                                                                      | 18.8 q                                                                                                                                                                                            | 19.0 q                                                                                                                                                                  | 19.0 q                                                                                                                                 | 18.9 q                                                                                                                                                                                                         |
| '-OMe                                                   | 59.2 q                                                                                                                                                 | 59.4 q                                                                                                                                 | 59.3 q                                                                                                                                                                                                              | 59.3 q                                                                                                                                                                                                      | 59.2 q                                                                                                                                                                  | 59.0 q                                                                                                                                 | 59.2 q                                                                                                                                                 | 59.0 q                                                                                                                                 | 59.2 q                                                                                                                                                                                                      | 59.2 q                                                                                                                                                                                            | 59.2 q                                                                                                                                                                  | 59.2 q                                                                                                                                 | 59.2 g                                                                                                                                                                                                         |
|                                                         | D-Ole                                                                                                                                                  | D-Ole                                                                                                                                  | D-Cym                                                                                                                                                                                                               | D-Cym                                                                                                                                                                                                       | D-Ole                                                                                                                                                                   | D-Ole                                                                                                                                  | D-Ole                                                                                                                                                  | D-Ole                                                                                                                                  | D-Cym                                                                                                                                                                                                       | D-Cym                                                                                                                                                                                             | D-Ole                                                                                                                                                                   | D-Ole                                                                                                                                  | D-Cyn                                                                                                                                                                                                          |
|                                                         | 102.3 d                                                                                                                                                | 102.5 d                                                                                                                                | 100.8 d                                                                                                                                                                                                             | 100.8 d                                                                                                                                                                                                     | 102.3 d                                                                                                                                                                 | 102.3 d                                                                                                                                | 102.3 d                                                                                                                                                | 102.3 d                                                                                                                                | 100.8 d                                                                                                                                                                                                     | 100.8 d                                                                                                                                                                                           | 102.3 d                                                                                                                                                                 | 102.3 d                                                                                                                                | 100.8                                                                                                                                                                                                          |
| "                                                       | 37.7 t                                                                                                                                                 | 37.9 t                                                                                                                                 | 37.3 t                                                                                                                                                                                                              | 37.3 t                                                                                                                                                                                                      | 37.7 t                                                                                                                                                                  | 38.0 t                                                                                                                                 | 38.0 t                                                                                                                                                 | 38.0 t                                                                                                                                 | 37.3 t                                                                                                                                                                                                      | 37.3 t                                                                                                                                                                                            | 38.0 t                                                                                                                                                                  | 38.0 t                                                                                                                                 | 37.3 t                                                                                                                                                                                                         |
| "                                                       |                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                                     |                                                                                                                                                                                                             |                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                             |                                                                                                                                                                                                   |                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                                                                                                |
|                                                         | 79.6 d                                                                                                                                                 | 79.8 d                                                                                                                                 | 78.1 d                                                                                                                                                                                                              | 78.0 d                                                                                                                                                                                                      | 79.6 d                                                                                                                                                                  | 79.6 d                                                                                                                                 | 79.6 d                                                                                                                                                 | 79.6 d                                                                                                                                 | 78.7 d                                                                                                                                                                                                      | 78.7 d                                                                                                                                                                                            | 79.6 d                                                                                                                                                                  | 79.6 d                                                                                                                                 | 78.0 d                                                                                                                                                                                                         |
|                                                         | 83.6 d                                                                                                                                                 | 83.7 d                                                                                                                                 | 83.5 d                                                                                                                                                                                                              | 83.5 d                                                                                                                                                                                                      | 83.6 d                                                                                                                                                                  | 83.3 d                                                                                                                                 | 83.6 d                                                                                                                                                 | 83.3 d                                                                                                                                 | 83.5 d                                                                                                                                                                                                      | 83.4 d                                                                                                                                                                                            | 83.6 d                                                                                                                                                                  | 83.3 d                                                                                                                                 | 83.5 d                                                                                                                                                                                                         |
| "                                                       | 72.4 d                                                                                                                                                 | 72.4 d                                                                                                                                 | 69.2 d                                                                                                                                                                                                              | 69.2 d                                                                                                                                                                                                      | 72.4 d                                                                                                                                                                  | 72.2 d                                                                                                                                 | 72.3 d                                                                                                                                                 | 72.3 d                                                                                                                                 | 69.2 d                                                                                                                                                                                                      | 69.2 d                                                                                                                                                                                            | 72.3 d                                                                                                                                                                  | 72.3 d                                                                                                                                 | 69.2 a                                                                                                                                                                                                         |
| "                                                       | 19.1 d                                                                                                                                                 | 19.4 d                                                                                                                                 | 18.9 q                                                                                                                                                                                                              | 18.9 q                                                                                                                                                                                                      | 19.1 d                                                                                                                                                                  | 19.2 d                                                                                                                                 | 19.1 d                                                                                                                                                 | 19.2 d                                                                                                                                 | 18.8 q                                                                                                                                                                                                      | 18.9 q                                                                                                                                                                                            | 19.1 q                                                                                                                                                                  | 19.2 q                                                                                                                                 | 18.8 g                                                                                                                                                                                                         |
| ″-OMe                                                   | 57.8 q                                                                                                                                                 | 58.0 q                                                                                                                                 | 59.2 q                                                                                                                                                                                                              | 59.2 q                                                                                                                                                                                                      | 57.8 q                                                                                                                                                                  | 57.8 q                                                                                                                                 | 57.8 q                                                                                                                                                 | 57.8 q                                                                                                                                 | 59.3 q                                                                                                                                                                                                      | 59.2 q                                                                                                                                                                                            | 57.5 q                                                                                                                                                                  | 57.5 q                                                                                                                                 | 59.3 g                                                                                                                                                                                                         |
|                                                         |                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                                     |                                                                                                                                                                                                             |                                                                                                                                                                         | 4.11                                                                                                                                   | <b>T</b> 1                                                                                                                                             | - 411                                                                                                                                  |                                                                                                                                                                                                             | 01-                                                                                                                                                                                               |                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                                                                                                |
|                                                         | d- <b>Thv</b>                                                                                                                                          | D-Allme                                                                                                                                | D-Ole                                                                                                                                                                                                               | D-Ole                                                                                                                                                                                                       | D-Thv                                                                                                                                                                   | D-Allme                                                                                                                                | d-Thv                                                                                                                                                  | D-Allme                                                                                                                                | D-Ole                                                                                                                                                                                                       | D-Ole                                                                                                                                                                                             | D-Thv                                                                                                                                                                   | D-Allme                                                                                                                                | D-Ole                                                                                                                                                                                                          |
|                                                         |                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                                     |                                                                                                                                                                                                             |                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                             |                                                                                                                                                                                                   |                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                                                                                                |
|                                                         | 104.4 d                                                                                                                                                | 102.4 d                                                                                                                                | 102.3 d                                                                                                                                                                                                             | 102.2 d                                                                                                                                                                                                     | 104.4 d                                                                                                                                                                 | 102.2 d                                                                                                                                | 104.4 d                                                                                                                                                | 102.2 d                                                                                                                                | 102.2 d                                                                                                                                                                                                     | 102.2 d                                                                                                                                                                                           | 104.4 d                                                                                                                                                                 | 102.2 d                                                                                                                                | 102.2                                                                                                                                                                                                          |
| "                                                       | 104.4 d<br>75.3 d                                                                                                                                      | 102.4 d<br>73.2 d                                                                                                                      | 102.3 d<br>37.6 t                                                                                                                                                                                                   | 102.2 d<br>38.0 t                                                                                                                                                                                           | 104.4 d<br>75.3 d                                                                                                                                                       | 102.2 d<br>73.0 d                                                                                                                      | 104.4 d<br>75.3 d                                                                                                                                      | 102.2 d<br>73.0 d                                                                                                                      | 102.2 d<br>38.0 t                                                                                                                                                                                           | 102.2 d<br>38.0 t                                                                                                                                                                                 | 104.4 d<br>75.3 t                                                                                                                                                       | 102.2 d<br>73.0 d                                                                                                                      | 102.2<br>38.0 t                                                                                                                                                                                                |
| "                                                       | 104.4 d<br>75.3 d<br>86.7 d                                                                                                                            | 102.4 d<br>73.2 d<br>83.7 d                                                                                                            | 102.3 d<br>37.6 t<br>79.6 d                                                                                                                                                                                         | 102.2 d<br>38.0 t<br>79.6 d                                                                                                                                                                                 | 104.4 d<br>75.3 d<br>86.7 d                                                                                                                                             | 102.2 d<br>73.0 d<br>83.5 d                                                                                                            | 104.4 d<br>75.3 d<br>86.7 d                                                                                                                            | 102.2 d<br>73.0 d<br>83.5 d                                                                                                            | 102.2 d<br>38.0 t<br>79.6 d                                                                                                                                                                                 | 102.2 d<br>38.0 t<br>79.6 d                                                                                                                                                                       | 104.4 d<br>75.3 t<br>86.7 d                                                                                                                                             | 102.2 d<br>73.0 d<br>83.5 d                                                                                                            | 102.2<br>38.0 t<br>79.6 d                                                                                                                                                                                      |
| "<br>"<br>"                                             | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d                                                                                                                  | 102.4 d<br>73.2 d<br>83.7 d<br>83.8 d                                                                                                  | 102.3 d<br>37.6 t<br>79.6 d<br>83.6 d                                                                                                                                                                               | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d                                                                                                                                                                       | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d                                                                                                                                   | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d                                                                                                  | 104.4 d<br>75.3 d<br>86.7 d<br>83.6 d                                                                                                                  | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d                                                                                                  | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d                                                                                                                                                                       | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d                                                                                                                                                             | 104.4 d<br>75.3 t<br>86.7 d<br>83.6 d                                                                                                                                   | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d                                                                                                  | 102.2<br>38.0 t<br>79.6 d<br>83.3 d                                                                                                                                                                            |
| 11<br>11<br>11                                          | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d                                                                                                        | 102.4 d<br>73.2 d<br>83.7 d<br>83.8 d<br>70.1 d                                                                                        | 102.3 d<br>37.6 t<br>79.6 d<br>83.6 d<br>72.3 d                                                                                                                                                                     | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d                                                                                                                                                             | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d                                                                                                                         | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d                                                                                        | 104.4 d<br>75.3 d<br>86.7 d<br>83.6 d<br>72.3 d                                                                                                        | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d                                                                                        | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d                                                                                                                                                             | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d                                                                                                                                                   | 104.4 d<br>75.3 t<br>86.7 d<br>83.6 d<br>72.4 d                                                                                                                         | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d                                                                                        | 38.0 t<br>79.6 d<br>83.3 d<br>72.3 d                                                                                                                                                                           |
| ""<br>""<br>"                                           | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d<br>19.1 q                                                                                              | 102.4 d<br>73.2 d<br>83.7 d<br>83.8 d                                                                                                  | 102.3 d<br>37.6 t<br>79.6 d<br>83.6 d                                                                                                                                                                               | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d                                                                                                                                                                       | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d                                                                                                                                   | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d                                                                                                  | 104.4 d<br>75.3 d<br>86.7 d<br>83.6 d                                                                                                                  | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d                                                                                                  | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d                                                                                                                                                                       | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d                                                                                                                                                             | 104.4 d<br>75.3 t<br>86.7 d<br>83.6 d                                                                                                                                   | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d                                                                                                  | 102.2<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d                                                                                                                                                                  |
| "<br>"<br>"                                             | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d                                                                                                        | 102.4 d<br>73.2 d<br>83.7 d<br>83.8 d<br>70.1 d                                                                                        | 102.3 d<br>37.6 t<br>79.6 d<br>83.6 d<br>72.3 d                                                                                                                                                                     | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d                                                                                                                                                             | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d                                                                                                                         | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d                                                                                        | 104.4 d<br>75.3 d<br>86.7 d<br>83.6 d<br>72.3 d                                                                                                        | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d                                                                                        | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d                                                                                                                                                             | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d                                                                                                                                                   | 104.4 d<br>75.3 t<br>86.7 d<br>83.6 d<br>72.4 d                                                                                                                         | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d                                                                                        | 102.2<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 g                                                                                                                                                        |
| "<br>"<br>"                                             | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d<br>19.1 q                                                                                              | 102.4 d<br>73.2 d<br>83.7 d<br>83.8 d<br>70.1 d<br>18.8 q                                                                              | 102.3 d<br>37.6 t<br>79.6 d<br>83.6 d<br>72.3 d<br>19.0 q                                                                                                                                                           | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 q                                                                                                                                                   | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d<br>19.1 q                                                                                                               | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.6 q                                                                              | 104.4 d<br>75.3 d<br>86.7 d<br>83.6 d<br>72.3 d<br>19.1 q                                                                                              | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d<br>18.6 q                                                                              | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d                                                                                                                                                   | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d                                                                                                                                         | 104.4 d<br>75.3 t<br>86.7 d<br>83.6 d<br>72.4 d<br>19.1 d                                                                                                               | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.7 q                                                                              | 102.2<br>38.0 t<br>79.6 c<br>83.3 c<br>72.3 c<br>19.2 c<br>57.5 c                                                                                                                                              |
| "<br>"<br>"<br>"-OMe                                    | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d<br>19.1 q<br>61.0 q                                                                                    | 102.4 d<br>73.2 d<br>83.7 d<br>83.8 d<br>70.1 d<br>18.8 q<br>62.3 q                                                                    | 102.3 d<br>37.6 t<br>79.6 d<br>83.6 d<br>72.3 d<br>19.0 q<br>57.8 q                                                                                                                                                 | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 q<br>57.8 q<br><b>р-АШте</b>                                                                                                                        | 104.4 <i>d</i><br>75.3 <i>d</i><br>86.7 <i>d</i><br>83.8 <i>d</i><br>72.3 <i>d</i><br>19.1 <i>q</i><br>61.0 <i>q</i>                                                    | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.6 q<br>62.1 q                                                                    | 104.4 <i>d</i><br>75.3 <i>d</i><br>86.7 <i>d</i><br>83.6 <i>d</i><br>72.3 <i>d</i><br>19.1 <i>q</i><br>61.0 <i>q</i>                                   | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d<br>18.6 q<br>62.1 q                                                                    | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q                                                                                                                                         | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q                                                                                                                               | 104.4 <i>d</i><br>75.3 <i>t</i><br>86.7 <i>d</i><br>83.6 <i>d</i><br>72.4 <i>d</i><br>19.1 <i>d</i><br>60.9 <i>q</i>                                                    | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.7 q<br>62.1 q                                                                    | 102.2<br>38.0 t<br>79.6 с<br>83.3 с<br>72.3 с<br>19.2 с<br>57.5 с                                                                                                                                              |
| ""<br>"""<br>""-OMe                                     | 104.4 <i>d</i><br>75.3 <i>d</i><br>86.7 <i>d</i><br>83.8 <i>d</i><br>72.3 <i>d</i><br>19.1 <i>q</i><br>61.0 <i>q</i><br><b>р-Glc</b><br>105.2 <i>d</i> | 102.4 d<br>73.2 d<br>83.7 d<br>83.8 d<br>70.1 d<br>18.8 q<br>62.3 q<br><b>р-Glc</b><br>107.2 d                                         | 102.3 <i>d</i><br>37.6 <i>t</i><br>79.6 <i>d</i><br>83.6 <i>d</i><br>72.3 <i>d</i><br>19.0 <i>q</i><br>57.8 <i>q</i><br><b>р-Тhv</b><br>104.4 <i>d</i>                                                              | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 q<br>57.8 q<br><b>р-Аlime</b><br>102.3 d                                                                                                            | 104.4 <i>d</i><br>75.3 <i>d</i><br>86.7 <i>d</i><br>83.8 <i>d</i><br>72.3 <i>d</i><br>19.1 <i>q</i><br>61.0 <i>q</i><br><b>р-Glc</b><br>105.2 <i>d</i>                  | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.6 q<br>62.1 q<br><b>р-Glc</b><br>107.0 d                                         | 104.4 <i>d</i><br>75.3 <i>d</i><br>86.7 <i>d</i><br>83.6 <i>d</i><br>72.3 <i>d</i><br>19.1 <i>q</i><br>61.0 <i>q</i><br><b>р-Glc</b><br>105.2 <i>d</i> | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d<br>18.6 q<br>62.1 q<br><b>р-Glc</b><br>107.0 d                                         | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q<br><b>р-Аlime</b><br>102.3 d                                                                                                            | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q<br><b>р-Аlime</b><br>102.3 d                                                                                                  | 104.4 <i>d</i><br>75.3 <i>t</i><br>86.7 <i>d</i><br>83.6 <i>d</i><br>72.4 <i>d</i><br>19.1 <i>d</i><br>60.9 <i>q</i><br><b>р-Glc</b><br>105.3 <i>d</i>                  | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.7 q<br>62.1 q<br><b>р-Glc</b><br>107.0 d                                         | 102.2<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 q<br>57.5 q<br><b>р-АШт</b><br>102.3                                                                                                                     |
| ""<br>""<br>"-OMe                                       | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.2 d<br>76.2 d                                               | 102.4 d<br>73.2 d<br>83.7 d<br>83.8 d<br>70.1 d<br>18.8 q<br>62.3 q<br><b>р-Glc</b><br>107.2 d<br>76.2 d                               | 102.3 d<br>37.6 t<br>79.6 d<br>83.6 d<br>72.3 d<br>19.0 q<br>57.8 q<br><b>р-Тhv</b><br>104.4 d<br>75.3 d                                                                                                            | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 q<br>57.8 q<br><b>р-АШте</b><br>102.3 d<br>73.0 d                                                                                                   | 104.4 <i>d</i><br>75.3 <i>d</i><br>86.7 <i>d</i><br>83.8 <i>d</i><br>72.3 <i>d</i><br>19.1 <i>q</i><br>61.0 <i>q</i><br><b>р-Glc</b><br>105.2 <i>d</i><br>76.2 <i>d</i> | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.6 q<br>62.1 q<br><b>р-Glc</b><br>107.0 d<br>75.8 d                               | 104.4 d<br>75.3 d<br>86.7 d<br>83.6 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>p-Glc</b><br>105.2 d<br>76.2 d                                               | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d<br>18.6 q<br>62.1 q<br><b>р-Glc</b><br>107.0 d<br>75.8 d                               | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q<br><b>p-Allme</b><br>102.3 d<br>73.0 d                                                                                                  | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q<br><b>D-Allme</b><br>102.3 d<br>73.0 d                                                                                        | 104.4 <i>d</i><br>75.3 <i>t</i><br>86.7 <i>d</i><br>83.6 <i>d</i><br>72.4 <i>d</i><br>19.1 <i>d</i><br>60.9 <i>q</i><br><b>р-Glc</b><br>105.3 <i>d</i><br>76.2 <i>d</i> | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.7 q<br>62.1 q<br><b>р-Gic</b><br>107.0 d<br>76.0 d                               | 102.2<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 q<br>57.5 q<br><b>р-АІІ</b> п<br>102.3<br>73.0 d                                                                                                         |
| ""-OMe                                                  | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d                                     | 102.4 d<br>73.2 d<br>83.7 d<br>83.8 d<br>70.1 d<br>18.8 q<br>62.3 q<br><b>p-Glc</b><br>107.2 d<br>76.2 d<br>78.9 d                     | 102.3 d<br>37.6 t<br>79.6 d<br>83.6 d<br>72.3 d<br>19.0 q<br>57.8 q<br><b>p-Thv</b><br>104.4 d<br>75.3 d<br>86.7 d                                                                                                  | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 q<br>57.8 q<br><b>p-Alime</b><br>102.3 d<br>73.0 d<br>83.5 d                                                                                        | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d                                                      | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.6 q<br>62.1 q<br><b>р-GIC</b><br>107.0 d<br>75.8 d<br>78.7 d                     | 104.4 d<br>75.3 d<br>86.7 d<br>83.6 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>p-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d                                     | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d<br>18.6 q<br>62.1 q<br><b>p-Glc</b><br>107.0 d<br>75.8 d<br>78.8 d                     | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q<br><b>D-Alime</b><br>102.3 d<br>73.0 d<br>83.4 d                                                                                        | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q<br><b>D-Alime</b><br>102.3 d<br>73.0 d<br>83.5 d                                                                              | 104.4 d<br>75.3 t<br>86.7 d<br>83.6 d<br>72.4 d<br>19.1 d<br>60.9 q<br><b>р-Glc</b><br>105.3 d<br>76.2 d<br>79.1 d                                                      | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.7 q<br>62.1 q<br><b>p-Glc</b><br>107.0 d<br>76.0 d<br>78.8 d                     | 102.2<br>38.0 t<br>79.6 c<br>83.3 c<br>72.3 c<br>19.2 c<br>57.5 c<br><b>D-Alln</b><br>102.3<br>73.0 c<br>83.5 c                                                                                                |
| "<br>"-OMe                                              | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>D-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.3 d                           | 102.4 d<br>73.2 d<br>83.7 d<br>83.8 d<br>70.1 d<br>18.8 q<br>62.3 q<br><b>p-Glc</b><br>107.2 d<br>76.2 d<br>78.9 d<br>72.5 d           | 102.3 d<br>37.6 t<br>79.6 d<br>83.6 d<br>72.3 d<br>19.0 q<br>57.8 q<br><b>p-Thv</b><br>104.4 d<br>75.3 d<br>86.7 d<br>83.6 d                                                                                        | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 q<br>57.8 q<br><b>D-Alime</b><br>102.3 d<br>73.0 d<br>83.5 d<br>83.6 d                                                                              | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>p-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.3 d                                            | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.6 q<br>62.1 q<br><b>p-Glc</b><br>107.0 d<br>75.8 d<br>78.7 d<br>72.2 d           | 104.4 d<br>75.3 d<br>86.7 d<br>83.6 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>p-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.4 d                           | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d<br>18.6 q<br>62.1 q<br><b>р-Glc</b><br>107.0 d<br>75.8 d<br>78.8 d<br>72.2 d           | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q<br><b>D-Alime</b><br>102.3 d<br>73.0 d<br>83.4 d<br>83.6 d                                                                              | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q<br><b>p-Alime</b><br>102.3 d<br>73.0 d<br>83.5 d<br>83.6 d                                                                    | 104.4 d<br>75.3 t<br>86.7 d<br>83.6 d<br>72.4 d<br>19.1 d<br>60.9 q<br><b>p-Glc</b><br>105.3 d<br>76.2 d<br>79.1 d<br>72.3 d                                            | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.7 q<br>62.1 q<br><b>p-Glc</b><br>107.0 d<br>76.0 d<br>78.8 d<br>72.2 d           | 102.2<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 q<br>57.5 q<br><b>p-Allm</b><br>102.3<br>73.0 d<br>83.5 d<br>83.6 d                                                                                      |
| ""<br>""<br>"OMe                                        | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.3 d<br>78.5 d                 | 102.4 d<br>73.2 d<br>83.7 d<br>83.8 d<br>70.1 d<br>18.8 q<br>62.3 q<br><b>р-Glc</b><br>107.2 d<br>76.2 d<br>78.9 d<br>72.5 d<br>78.5 d | 102.3 d<br>37.6 t<br>79.6 d<br>83.6 d<br>72.3 d<br>19.0 q<br>57.8 q<br><b>р-Тhv</b><br>104.4 d<br>75.3 d<br>86.7 d<br>83.6 d<br>72.3 d                                                                              | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 q<br>57.8 q<br><b>D-Allme</b><br>102.3 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d                                                                    | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.3 d<br>78.5 d                                  | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.6 q<br>62.1 q<br><b>D-Glc</b><br>107.0 d<br>75.8 d<br>78.7 d<br>72.2 d<br>78.2 d | 104.4 d<br>75.3 d<br>86.7 d<br>83.6 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.4 d<br>78.5 d                 | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d<br>18.6 q<br>62.1 q<br><b>р-Glc</b><br>107.0 d<br>75.8 d<br>78.8 d<br>72.2 d<br>78.7 d | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q<br><b>D-Alime</b><br>102.3 d<br>73.0 d<br>83.4 d<br>83.6 d<br>69.8 d                                                                    | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q<br><b>D-Allme</b><br>102.3 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.8 d                                                          | 104.4 d<br>75.3 t<br>86.7 d<br>83.6 d<br>72.4 d<br>19.1 d<br>60.9 q<br><b>р-Glc</b><br>105.3 d<br>76.2 d<br>79.1 d<br>72.3 d<br>78.5 d                                  | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.7 q<br>62.1 q<br><b>D-Glc</b><br>107.0 d<br>76.0 d<br>78.8 d<br>72.2 d<br>78.8 d | 102.2<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.5 d<br><b>b-Alln</b><br>102.3<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d                                                                            |
| ""<br>""-OMe<br>""<br>""-0Me                            | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>D-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.3 d                           | 102.4 d<br>73.2 d<br>83.7 d<br>83.8 d<br>70.1 d<br>18.8 q<br>62.3 q<br><b>p-Glc</b><br>107.2 d<br>76.2 d<br>78.9 d<br>72.5 d           | 102.3 d<br>37.6 t<br>79.6 d<br>83.6 d<br>72.3 d<br>19.0 q<br>57.8 q<br><b>р-Тhv</b><br>104.4 d<br>75.3 d<br>86.7 d<br>83.6 d<br>72.3 d<br>19.1 q                                                                    | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 q<br>57.8 q<br><b>p-Alime</b><br>102.3 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d<br>18.2 q                                                          | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>p-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.3 d                                            | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.6 q<br>62.1 q<br><b>p-Glc</b><br>107.0 d<br>75.8 d<br>78.7 d<br>72.2 d           | 104.4 d<br>75.3 d<br>86.7 d<br>83.6 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>p-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.4 d                           | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d<br>18.6 q<br>62.1 q<br><b>р-Glc</b><br>107.0 d<br>75.8 d<br>78.8 d<br>72.2 d           | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q<br><b>D-Alime</b><br>102.3 d<br>73.0 d<br>83.4 d<br>83.6 d<br>69.8 d<br>18.6 q                                                          | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q<br><b>D-Allme</b><br>102.3 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.8 d<br>18.2 q                                                | 104.4 d<br>75.3 t<br>86.7 d<br>83.6 d<br>72.4 d<br>19.1 d<br>60.9 q<br><b>p-Glc</b><br>105.3 d<br>76.2 d<br>79.1 d<br>72.3 d                                            | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.7 q<br>62.1 q<br><b>p-Glc</b><br>107.0 d<br>76.0 d<br>78.8 d<br>72.2 d           | 102.2<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>57.5 d<br><b>b-Alln</b><br>102.3<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d<br>18.7 d                                                                            |
| ""<br>""-OMe<br>""<br>""-0Me                            | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.3 d<br>78.5 d                 | 102.4 d<br>73.2 d<br>83.7 d<br>83.8 d<br>70.1 d<br>18.8 q<br>62.3 q<br><b>р-Glc</b><br>107.2 d<br>76.2 d<br>78.9 d<br>72.5 d<br>78.5 d | 102.3 d<br>37.6 t<br>79.6 d<br>83.6 d<br>72.3 d<br>19.0 q<br>57.8 q<br><b>p-Thv</b><br>104.4 d<br>75.3 d<br>86.7 d<br>83.6 d<br>72.3 d<br>19.1 q<br>61.0 q                                                          | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 q<br>57.8 q<br><b>p-Alime</b><br>102.3 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d<br>18.2 q<br>62.1 q                                                | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.3 d<br>78.5 d                                  | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.6 q<br>62.1 q<br><b>D-Glc</b><br>107.0 d<br>75.8 d<br>78.7 d<br>72.2 d<br>78.2 d | 104.4 d<br>75.3 d<br>86.7 d<br>83.6 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.4 d<br>78.5 d                 | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d<br>18.6 q<br>62.1 q<br><b>р-Glc</b><br>107.0 d<br>75.8 d<br>78.8 d<br>72.2 d<br>78.7 d | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q<br><b>p-Alime</b><br>102.3 d<br>73.0 d<br>83.4 d<br>83.6 d<br>69.8 d<br>18.6 q<br>62.0 q                                                | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q<br><b>p-Alime</b><br>102.3 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.8 d<br>18.2 q<br>62.0 q                                      | 104.4 d<br>75.3 t<br>86.7 d<br>83.6 d<br>72.4 d<br>19.1 d<br>60.9 q<br><b>р-Glc</b><br>105.3 d<br>76.2 d<br>79.1 d<br>72.3 d<br>78.5 d                                  | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.7 q<br>62.1 q<br><b>D-Glc</b><br>107.0 d<br>76.0 d<br>78.8 d<br>72.2 d<br>78.8 d | 102.2<br>38.0 t<br>79.6 c<br>83.3 c<br>72.3 c<br>19.2 c<br>57.5 c<br><b>b-Allr</b><br>102.3<br>73.0 c<br>83.5 c<br>83.6 c<br>69.9 c<br>18.7 c<br>62.1 c                                                        |
| ""<br>""-OMe<br>""<br>""<br>""<br>"<br>"<br>"<br>"<br>" | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.3 d<br>78.5 d                 | 102.4 d<br>73.2 d<br>83.7 d<br>83.8 d<br>70.1 d<br>18.8 q<br>62.3 q<br><b>р-Glc</b><br>107.2 d<br>76.2 d<br>78.9 d<br>72.5 d<br>78.5 d | 102.3 d<br>37.6 t<br>79.6 d<br>83.6 d<br>72.3 d<br>19.0 q<br>57.8 q<br><b>р-Тhv</b><br>104.4 d<br>75.3 d<br>86.7 d<br>83.6 d<br>72.3 d<br>19.1 q                                                                    | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 q<br>57.8 q<br><b>p-Alime</b><br>102.3 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d<br>18.2 q                                                          | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.3 d<br>78.5 d                                  | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.6 q<br>62.1 q<br><b>D-Glc</b><br>107.0 d<br>75.8 d<br>78.7 d<br>72.2 d<br>78.2 d | 104.4 d<br>75.3 d<br>86.7 d<br>83.6 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.4 d<br>78.5 d                 | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d<br>18.6 q<br>62.1 q<br><b>р-Glc</b><br>107.0 d<br>75.8 d<br>78.8 d<br>72.2 d<br>78.7 d | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q<br><b>D-Alime</b><br>102.3 d<br>73.0 d<br>83.4 d<br>83.6 d<br>69.8 d<br>18.6 q                                                          | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q<br><b>D-Allme</b><br>102.3 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.8 d<br>18.2 q                                                | 104.4 d<br>75.3 t<br>86.7 d<br>83.6 d<br>72.4 d<br>19.1 d<br>60.9 q<br><b>р-Glc</b><br>105.3 d<br>76.2 d<br>79.1 d<br>72.3 d<br>78.5 d                                  | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.7 q<br>62.1 q<br><b>D-Glc</b><br>107.0 d<br>76.0 d<br>78.8 d<br>72.2 d<br>78.8 d | 102.2<br>38.0 t<br>79.6 c<br>83.3 c<br>72.3 c<br>57.5 c<br><b>D-Allr</b><br>102.3<br>73.0 c<br>83.5 c<br>83.6 c<br>69.9 c<br>18.7 c                                                                            |
| ""-OMe<br>""'-OMe<br>""''-OMe                           | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.3 d<br>78.5 d                 | 102.4 d<br>73.2 d<br>83.7 d<br>83.8 d<br>70.1 d<br>18.8 q<br>62.3 q<br><b>р-Glc</b><br>107.2 d<br>76.2 d<br>78.9 d<br>72.5 d<br>78.5 d | 102.3 d<br>37.6 t<br>79.6 d<br>83.6 d<br>72.3 d<br>19.0 q<br>57.8 q<br><b>p-Thv</b><br>104.4 d<br>75.3 d<br>86.7 d<br>83.6 d<br>72.3 d<br>19.1 q<br>61.0 q                                                          | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 q<br>57.8 q<br><b>p-Alime</b><br>102.3 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d<br>18.2 q<br>62.1 q                                                | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.3 d<br>78.5 d                                  | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.6 q<br>62.1 q<br><b>D-Glc</b><br>107.0 d<br>75.8 d<br>78.7 d<br>72.2 d<br>78.2 d | 104.4 d<br>75.3 d<br>86.7 d<br>83.6 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.4 d<br>78.5 d                 | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d<br>18.6 q<br>62.1 q<br><b>р-Glc</b><br>107.0 d<br>75.8 d<br>78.8 d<br>72.2 d<br>78.7 d | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q<br><b>p-Alime</b><br>102.3 d<br>73.0 d<br>83.4 d<br>83.6 d<br>69.8 d<br>18.6 q<br>62.0 q                                                | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q<br><b>p-Alime</b><br>102.3 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.8 d<br>18.2 q<br>62.0 q                                      | 104.4 d<br>75.3 t<br>86.7 d<br>83.6 d<br>72.4 d<br>19.1 d<br>60.9 q<br><b>р-Glc</b><br>105.3 d<br>76.2 d<br>79.1 d<br>72.3 d<br>78.5 d                                  | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.7 q<br>62.1 q<br><b>D-Glc</b><br>107.0 d<br>76.0 d<br>78.8 d<br>72.2 d<br>78.8 d | 102.2<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 g<br>57.5 g<br><b>р-АШ</b><br>102.3<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d<br>18.7 g<br>62.1 g<br><b>р-Glc</b>                                          |
| ""-OMe<br>""'-OMe<br>""''-OMe                           | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.3 d<br>78.5 d                 | 102.4 d<br>73.2 d<br>83.7 d<br>83.8 d<br>70.1 d<br>18.8 q<br>62.3 q<br><b>р-Glc</b><br>107.2 d<br>76.2 d<br>78.9 d<br>72.5 d<br>78.5 d | 102.3 d<br>37.6 t<br>79.6 d<br>83.6 d<br>72.3 d<br>19.0 q<br>57.8 q<br><b>р-Тhv</b><br>104.4 d<br>75.3 d<br>86.7 d<br>83.6 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.0 d                               | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 q<br>57.8 q<br><b>р-АШте</b><br>102.3 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d<br>18.2 q<br>62.1 q<br><b>р-Glc</b>                                 | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.3 d<br>78.5 d                                  | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.6 q<br>62.1 q<br><b>D-Glc</b><br>107.0 d<br>75.8 d<br>78.7 d<br>72.2 d<br>78.2 d | 104.4 d<br>75.3 d<br>86.7 d<br>83.6 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.4 d<br>78.5 d                 | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d<br>18.6 q<br>62.1 q<br><b>р-Glc</b><br>107.0 d<br>75.8 d<br>78.8 d<br>72.2 d<br>78.7 d | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q<br><b>р-АІІте</b><br>102.3 d<br>73.0 d<br>83.4 d<br>83.6 d<br>69.8 d<br>18.6 q<br>62.0 q<br><b>р-GІс</b>                                | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q<br><b>р-АІІте</b><br>102.3 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.8 d<br>18.2 q<br>62.0 q<br><b>р-GІС</b>                      | 104.4 d<br>75.3 t<br>86.7 d<br>83.6 d<br>72.4 d<br>19.1 d<br>60.9 q<br><b>р-Glc</b><br>105.3 d<br>76.2 d<br>79.1 d<br>72.3 d<br>78.5 d                                  | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.7 q<br>62.1 q<br><b>D-Glc</b><br>107.0 d<br>76.0 d<br>78.8 d<br>72.2 d<br>78.8 d | 102.2<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 q<br>57.5 q<br><b>р-АІІп</b><br>102.3<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d<br>18.7 q<br>62.1 q<br><b>р-Gіс</b><br>107.0                               |
| ""-OMe<br>"""-OMe<br>"""<br>"""-OMe                     | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.3 d<br>78.5 d                 | 102.4 d<br>73.2 d<br>83.7 d<br>83.8 d<br>70.1 d<br>18.8 q<br>62.3 q<br><b>р-Glc</b><br>107.2 d<br>76.2 d<br>78.9 d<br>72.5 d<br>78.5 d | 102.3 d<br>37.6 t<br>79.6 d<br>83.6 d<br>72.3 d<br>19.0 q<br>57.8 q<br><b>p-Thv</b><br>104.4 d<br>75.3 d<br>86.7 d<br>83.6 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>p-Glc</b><br>105.0 d<br>76.2 d                     | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 q<br>57.8 q<br><b>p-Alime</b><br>102.3 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d<br>18.2 q<br>62.1 q<br><b>p-Gic</b><br>107.0 d<br>75.8 d           | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.3 d<br>78.5 d                                  | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.6 q<br>62.1 q<br><b>D-Glc</b><br>107.0 d<br>75.8 d<br>78.7 d<br>72.2 d<br>78.2 d | 104.4 d<br>75.3 d<br>86.7 d<br>83.6 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.4 d<br>78.5 d                 | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d<br>18.6 q<br>62.1 q<br><b>р-Glc</b><br>107.0 d<br>75.8 d<br>78.8 d<br>72.2 d<br>78.7 d | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q<br><b>р-АІІте</b><br>102.3 d<br>73.0 d<br>83.4 d<br>83.6 d<br>69.8 d<br>18.6 q<br>62.0 q<br><b>р-GІс</b><br>107.0 d<br>75.8 d           | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q<br><b>D-Alime</b><br>102.3 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.8 d<br>18.2 q<br>62.0 q<br><b>D-Gic</b><br>107.0 d<br>75.8 d | 104.4 d<br>75.3 t<br>86.7 d<br>83.6 d<br>72.4 d<br>19.1 d<br>60.9 q<br><b>р-Glc</b><br>105.3 d<br>76.2 d<br>79.1 d<br>72.3 d<br>78.5 d                                  | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.7 q<br>62.1 q<br><b>D-Glc</b><br>107.0 d<br>76.0 d<br>78.8 d<br>72.2 d<br>78.8 d | 102.2<br>38.0 t<br>79.6 c<br>83.3 c<br>72.3 c<br>19.2 c<br>57.5 c<br><b>b-Allm</b><br>102.3<br>73.0 c<br>83.5 c<br>83.6 c<br>69.9 c<br>18.7 c<br>62.1 c<br><b>b-Glc</b><br>107.0<br>75.9 c                     |
|                                                         | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.3 d<br>78.5 d                 | 102.4 d<br>73.2 d<br>83.7 d<br>83.8 d<br>70.1 d<br>18.8 q<br>62.3 q<br><b>р-Glc</b><br>107.2 d<br>76.2 d<br>78.9 d<br>72.5 d<br>78.5 d | 102.3 d<br>37.6 t<br>79.6 d<br>83.6 d<br>72.3 d<br>19.0 q<br>57.8 q<br><b>D-Thv</b><br>104.4 d<br>75.3 d<br>86.7 d<br>86.7 d<br>83.6 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>D-Glc</b><br>105.0 d<br>76.2 d<br>79.1 d | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 q<br>57.8 q<br><b>D-Allme</b><br>102.3 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d<br>18.2 q<br>62.1 q<br><b>D-Glc</b><br>107.0 d<br>75.8 d<br>78.8 d | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.3 d<br>78.5 d                                  | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.6 q<br>62.1 q<br><b>D-Glc</b><br>107.0 d<br>75.8 d<br>78.7 d<br>72.2 d<br>78.2 d | 104.4 d<br>75.3 d<br>86.7 d<br>83.6 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.4 d<br>78.5 d                 | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d<br>18.6 q<br>62.1 q<br><b>р-Glc</b><br>107.0 d<br>75.8 d<br>78.8 d<br>72.2 d<br>78.7 d | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q<br><b>D-Alime</b><br>102.3 d<br>73.0 d<br>83.4 d<br>83.6 d<br>69.8 d<br>18.6 q<br>62.0 q<br><b>D-Glc</b><br>107.0 d<br>75.8 d<br>78.8 d | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q<br><b>D-Allme</b><br>102.3 d<br>73.0 d<br>83.6 d<br>69.8 d<br>18.2 q<br>62.0 q<br><b>D-Glc</b><br>107.0 d<br>75.8 d<br>78.8 d | 104.4 d<br>75.3 t<br>86.7 d<br>83.6 d<br>72.4 d<br>19.1 d<br>60.9 q<br><b>р-Glc</b><br>105.3 d<br>76.2 d<br>79.1 d<br>72.3 d<br>78.5 d                                  | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.7 q<br>62.1 q<br><b>D-Glc</b><br>107.0 d<br>76.0 d<br>78.8 d<br>72.2 d<br>78.8 d | 102.2<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 q<br>57.5 q<br><b>p-Alin</b><br>102.3<br>73.0 d<br>83.6 d<br>83.6 d<br>83.6 d<br>69.9 d<br>18.7 q<br>62.1 q<br><b>p-Gic</b><br>107.0<br>75.9 d<br>78.8 d |
| ""-OMe<br>""-OMe<br>"""<br>"""<br>""<br>""<br>""-OMe    | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.3 d<br>78.5 d                 | 102.4 d<br>73.2 d<br>83.7 d<br>83.8 d<br>70.1 d<br>18.8 q<br>62.3 q<br><b>р-Glc</b><br>107.2 d<br>76.2 d<br>78.9 d<br>72.5 d<br>78.5 d | 102.3 d<br>37.6 t<br>79.6 d<br>83.6 d<br>72.3 d<br>19.0 q<br>57.8 q<br><b>p-Thv</b><br>104.4 d<br>75.3 d<br>86.7 d<br>83.6 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>p-Glc</b><br>105.0 d<br>76.2 d                     | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 q<br>57.8 q<br><b>p-Alime</b><br>102.3 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d<br>18.2 q<br>62.1 q<br><b>p-Gic</b><br>107.0 d<br>75.8 d           | 104.4 d<br>75.3 d<br>86.7 d<br>83.8 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.3 d<br>78.5 d                                  | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.6 q<br>62.1 q<br><b>D-Glc</b><br>107.0 d<br>75.8 d<br>78.7 d<br>72.2 d<br>78.2 d | 104.4 d<br>75.3 d<br>86.7 d<br>83.6 d<br>72.3 d<br>19.1 q<br>61.0 q<br><b>р-Glc</b><br>105.2 d<br>76.2 d<br>79.0 d<br>72.4 d<br>78.5 d                 | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d<br>18.6 q<br>62.1 q<br><b>р-Glc</b><br>107.0 d<br>75.8 d<br>78.8 d<br>72.2 d<br>78.7 d | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q<br><b>D-Alime</b><br>102.3 d<br>73.0 d<br>83.4 d<br>83.6 d<br>69.8 d<br>18.6 q<br>62.0 q<br><b>D-Gic</b><br>107.0 d<br>75.8 d           | 102.2 d<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 d<br>57.8 q<br><b>D-Alime</b><br>102.3 d<br>73.0 d<br>83.5 d<br>83.6 d<br>69.8 d<br>18.2 q<br>62.0 q<br><b>D-Gic</b><br>107.0 d<br>75.8 d | 104.4 d<br>75.3 t<br>86.7 d<br>83.6 d<br>72.4 d<br>19.1 d<br>60.9 q<br><b>р-Glc</b><br>105.3 d<br>76.2 d<br>79.1 d<br>72.3 d<br>78.5 d                                  | 102.2 d<br>73.0 d<br>83.5 d<br>83.6 d<br>70.0 d<br>18.7 q<br>62.1 q<br><b>D-Glc</b><br>107.0 d<br>76.0 d<br>78.8 d<br>72.2 d<br>78.8 d | 102.2<br>38.0 t<br>79.6 d<br>83.3 d<br>72.3 d<br>19.2 q<br>57.5 q<br><b>p-Alln</b><br>102.3<br>73.0 d<br>83.5 d<br>83.6 d<br>69.9 d<br>18.7 q<br>62.1 q                                                        |

<sup>a</sup> Ac: Acetyl; Bz: Benzoyl; p-Cym: p-Cymaropyranose; p-Ole: p-Oleandropyranose; p-Thv: p-Thevetopyranose; p-Allme: 6-deoxy-3-O-methyl-p-allopyranose; p-Glc: p-Glucopyranose. <sup>b</sup> s: singlet; d: doublet; t: triple;: q: quartet.

| Table | 2 |
|-------|---|
|       |   |

<sup>1</sup>H NMR (500 MHz, C<sub>5</sub>D<sub>5</sub>N) spectroscopic data for compounds **1–5**.<sup>a,b</sup>

| Atom      | 1               | J(Hz)            | 2          | J (Hz)           | 3          | J (Hz)          | 4             | J (Hz)           | 5                | J (Hz)        |
|-----------|-----------------|------------------|------------|------------------|------------|-----------------|---------------|------------------|------------------|---------------|
| 1         | 1.82 <i>m</i> * | 14.3, 13.4, 3.9  | 1.78 m     | 14.2, 13.5, 3.8  | 1.79 m     | 13.9, 13.2, 3.9 | 1.80 m        | 13.8, 13.3, 3.9  | 1.94 m           | 13.3, 13.2, 3 |
|           | 1.12 ddd        |                  | 1.08 ddd   |                  | 1.09 ddd   |                 | 1.09 ddd      |                  | 1.19 ddd         |               |
|           | 2.10 m          |                  | 2.08 m     |                  | 2.08 m     |                 | 2.08 m        |                  | 2.13 m           |               |
|           | 1.82 m          |                  | 1.80 m     |                  | 1.81 m     |                 | 1.80 m        |                  | 1.86 m           |               |
|           | 3.86 m          |                  | 3.85 m     |                  | 3.85 m     |                 | 3.85 m        |                  | 3.91 m           |               |
|           | 2.56 br dd      | 12.8, 4.6        | 2.54 br dd | 12.9, 4.6        | 2.56 br dd | 12.5, 4.5       | 2.54 br dd    | 13.0, 4.6        | 2.60 br dd       | 12.7, 4.8     |
|           | 2.45 m          |                  | 2.41 m     |                  | 2.44 m     |                 | 2.43 m        |                  | 2.50 m           |               |
|           | 5.31 m          |                  | 5.29 m     |                  | 5.28 m     |                 | 5.29 m        |                  | 5.40 m           |               |
|           | 2.47 m          |                  | 2.45 m     |                  | 2.47 m     |                 | 2.47 m        |                  | 2.50 m           |               |
|           | 2.33 m          |                  | 2.32 m     |                  | 2.32 m     |                 | 2.32 m        |                  | 2.38 m           |               |
|           | 1.72 m          |                  | 1.69 m     |                  | 1.70 m     |                 | 1.71 m        |                  | 1.66 m           |               |
| 1         | 2.24 ddd        | 12.7, 12.3, 12.0 | 2.22 ddd   | 12.9, 12.6, 12.4 | 2.24 m     |                 | 2.23 ddd      | 12.5, 12.3, 12.2 | 2.54 m           |               |
|           | 2.10 m          | ,,               | 2.08 m     | ,,               | 2.09 m     |                 | 2.09 m        | ,,               | 2.01 m           |               |
| 2         | 4.99 dd         | 12.1, 4.1        | 4.97 dd    | 11.6, 3.9        | 4.98 m     |                 | 4.98 dd       | 12.2, 4.2        | 3.92 m           |               |
| 5         | 2.12 m          | 12.1, 4.1        | 2.10 m     | 11.0, 5.5        | 2.10 m     |                 | 2.11m         | 12.2, 4.2        | 2.06 m           |               |
| 5         | 3.25 m          |                  | 3.23 m     |                  | 3.23 m     |                 | 3.23 m        |                  | 2.00 m<br>2.01 m |               |
| ,         | 2.02 m          |                  | 2.01 m     |                  | 2.03 m     |                 | 2.02 m        |                  | 2.01 m           |               |
| ,         |                 |                  |            |                  |            |                 |               |                  | 1.09 c           |               |
| 3         | 1.94 s          |                  | 1.94 s     |                  | 1.94 s     |                 | 1.94 s        |                  | 1.98 s           |               |
| )         | 1.35 s          |                  | 1.34 s     |                  | 1.34 s     |                 | 1.34 s        |                  | 1.43 s           |               |
| )         | 2.00            |                  | 2.00       |                  | 2.40       |                 | 2.40          |                  | 1544             | 6.4           |
|           | 2.08 s          |                  | 2.08 s     |                  | 2.48 s     |                 | 2.48 s        |                  | 1.54 d           | 6.4           |
| -         | 12-Ac           |                  | 12-Ac      |                  | 12-Ac      |                 | 12-Ac         |                  |                  |               |
|           | 2.49 s          |                  | 2.48 s     |                  | 2.08 s     |                 | 2.08 s        |                  |                  |               |
|           | D-Cym           |                  | D-Cym      |                  | D-Cym      |                 | D-Cym         |                  | D-Cym            |               |
| -         | 5 20 hr d       | 0.1              | 5.26 br d  | 0.4              | 5.29 m     |                 | 5 20 m        |                  | 5.29 dd          | 05 17         |
|           | 5.29 br d       | 9.1              |            | 9.4              |            |                 | 5.29 m        |                  |                  | 9.5, 1.7      |
|           | 2.32 m          | 122 00 20        | 2.28 m     | 125 06 24        | 2.32 m     |                 | 2.31 m        |                  | 2.32 m           |               |
|           | 1.90 ddd        | 13.2, 9.8, 2.6   | 1.88 ddd   | 13.5, 9.6, 2.4   | 1.92 m     |                 | 1.92 m        |                  | 1.90 m           |               |
|           | 4.05 m          |                  | 4.02 m     |                  | 4.10 m     |                 | 4.10 m        |                  | 4.05 m           |               |
|           | 3.49 dd         | 9.6, 2.7         | 3.47 dd    | 9.5, 2.7         | 3.52 m     |                 | 3.52 m        |                  | 3.49 dd          | 9.5, 2.7      |
|           | 4.23 m          |                  | 4.22 m     |                  | 4.24 m     |                 | 4.23 m        |                  | 4.25 m           |               |
|           | 1.44 d          | 6.1              | 1.43 d     | 6.2              | 1.40 d     | 6.0             | 1.38 d        | 6.2              | 1.44 d           | 6.0           |
| -OMe      | 3.56 s          |                  | 3.55 s     |                  | 3.58 s     |                 | 3.62 s        |                  | 3.56 s           |               |
|           | D-Ole           |                  | D-Ole      |                  | D-Cym      |                 | D- <b>Cym</b> |                  | D-Ole            |               |
|           |                 |                  |            |                  | •          |                 | -             |                  |                  |               |
|           | 4.70 dd         | 9.7, 1.6         | 4.67 dd    | 9.6, 1.7         | 5.13 dd    | 9.7, 1.6        | 5.12 dd       | 9.6, 1.5         | 4.70 dd          | 9.7, 1.7      |
| /         | 2.50 m          |                  | 2.46 m     |                  | 2.32 m     |                 | 2.31 m        |                  | 2.50 m           |               |
|           | 1.78 m          |                  | 1.73 m     |                  | 1.82 m     |                 | 1.81 m        |                  | 1.78 m           |               |
| /         | 3.59 m          |                  | 3.56 m     |                  | 4.02 m     |                 | 4.00 m        |                  | 3.59 m           |               |
| <i>'</i>  | 3.62 dd         | 9.0, 8.8         | 3.56 m     |                  | 3.44 dd    | 9.6, 2.6        | 3.42 dd       | 9.6, 2.6         | 3.62 m           |               |
| /         | 3.56 m          |                  | 3.54 m     |                  | 4.20 m     |                 | 4.17 m        |                  | 3.56 m           |               |
| /         | 1.68 d          | 6.1              | 1.61 d     | 5.4              | 1.39 d     | 6.0             | 1.37 d        | 6.2              | 1.68 d           | 6.0           |
| ′-OMe     | 3.49 s          |                  | 3.53 s     |                  | 3.63 s     |                 | 3.55 s        |                  | 3.49 s           |               |
|           | D-Thv           |                  | D-Allme    |                  | D-Ole      |                 | D-Ole         |                  | D- <b>Thv</b>    |               |
| -         |                 |                  |            |                  |            |                 |               |                  |                  |               |
| "         | 4.90 d          | 7.9              | 5.27 d     | 8.1              | 4.68 dd    | 9.7, 1.5        | 4.67 dd       | 9.7, 1.4         | 4.90 d           | 7.9           |
| <i>'</i>  | 3.93 dd         | 9.0, 7.9         | 3.83 m     |                  | 2.49 m     |                 | 2.48 m        |                  | 3.93 m           |               |
|           |                 |                  |            |                  | 1.77 m     |                 | 1.73 m        |                  |                  |               |
| "         | 3.71 dd         | 9.2, 9.0         | 4.50 dd    | 2.6, 2.5         | 3.56 m     |                 | 3.57 m        |                  | 3.71 dd          | 8.9, 8.9      |
| "         | 3.89 dd         | 9.3, 9.2         | 3.76 dd    | 9.5, 2.2         | 3.62 m     |                 | 3.57 m        |                  | 3.89 m           |               |
| "         | 3.77 dq         | 9.3, 6.1         | 4.29 m     |                  | 3.57 m     |                 | 3.55 m        |                  | 3.77 m           | 9.4, 6.2      |
| <i>''</i> | 1.78 d          | 6.1              | 1.66 d     | 6.2              | 1.68 d     | 6.0             | 1.61 d        | 5.5              | 1.78 d           | 6.1           |
| ′′-OMe    | 3.96 s          |                  | 3.84 s     |                  | 3.52 s     |                 | 3.53 s        |                  | 3.96 s           |               |
| 2e        |                 |                  |            |                  |            |                 |               |                  |                  |               |
| -         | D-Glc           |                  | D-Glc      |                  | D-Thv      |                 | D-Allme       |                  | D-Glc            |               |
|           | 5.16 d          | 7.8              | 5.00 d     | 8.2              | 4.89 d     | 7.8             | 5.28 m        |                  | 5.16 d           | 7.8           |
| "         | 4.07 m          |                  | 4.05 dd    | 8.6, 8.5         | 3.93 m     |                 | 3.85 m        |                  | 4.07 m           |               |
| ,,,       | 4.26 m          |                  | 4.28 m     |                  | 3.71 dd    | 9.0, 8.8        | 4.50 dd       | 2.7, 2.6         | 4.26 m           |               |
| ,,,       | 4.26 m          |                  | 4.24 m     |                  | 3.89 m     |                 | 3.77 dd       | 9.5, 2.4         | 4.26 m           |               |
| ""        | 4.00 ddd        | 8.6, 5.4, 2.9    | 4.02 m     |                  | 3.76 m     |                 | 4.30 m        |                  | 4.00 ddd         | 8.6, 5.4, 3.0 |
|           | 4.56 dd         | 11.5, 2.1        | 4.57 dd    | 11.5, 2.0        | 1.79 d     | 6.1             | 1.67 d        | 6.2              | 4.56 dd          | 11.5, 2.7     |
|           | 4.38 dd         | 11.5, 5.3        | 4.41 dd    | 11.5, 5.3        |            |                 |               |                  | 4.38 dd          | 11.5, 5.6     |
| ///-OMe   |                 |                  |            |                  | 3.96 s     |                 | 3.84 s        |                  |                  |               |
|           |                 |                  |            |                  | D-Glc      |                 | D-Glc         |                  |                  |               |
| ""        |                 |                  |            | -                | 5.16 d     | 7.8             | 5.01 d        | 7.9              |                  |               |
| ,,,,,     |                 |                  |            |                  |            | 1.0             |               | 1.3              |                  |               |
|           |                 |                  |            |                  | 4.06 m     |                 | 4.06 m        |                  |                  |               |
|           |                 |                  |            |                  | 4.26 m     |                 | 4.28 m        |                  |                  |               |
|           |                 |                  |            |                  | 4.25 m     |                 | 4.25 m        |                  |                  |               |
| ,,,,      |                 |                  |            |                  | 4.01 m     |                 | 4.02 m        |                  |                  |               |
|           |                 |                  |            |                  | 4.56 br d  | 11.7            | 4.58 br d     | 11.5             |                  |               |
| ,,,,,     |                 |                  |            |                  | 4.40 br d  | 11.7            | 4.40 br d     | 11.5             |                  |               |

<sup>a</sup> Ac: Acetyl; p-Cym: p-Cymaropyranose; p-Ole: p-Oleandropyranose; p-Thv: p-Thevetopyranose; p-Allme: 6-deoxy-3-O-methyl-p-allopyranose; p-Glc: p-Glucopyranose. <sup>b</sup> s: singlet; d: doublet; t: triplet; q: quartet; m: multiplet; br: broad.

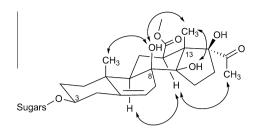



Fig. 3. Observed ROE couplings of compound 1.

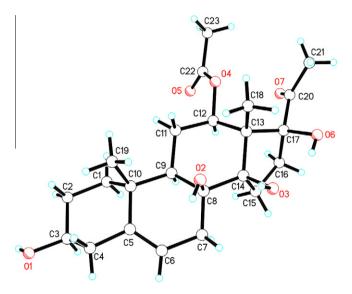



Fig. 4. X-ray structure of metaplexigenin (1a) obtained by hydrolysis of 1.

proton of oleandrose H-1" ( $\delta$  4.67) and C-4" ( $\delta$  84.0); anomeric proton of 6-deoxy-3-O-methyl allopyranose H-1"" ( $\delta$  5.27) and C-4" ( $\delta$  83.7); and anomeric proton of glucose H-1"" ( $\delta$  5.00) and C-4" ( $\delta$  83.8). As a result, the structure of **2** was assigned to be metaplexigenin 3-O- $\beta$ -D-glucopyranosyl-(1  $\rightarrow$  4)- $\beta$ -(6-deoxy-3-O-methyl)-D-allopyranosyl-(1  $\rightarrow$  4)- $\beta$ -D-oleandropyranosyl-(1  $\rightarrow$  4)- $\beta$ -D-cymaropyranose.

Verticillosides C (3) and D (4) were both isolated as white, amorphous powders. The HRMS of **3** and **4** showed very similar  $[M+Na]^+$  ions at m/z 1199.5857 and 1199.5845, respectively, suggesting that both shared the same molecular formula C<sub>57</sub>H<sub>92</sub>NaO<sub>25</sub> (calcd 1199.5825). The aglycone structure in the two compounds was established to be metaplexigenin (vide supra). However, five anomeric protons were identified in the <sup>1</sup>H NMR spectroscopic (3:  $\delta$  5.29, 5.16, 5.13, 4.89 and 4.68; 4:  $\delta$  5.29, 5.28, 5.12, 5.01 and 4.67) indicating that each compound contained five sugar units. Only one proton signal corresponding to H-1<sup>'''</sup> ( $\delta$  4.89 in **3**, and  $\delta$  5.28 in **4**) showed a significant difference when the <sup>1</sup>H NMR spectrum of **3** was compared to that of **4**. The <sup>1</sup>H, <sup>1</sup>H DQFCOSY and <sup>1</sup>H,<sup>1</sup>H-TOCSY and HSQC-TOCSY spectra assisted significantly with the identification for the spin systems of each sugar as well as with the assignment of all the <sup>1</sup>H and <sup>13</sup>C signals (Tables 1 and 2). Two units of cymarose and single units of oleandrose. thevetose, and glucose were identified in 3. On the other hand, the sugars present in 4 were found to consist of two units of cymarose and single units of oleandrose, 6-deoxy-3-O-methyl allopyranose, and glucose. As previously described, HMBC correlations allowed for the establishment of the sugar sequence in 3: cymarose I anomeric proton H-1' ( $\delta$  5.29) and C-3 ( $\delta$  78.0); cymarose II anomeric proton H-1" ( $\delta$  5.13) and C-4' ( $\delta$  83.7); oleandrose anomeric meric proto

183

proton H-1<sup>'''</sup> ( $\delta$  4.68) and C-4<sup>''</sup> ( $\delta$  83.5); thevetose anomeric proton H-1<sup>''''</sup> ( $\delta$  4.89) and C-4<sup>'''</sup> ( $\delta$  83.6); and glucose anomeric proton H-1<sup>''''</sup> ( $\delta$  5.16) and C-4<sup>'''</sup> ( $\delta$  83.6). In a comparable manner, the HMBC of 4 showed correlations between cymarose I anomeric proton H-1<sup> $\prime$ </sup> ( $\delta$  5.29) and C-3 ( $\delta$  78.0); cymarose II anomeric proton H-1" ( $\delta$  5.12) and C-4' ( $\delta$  83.7); oleandrose anomeric proton H-1" ( $\delta$  4.67) and C-4" ( $\delta$  83.5); 6-deoxy-3-O-mehtyl allopyranose anomeric proton H-1<sup>'''</sup> ( $\delta$  5.28) and C-4<sup>'''</sup> ( $\delta$  83.3); and glucose anomeric proton H-1<sup>'''</sup> ( $\delta$  5.01) and C-4<sup>'''</sup> ( $\delta$  83.6). Hence, **3** was determined to be metaplexigenin 3-O-B-D-glucopyranosyl- $(1 \rightarrow 4)$ - $\beta$ -D-thevetopyranosyl- $(1 \rightarrow 4)$ - $\beta$ -D-oleandropyranosyl- $(1 \rightarrow 4)$ - $\beta$ -D-cymaropyranosyl- $(1 \rightarrow 4)$ - $\beta$ -D-cymaropyranose. Compound **4** was established to be metaplexigenin  $3-O-\beta-p-glucopyr$ anosyl- $(1 \rightarrow 4)$ - $\beta$ -(6-deoxy-3-O-methyl)-D-allopyranosyl- $(1 \rightarrow 4)$ - $\beta$ -D-oleandropvranosvl- $(1 \rightarrow 4)$ - $\beta$ -D-cvmaropvranosvl- $(1 \rightarrow 4)$ - $\beta$ cvmaropvranose.

Verticilloside E (5), isolated as a white amorphous powder. showed a calculated molecular formula of C48H80NaO21 based on the observed HRMS ion  $[M+Na]^+$  at m/z 1015.5098 (calcd 1015.5090). The observation of two singlet methyl groups ( $\delta$  1.98, 1.43), a methyl doublet ( $\delta$  1.54), and an olefinic proton ( $\delta$  5.40) in the <sup>1</sup>H NMR spectrum as well as two olefinic carbons ( $\delta$  139.5 s and 120.2 d) in the <sup>13</sup>C NMR suggested the presence of a 20-hydroxy-pregn-5-ene skeleton. Using <sup>1</sup>H, <sup>1</sup>H COSY, HSQC and HMBC spectra, <sup>1</sup>H and <sup>13</sup>C signals in the pregnane skeleton could be assigned unambiguously (Tables 1 and 2) and allowed for the identification of the aglycone as sarcostin (5a). Relative orientation of the hydroxy group at position C-17 was determined as beta based on the X-ray structure of the aglycone (5a) obtained by acid hydrolysis of 5 (Fig. 5). The <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic data were in good agreement with previously reported data for sarcostin (Li et al., 2008). In addition, 5 showed four anomeric protons in the <sup>1</sup>H NMR spectrum ( $\delta$  5.29, 5.16, 4.90, and 4.70) indicating the presence of four sugars attached to the aglycone. The sugars were found to be the same as those present in 1 based on their <sup>1</sup>H and <sup>13</sup>C NMR data (Tables 1 and 2). Consequently, **5** was elucidated as sarcostin 3-O-B-D-glucopyranosyl- $(1 \rightarrow 4)$ -B-D-thevetopyranosyl- $(1 \rightarrow 4)$ -B-D-oleandropyranosyl- $(1 \rightarrow 4)$ -B-D-cymaropyranose. Moreover, verticilloside F (6) presented the same calculated molecular formula as 5 (C<sub>48</sub>H<sub>80</sub>NaO<sub>21</sub>) based on the experimental HRMS ion  $[M+Na]^+$  at m/z 1015.5153 (calcd 1015.5090). The <sup>1</sup>H and <sup>13</sup>C NMR signals of the aglycone portion of 5 and 6 were almost superimposable, indicating that 6 also had sarcostin as the pregnane core. On the other hand, after full assignment of the <sup>1</sup>H and <sup>13</sup>C NMR signals using 2D NMR spectra, the four sugars present in 6 were found to be the same as those present in compound 2 by means of careful comparison of their NMR data (Tables 1-3). Consequently, 6 was defined to be sarcostin 3-O- $\beta$ -D-glucopyranosyl- $(1 \rightarrow 4)$ - $\beta$ -(6-deoxy-3-Omethyl)-p-allopyranosyl- $(1 \rightarrow 4)$ - $\beta$ -oleandropyranosyl- $(1 \rightarrow 4)$ - $\beta$ -D-cymaropyranose.

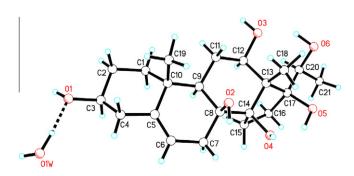



Fig. 5. X-ray structure of sarcostin (5a) obtained by hydrolysis of 5.

| T-1-1- | 2 |
|--------|---|
| Table  | 3 |

<sup>1</sup>H NMR (500 MHz,  $C_5D_5N$ ) spectroscopic data for compounds **6–10**.<sup>*a*,*b*</sup>.

| Atom                               | 6                                                | J (Hz)          | 7                                               | J (Hz)                 | 8                                         | J(Hz)                 | 9                                                                                             | J (Hz)               | 10                                                                                             | J (Hz)                 |
|------------------------------------|--------------------------------------------------|-----------------|-------------------------------------------------|------------------------|-------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------|------------------------|
|                                    | 1.93 m                                           | 13.4, 13.2, 3.5 | 1.89 m                                          | 13.4, 13.2, 3.6        | 1.89 m                                    | 13.8, 13.7, 3.5       | 1.90 m                                                                                        | 13.8, 13.7, 3.5      | 1.92 m                                                                                         | 13.5, 13.1, 3.8        |
|                                    | 1.18 ddd                                         |                 | 1.14 ddd                                        |                        | 1.13 ddd                                  |                       | 1.13 dd                                                                                       |                      | 1.20 ddd                                                                                       |                        |
|                                    | 2.13 m                                           |                 | 2.12 m                                          |                        | 2.11 m                                    |                       | 2.12 m                                                                                        |                      | 2.13 m                                                                                         |                        |
|                                    | 1.86 m                                           |                 | 1.87 m                                          |                        | 1.86 m                                    |                       | 1.85 m                                                                                        |                      | 1.86 m                                                                                         |                        |
|                                    | 3.90 m                                           |                 | 3.89 m                                          |                        | 3.89 m                                    |                       | 3.89 m                                                                                        |                      | 3.90 m                                                                                         |                        |
|                                    | 2.60 br dd                                       | 12.6, 4.5       | 2.59 br d                                       | 12.6, 4.6              | 2.58 br dd                                | 12.8, 4.7             | 2.59 br dd                                                                                    | 12.8, 4.6            | 2.61 br dd                                                                                     | 12.6, 3.6              |
|                                    | 2.49 m                                           |                 | 2.48 m                                          |                        | 2.47 m                                    |                       | 2.49 m                                                                                        |                      | 2.50 m                                                                                         |                        |
|                                    | 5.41 m                                           |                 | 5.38 m                                          |                        | 5.36 m                                    |                       | 5.36 m                                                                                        |                      | 5.39 m                                                                                         |                        |
|                                    | 2.48 m                                           |                 | 2.49 m                                          |                        | 2.49 m                                    |                       | 2.50 m                                                                                        |                      | 2.49 m                                                                                         |                        |
|                                    | 2.37 m                                           |                 | 2.37 m                                          |                        | 2.37 m                                    |                       | 2.38 m                                                                                        |                      | 2.38 m                                                                                         |                        |
|                                    | 1.65 m                                           |                 | 1.64 m                                          |                        | 1.64                                      |                       | 1.65 m                                                                                        |                      | 1.67 m                                                                                         |                        |
| 1                                  | 2.53 m                                           |                 | 2.54 m                                          |                        | 2.46 m                                    |                       | 2.47 m                                                                                        |                      | 2.54 m                                                                                         |                        |
| •                                  | 2.00 m                                           |                 | 1.90 m                                          |                        | 1.90 m                                    |                       | 1.92 m                                                                                        |                      | 2.01 m                                                                                         |                        |
| 2                                  | 3.92 m                                           |                 | 3.95 m                                          |                        | 3.96 m                                    |                       | 3.96 m                                                                                        |                      | 3.91 m                                                                                         |                        |
| 5                                  | 2.06 m                                           |                 | 2.13m                                           |                        | 2.14 m                                    |                       | 2.15 m                                                                                        | 00.07                | 2.07 m                                                                                         |                        |
| 6                                  | 2.00 m                                           |                 | 3.39 m                                          |                        | 3.40 m                                    |                       | 3.41 dd                                                                                       | 9.8, 2.7             | 2.01 m                                                                                         |                        |
|                                    |                                                  |                 | 2.13 m                                          |                        | 2.12 m                                    |                       | 2.03 m                                                                                        |                      |                                                                                                |                        |
| 8                                  | 1.97 s                                           |                 | 2.02 s                                          |                        | 2.02 s                                    |                       | 2.02 s                                                                                        |                      | 1.98 s                                                                                         |                        |
| 9                                  | 1.43 s                                           |                 | 1.42 s                                          |                        | 1.41 s                                    |                       | 1.41 s                                                                                        |                      | 1.43 s                                                                                         |                        |
| 0                                  |                                                  |                 |                                                 |                        |                                           |                       |                                                                                               |                      | 4.49 q                                                                                         | 6.4                    |
| 1                                  | 1.54 d                                           | 6.4             | 2.60 s                                          |                        | 2.65 s                                    |                       | 2.66 s                                                                                        |                      | 1.54 d                                                                                         | 6.4                    |
|                                    | D-Cym                                            |                 | D-Cym                                           |                        | D-Cym                                     |                       | D- <b>Cym</b>                                                                                 |                      | D-Cym                                                                                          |                        |
| ,                                  | 5.30 dd                                          | 9.6, 1.7        | 5.30 dd                                         | 9.5, 1.6               | 5.30 dd                                   | 9.4, 1.6              | 5.30 dd                                                                                       | 9.6, 1.6             | 5.32 dd                                                                                        | 9.5, 1.60              |
| ,                                  | 2.30 m                                           |                 | 2.32 m                                          |                        | 2.30 m                                    |                       | 2.33 m                                                                                        |                      | 2.33 m                                                                                         |                        |
|                                    | 1.90 m                                           |                 | 1.89 m                                          |                        | 1.89 m                                    |                       | 1.92 m                                                                                        |                      | 1.92 m                                                                                         |                        |
| ,                                  | 4.03 m                                           |                 | 4.05 m                                          |                        | 4.03 m                                    |                       | 4.10 m                                                                                        |                      | 4.11 m                                                                                         |                        |
| ,                                  | 3.48 dd                                          | 9.6, 2.7        | 3.48 dd                                         | 9.6, 2.7               | 3.48 dd                                   | 9.5, 2.6              | 3.52 m                                                                                        |                      | 3.52 m                                                                                         |                        |
| ,                                  | 4.23 m                                           | ,               | 4.23 m                                          | ,                      | 4.23 m                                    |                       | 4.24 m                                                                                        |                      | 4.25 m                                                                                         |                        |
| ,                                  | 1.43 d                                           | 6.2             | 1.42 d                                          | 6.2                    | 1.41 d                                    | 6.2                   | 1.38 d                                                                                        | 6.2                  | 1.38 d                                                                                         | 6.2                    |
| ′-OMe                              | 3.56 s                                           | 012             | 3.58 s                                          | 012                    | 3.55 s                                    | 0.2                   | 3.63 s                                                                                        | 0.2                  | 3.63 s                                                                                         | 0.2                    |
|                                    |                                                  |                 |                                                 |                        |                                           |                       |                                                                                               |                      |                                                                                                |                        |
|                                    | D-Ole                                            |                 | D-Ole                                           |                        | D-Ole                                     |                       | D-Cym                                                                                         |                      | D-Cym                                                                                          |                        |
| "                                  | 4.67 dd                                          | 9.7, 1.6        | 4.69 dd                                         | 9.7, 1.6               | 4.68 dd                                   | 9.6, 1.6              | 5.12 dd                                                                                       | 9.6, 1.5             | 5.11 dd                                                                                        | 9.7, 1.5               |
| //                                 | 2.47 m                                           |                 | 2.48 m                                          |                        | 2.40 m                                    |                       | 2.33 m                                                                                        |                      | 2.32 m                                                                                         |                        |
|                                    | 1.74 m                                           |                 | 1.75 m                                          |                        | 1.74 m                                    |                       | 1.88 m                                                                                        |                      | 1.81 m                                                                                         |                        |
| //                                 | 3.56 m                                           |                 | 3.57 m                                          |                        | 3.56 m                                    |                       | 4.02 m                                                                                        |                      | 4.00 m                                                                                         |                        |
| "                                  | 3.56 m                                           |                 | 3.60 m                                          |                        | 3.56 m                                    |                       | 3.43 dd                                                                                       | 9.8, 2.7             | 3.43 dd                                                                                        | 9.6, 2.6               |
| "                                  | 3.53 m                                           |                 | 3.76 dq                                         | 9.4, 6.1               | 3.54 m                                    |                       | 4.18 dq                                                                                       | 9.8, 6.2             | 4.17 dq                                                                                        | 9.6, 6.2               |
| //                                 | 1.60 d                                           | 5.8             | 1.68 d                                          | 6.0                    | 1.61 d                                    | 5.8                   | 1.38 d                                                                                        | 6.2                  | 1.38 d                                                                                         | 6.2                    |
| ′′-OMe                             | 3.53 s                                           |                 | 3.51 s                                          |                        | 3.52 s                                    |                       | 3.55 s                                                                                        |                      | 3.56 s                                                                                         |                        |
|                                    | D-Allme                                          |                 | D-Thv                                           |                        | D-Allme                                   |                       | D-Ole                                                                                         |                      | D-Ole                                                                                          |                        |
| ,,,,                               |                                                  | 8.0             | 4.89 d                                          | 7.9                    | 5.27 d                                    | 8.0                   | 4.68 dd                                                                                       | 0.0 1 5              | 4.67 dd                                                                                        | 0.0 1.4                |
| ,,,,                               | 5.28 d                                           | 8.0             |                                                 | 7.9                    |                                           | 8.0                   |                                                                                               | 9.8, 1.5             |                                                                                                | 9.6, 1.4               |
|                                    | 3.84 m                                           |                 | 3.92 m                                          |                        | 3.83 m                                    |                       | 2.48 m                                                                                        |                      | 2.48 m                                                                                         |                        |
|                                    | 4.50.11                                          | 27.27           | 2 71 11                                         | 00.00                  | 4.50.11                                   | 27.27                 | 1.74 m                                                                                        |                      | 1.74 m                                                                                         |                        |
| ///<br>///                         | 4.50 dd                                          | 2.7, 2.7        | 3.71 dd                                         | 9.0, 9.0               | 4.50 dd                                   | 2.7, 2.7              | 3.58 m                                                                                        |                      | 3.57 m                                                                                         |                        |
| ,,,<br>,,,                         | 3.76 dd                                          | 9.6, 2.4        | 3.89 dd                                         | 9.0, 8.8               | 3.77 dd                                   | 9.6, 2.4              | 3.57 m                                                                                        |                      | 3.58 m                                                                                         |                        |
| ,,,<br>,,,                         | 4.29 m                                           | 6.2             | 3.55 m                                          | 6.1                    | 4.29 m                                    | 6.2                   | 3.55 m                                                                                        |                      | 3.54 m                                                                                         | <b>5</b> 4             |
| ///<br>/// OM/a                    | 1.67 d                                           | 6.2             | 1.78 d                                          | 6.1                    | 1.66 d                                    | 6.2                   | 1.62 d                                                                                        | 5.5                  | 1.60 d                                                                                         | 5.4                    |
| '''-OMe                            | 3.85 s                                           |                 | 3.95 s                                          |                        | 3.84 s                                    |                       | 3.53 s                                                                                        |                      | 3.53 s                                                                                         |                        |
|                                    | D-Glc                                            |                 | D-Glc                                           |                        | d-Glc                                     |                       | D-Allme                                                                                       |                      | D-Allme                                                                                        |                        |
|                                    |                                                  |                 | 5.16 d                                          | 7.8                    | 5.01 d                                    | 7.8                   | 5.27 d                                                                                        | 8.1                  | 5.28 d                                                                                         | 8.1                    |
|                                    | 5.01 d                                           | 7.7             |                                                 |                        | 4.06 m                                    |                       | 3.85 m                                                                                        |                      | 3.86 m                                                                                         |                        |
|                                    | 5.01 d<br>4.06 dd                                | 7.7<br>8.8. 8.4 |                                                 |                        |                                           |                       |                                                                                               | 2727                 | 4.51 dd                                                                                        | 2.7, 2.7               |
| ,,,,                               | 4.06 dd                                          | 7.7<br>8.8, 8.4 | 4.05 m                                          |                        |                                           |                       | 4.51 uu                                                                                       | 2.1.2.1              |                                                                                                | ,                      |
| ,,,,,<br>,,,,,                     | 4.06 dd<br>4.28 m                                |                 | 4.05 m<br>4.26 m                                |                        | 4.27 m                                    |                       | 4.51 dd<br>3.77 dd                                                                            | 2.7, 2.7<br>9.5, 2.5 |                                                                                                | 9.6. 2.4               |
| ,,,,,<br>,,,,,<br>,,,,,            | 4.06 dd<br>4.28 m<br>4.25 m                      |                 | 4.05 m<br>4.26 m<br>4.25 m                      |                        | 4.27 m<br>4.25 m                          | 8.9, 5.4. 2.4         | 3.77 dd                                                                                       | 9.5, 2.5             | 3.77 dd                                                                                        | 9.6, 2.4               |
| ,,,,,<br>,,,,,<br>,,,,,            | 4.06 dd<br>4.28 m<br>4.25 m<br>4.00 m            | 8.8, 8.4        | 4.05 m<br>4.26 m<br>4.25 m<br>3.99 m            | 11.4. 2.4              | 4.27 m<br>4.25 m<br>4.04 ddd              | 8.9, 5.4, 2.4<br>11.8 | 3.77 dd<br>4.26 m                                                                             | 9.5, 2.5             | 3.77 dd<br>4.30 m                                                                              |                        |
| ,,,,,<br>,,,,,<br>,,,,,            | 4.06 dd<br>4.28 m<br>4.25 m<br>4.00 m<br>4.58 dd | 8.8, 8.4        | 4.05 m<br>4.26 m<br>4.25 m<br>3.99 m<br>4.55 dd | 11.4, 2.4<br>11.4, 5.5 | 4.27 m<br>4.25 m<br>4.04 ddd<br>4.58 br d | 11.8                  | 3.77 dd                                                                                       |                      | 3.77 dd                                                                                        | 9.6, 2.4<br>6.2        |
|                                    | 4.06 dd<br>4.28 m<br>4.25 m<br>4.00 m            | 8.8, 8.4        | 4.05 m<br>4.26 m<br>4.25 m<br>3.99 m            | 11.4, 2.4<br>11.4, 5.5 | 4.27 m<br>4.25 m<br>4.04 ddd              |                       | 3.77 dd<br>4.26 m<br>1.67 d                                                                   | 9.5, 2.5             | 3.77 dd<br>4.30 m<br>1.68 d                                                                    |                        |
|                                    | 4.06 dd<br>4.28 m<br>4.25 m<br>4.00 m<br>4.58 dd | 8.8, 8.4        | 4.05 m<br>4.26 m<br>4.25 m<br>3.99 m<br>4.55 dd |                        | 4.27 m<br>4.25 m<br>4.04 ddd<br>4.58 br d | 11.8                  | 3.77 dd<br>4.26 m<br>1.67 d<br>3.85 s                                                         | 9.5, 2.5             | 3.77 dd<br>4.30 m<br>1.68 d<br>3.86 s                                                          |                        |
| ////<br>////<br>////<br>////-OMe   | 4.06 dd<br>4.28 m<br>4.25 m<br>4.00 m<br>4.58 dd | 8.8, 8.4        | 4.05 m<br>4.26 m<br>4.25 m<br>3.99 m<br>4.55 dd |                        | 4.27 m<br>4.25 m<br>4.04 ddd<br>4.58 br d | 11.8                  | 3.77 dd<br>4.26 m<br>1.67 d<br>3.85 s<br><b>р-Glc</b>                                         | 9.5, 2.5<br>6.2      | 3.77 dd<br>4.30 m<br>1.68 d<br>3.86 s<br><b>р-Glc</b>                                          | 6.2                    |
| ////<br>////<br>/////<br>/////-OMe | 4.06 dd<br>4.28 m<br>4.25 m<br>4.00 m<br>4.58 dd | 8.8, 8.4        | 4.05 m<br>4.26 m<br>4.25 m<br>3.99 m<br>4.55 dd |                        | 4.27 m<br>4.25 m<br>4.04 ddd<br>4.58 br d | 11.8                  | 3.77 dd<br>4.26 m<br>1.67 d<br>3.85 s<br><b>р-Glc</b><br>5.02 d                               | 9.5, 2.5             | 3.77 dd<br>4.30 m<br>1.68 d<br>3.86 s<br><b>D-Glc</b><br>5.02 d                                | 6.2<br>8.2             |
|                                    | 4.06 dd<br>4.28 m<br>4.25 m<br>4.00 m<br>4.58 dd | 8.8, 8.4        | 4.05 m<br>4.26 m<br>4.25 m<br>3.99 m<br>4.55 dd |                        | 4.27 m<br>4.25 m<br>4.04 ddd<br>4.58 br d | 11.8                  | 3.77 dd<br>4.26 m<br>1.67 d<br>3.85 s<br><b>D-GlC</b><br>5.02 d<br>4.07 m                     | 9.5, 2.5<br>6.2      | 3.77 dd<br>4.30 m<br>1.68 d<br>3.86 s<br><b>p-Glc</b><br>5.02 d<br>4.06 dd                     | 6.2                    |
| /////<br>/////<br>/////-OMe        | 4.06 dd<br>4.28 m<br>4.25 m<br>4.00 m<br>4.58 dd | 8.8, 8.4        | 4.05 m<br>4.26 m<br>4.25 m<br>3.99 m<br>4.55 dd |                        | 4.27 m<br>4.25 m<br>4.04 ddd<br>4.58 br d | 11.8                  | 3.77 dd<br>4.26 m<br>1.67 d<br>3.85 s<br><b>D-Glc</b><br>5.02 d<br>4.07 m<br>4.29 m           | 9.5, 2.5<br>6.2      | 3.77 dd<br>4.30 m<br>1.68 d<br>3.86 s<br><b>p-Glc</b><br>5.02 d<br>4.06 dd<br>4.29 m           | 6.2<br>8.2             |
|                                    | 4.06 dd<br>4.28 m<br>4.25 m<br>4.00 m<br>4.58 dd | 8.8, 8.4        | 4.05 m<br>4.26 m<br>4.25 m<br>3.99 m<br>4.55 dd |                        | 4.27 m<br>4.25 m<br>4.04 ddd<br>4.58 br d | 11.8                  | 3.77 dd<br>4.26 m<br>1.67 d<br>3.85 s<br><b>D-GlC</b><br>5.02 d<br>4.07 m                     | 9.5, 2.5<br>6.2      | 3.77 dd<br>4.30 m<br>1.68 d<br>3.86 s<br><b>p-Glc</b><br>5.02 d<br>4.06 dd                     | 6.2<br>8.2             |
|                                    | 4.06 dd<br>4.28 m<br>4.25 m<br>4.00 m<br>4.58 dd | 8.8, 8.4        | 4.05 m<br>4.26 m<br>4.25 m<br>3.99 m<br>4.55 dd |                        | 4.27 m<br>4.25 m<br>4.04 ddd<br>4.58 br d | 11.8                  | 3.77 dd<br>4.26 m<br>1.67 d<br>3.85 s<br><b>D-Glc</b><br>5.02 d<br>4.07 m<br>4.29 m           | 9.5, 2.5<br>6.2      | 3.77 dd<br>4.30 m<br>1.68 d<br>3.86 s<br><b>p-Glc</b><br>5.02 d<br>4.06 dd<br>4.29 m           | 6.2<br>8.2             |
|                                    | 4.06 dd<br>4.28 m<br>4.25 m<br>4.00 m<br>4.58 dd | 8.8, 8.4        | 4.05 m<br>4.26 m<br>4.25 m<br>3.99 m<br>4.55 dd |                        | 4.27 m<br>4.25 m<br>4.04 ddd<br>4.58 br d | 11.8                  | 3.77 dd<br>4.26 m<br>1.67 d<br>3.85 s<br><b>D-Glc</b><br>5.02 d<br>4.07 m<br>4.29 m<br>4.30 m | 9.5, 2.5<br>6.2      | 3.77 dd<br>4.30 m<br>1.68 d<br>3.86 s<br><b>p-Glc</b><br>5.02 d<br>4.06 dd<br>4.29 m<br>4.26 m | 6.2<br>8.2<br>8.6, 8.2 |

<sup>a</sup> p-Cym: p-Cymaropyranose; p-Ole: p-Oleandropyranose; p-Thv: p-Thevetopyranose; p-Allme: 6-deoxy-3-O-methyl-p-allopyranose; p-Glc: p-Glucopyranose. <sup>b</sup> s: singlet; d: doublet; t: triplet; q: quartet; m: multiplet; br: broad.

| Table 4                                                                                 |                                       |
|-----------------------------------------------------------------------------------------|---------------------------------------|
| <sup>1</sup> H NMR (500 MHz, C <sub>5</sub> D <sub>5</sub> N) spectroscopic data for co | mpounds <b>11–13</b> . <sup>a,t</sup> |

| Atom            | 11                 | J (Hz)                    | 12               | J (Hz)             | 13                 | J(Hz)                |
|-----------------|--------------------|---------------------------|------------------|--------------------|--------------------|----------------------|
| 1               | 1.80 m             | 14.1, 13.8, 3.6           | 1.81 m           | 14.1, 13.8, 3.4    | 1.80 m             | 14.1, 13.5, 3.       |
|                 | 1.13 ddd           |                           | 1.12 ddd         |                    | 1.12 ddd           | .,, .                |
| 2               | 2.10 m             |                           | 2.10 m           |                    | 2.09 m             |                      |
|                 | 1.82 m             |                           | 1.82 m           |                    | 1.84 m             |                      |
| 3               | 3.89 m             |                           | 3.89 m           |                    | 3.89 m             |                      |
| 4               | 2.60 br dd         | 13.1, 4.4                 | 2.59 br dd       | 13.0, 4.5          | 2.59 br dd         | 13.0, 4.3            |
| -               | 2.47 m             |                           | 2.47 m           |                    | 2.47 m             |                      |
| 5               | 5.40 m             |                           | 5.39 m           |                    | 5.38 m             |                      |
| 7               | 2.52 m             |                           | 2.51 m           |                    | 2.51 m             |                      |
| 9               | 2.40 m             |                           | 2.40 m           |                    | 2.39 m             |                      |
| 11              | 1.82 m<br>2.53 m   |                           | 1.82 m<br>2.53 m |                    | 1.81 m<br>2.52 m   |                      |
| 11              | 2.19 m             |                           | 2.19 m           |                    | 2.19 m             |                      |
| 12              | 5.40 m             |                           | 5.40 m           |                    | 5.40 m             |                      |
| 15              | 2.14 m             |                           | 2.14 m           |                    | 2.13 m             |                      |
| 16              | 1.99 m             |                           | 1.99 m           |                    | 1.98 m             |                      |
| 18              | 2.24 s             |                           | 2.24 s           |                    | 2.24 s             |                      |
| 19              | 1.37 s             |                           | 1.37 s           |                    | 1.36 s             |                      |
| 20              | 4.12 dq            | 6.1, 6.1, 6.1, 5.3        | 4.12 dq          | 6.2, 6.2, 6.2, 5.6 | 4.12 m             |                      |
| 21              | 1.29 d             | 6.1                       | 1.29 d           | 6.2                | 1.29 d             | 6.1                  |
|                 | 12-Bz              |                           | 12-Bz            |                    | 12-Bz              |                      |
|                 | 8.59 br d          | 8.2                       | 8.59 br d        | 8.2                | 8.59 br d          | 8.2                  |
|                 | 7.41 br dd         | 8.2, 7.6                  | 7.41 br dd       | 8.2, 7.6           | 7.41 br dd         | 8.2, 7.6             |
|                 | 7.50 m             |                           | 7.50 m           |                    | 7.50 m             |                      |
|                 | D-Cym              |                           | D-Cym            |                    | D-Cym              |                      |
| /               | 5.31 dd            | 9.7, 1.5                  | 5.30 dd          | 9.7, 1.5           | 5.30 dd            | 9.6, 1.6             |
| /               | 2.33 ddd           | 13.5, 2.9, 1.5            | 2.31 m           | 5.7, 1.5           | 2.32 m             | 5.0, 1.0             |
| -               | 1.90 m             | 1010, 210, 110            | 1.89 m           |                    | 1.90 m             |                      |
| 3′              | 4.06 m             |                           | 4.04 m           |                    | 4.10 m             |                      |
| 4′              | 3.50 m             |                           | 3.49 dd          | 9.6, 2.4           | 3.53 m             |                      |
| 5′              | 4.25 m             |                           | 4.24 m           |                    | 4.24 m             |                      |
| 5′              | 1.45 d             | 6.2                       | 1.44 d           | 6.2                | 1.38 d             | 6.2                  |
| 3′-OMe          | 3.59 s             |                           | 3.56 s           |                    | 3.63 s             |                      |
|                 | D- <b>Ole</b>      |                           | D-Ole            |                    | D-Cym              |                      |
| <i>''</i>       | 4.70 dd            | 9.6, 1.6                  | 4.68 dd          | 9.6, 1.6           | 5.12 dd            | 9.4, 1.3             |
| 2//             | 2.49 m             |                           | 2.49 m           |                    | 2.31 m             |                      |
|                 | 1.78 m             |                           |                  |                    |                    |                      |
|                 |                    |                           | 1.75 m           |                    | 1.81 m             |                      |
| s''             | 3.56 m             |                           | 3.57 m           |                    | 4.00 m             |                      |
| ¥″              | 3.63 m             |                           | 3.56 m           |                    | 3.41 dd            | 9.6, 2.5             |
| 5′′             | 3.56 m             |                           | 3.54 m           |                    | 4.17 m             |                      |
| 5''             | 1.69 d             | 6.0                       | 1.62 d           | 5.9                | 1.38 d             | 6.2                  |
| 3''-OMe         | 3.52 s             |                           | 3.54 s           |                    | 3.55 s             |                      |
|                 | D-Thv              |                           | D-Allme          |                    | D-Cym              |                      |
|                 | 4.89 d             | 7.9                       | 5.28 d           | 7.9                | 4.67 dd            | 9.6, 1.2             |
|                 | 3.92 m             |                           | 3.85 m           |                    | 2.48 m             |                      |
|                 | 0.50.11            |                           | 4.50.11          |                    | 1.73 m             |                      |
| 3'''<br>4'''    | 3.72 dd            | 9.0, 8.9                  | 4.50 dd          | 2.7, 2.7           | 3.56 m             |                      |
| £'''<br>5'''    | 3.89 dd<br>3.76 dg | 9.4, 9.0                  | 3.76 m           |                    | 3.57 m             |                      |
| 5 <sup>~~</sup> | 1.67 d             | 9.4, 6.1, 6.1, 6.1<br>6.1 | 4.31 m<br>1.68 d | 6.4                | 3.55 m<br>1.61 d   | 5.3                  |
| 3<br>'''-OMe    | 3.84 s             | 0.1                       | 3.85 s           | 0.4                | 3.53 s             | J.J                  |
| 5 Owie          | D-Glc              |                           | D-Glc            |                    | D-Allme            |                      |
| 1////           |                    | 77                        |                  | 77                 |                    | 8.0                  |
| 1''''<br>2''''  | 5.16 d<br>4.06 m   | 7.7                       | 5.01 d<br>4.07 m | 7.7                | 5.28 d<br>3.85 m   | 8.0                  |
| 3''''           | 4.06 m<br>4.26 m   |                           | 4.07 m<br>4.28 m |                    | 3.85 m<br>4.50 dd  | 2.6, 2.4             |
| 4''''           | 4.26 m<br>4.26 m   |                           | 4.28 m<br>4.26 m |                    | 4.50 dd<br>3.76 dd | 2.6, 2.4<br>9.6, 2.4 |
| £''''           | 4.20 m             |                           | 4.26 m<br>4.04 m |                    | 4.29 m             | 5.0, 2.4             |
| 5<br>6''''      | 4.55 br d          | 11.5                      | 4.58 br d        | 11.5               | 4.25 m<br>1.68 d   | 6.2                  |
| -               | 4.40 br d          | 11.5                      | 4.41 br d        | 11.5               | 1.00 u             | 5.2                  |
| 3′′′′-OMe       |                    |                           |                  |                    | 3.85 s             |                      |

(continued on next page)

| Table 4 | (continued) |
|---------|-------------|
|         |             |

| Atom   | 11 | J (Hz) | 12 | J (Hz) | 13        | <i>J</i> (Hz) |
|--------|----|--------|----|--------|-----------|---------------|
|        |    |        |    |        | D-Glc     |               |
| 1''''' |    |        |    |        | 5.01 d    | 7.8           |
| 2''''' |    |        |    |        | 4.05 m    |               |
| 3''''' |    |        |    |        | 4.28 m    |               |
| 4''''' |    |        |    |        | 4.25 m    |               |
| 5''''' |    |        |    |        | 4.00 m    |               |
| 6''''' |    |        |    |        | 4.59 br d | 11.5          |
|        |    |        |    |        | 4.42 m    |               |

<sup>a</sup> Bz: Benzoyl; p-Cym: p-Cymaropyranose; p-Ole: p-Oleandropyranose; p-Thv: p-Thevetopyranose; p-Allme: 6-deoxy-3-O-methyl-p-allopyranose; p-Glc: p-Glucopyranose. <sup>b</sup> s: singlet; d: doublet; t: triplet; q: quartet; m: multiplet; br: broad.

Verticillosides G (7) and H (8) displayed a HRMS ion  $[M+Na]^+$  at m/z 1013.4913 and 1013.4921, respectively suggesting the same molecular formula of C48H78NaO21 (calcd 1013.4933) for both compounds. As in the case of compounds 1-4, three methyl singlets were observed in the <sup>1</sup>H NMR (7:  $\delta$  2.60, 2.02, 1.42; 8:  $\delta$  2.65, 2.02, 1.41); however, the acetyl <sup>1</sup>H and <sup>13</sup>C signals were missing in **7** and **8**. Following a similar analysis of the <sup>1</sup>H, <sup>13</sup>C and 2D NMR spectroscopic data as described before, the aglycones present in the two compounds were identified to be 12-0-deacylmetaplexigenin and the signal assignments were in good agreement with previously reported values (Warashina and Noro, 2000). The <sup>1</sup>H and <sup>13</sup>C signals were totally assigned for the sugar portion using 2D NMR spectra (Tables 1 and 3). While the sugars in 7 were found to be the same as in 1, the sugars in 8 were identical to those present in 2 based on their NMR data comparison. The structures of 7 and 8 were determined to be 12-O-deacylmetaplexigenin 3-O- $\beta$ -D-glucopyranosyl- $(1 \rightarrow 4)$ - $\beta$ -D-thevetopyranosyl- $(1 \rightarrow 4)$ - $\beta$ -Doleandropyranosyl- $(1 \rightarrow 4)$ - $\beta$ -D-cymaropyranose and 12-O-deacylmetaplexigenin 3-O- $\beta$ -D-glucopiranosyl- $(1 \rightarrow 4)$ - $\beta$ -D-thevetopyranosyl- $(1 \rightarrow 4)$ - $\beta$ -D-oleandropyranosyl- $(1 \rightarrow 4)$ - $\beta$ -D-cymaropyranose, respectively.

Verticilloside I (**9**) showed a HRMS ion  $[M+Na]^+$  at m/z 1159.5904 indicating a molecular formula of C<sub>55</sub>H<sub>92</sub>NaO<sub>24</sub> (calcd 1159.5876). Complete assignment of <sup>1</sup>H and <sup>13</sup>C NMR signals using 2D NMR spectroscopic showed that the aglycone corresponded to 12-O-deacylmetaplexigenin. The five sugars present in 9 were identical to those found in **4** and their <sup>1</sup>H and <sup>13</sup>C sugar signals were almost identical (Tables 1 and 3). Hence, structure of 9 was confirmed to be 12-O-deacylmetaplexigenin 3-O- $\beta$ -D-glucopyranosyl- $(1 \rightarrow 4)$ - $\beta$ -(6-deoxy-3-O-methyl)-D-allopyranosyl-(1  $\rightarrow$  4)- $\beta$ -D-oleandropyranosyl- $(1 \rightarrow 4)$ - $\beta$ -D-cymaropyranosyl- $(1 \rightarrow 4)$ - $\beta$ -D-cymaropyranose. Likewise, verticilloside J (10) had a molecular formula of  $C_{55}H_{90}NaO_{24}$  on the basis of the observed HRMS ion [M+Na]<sup>+</sup> at m/z 1057.5734 (calcd 1157.5720). Following the complete assignment of <sup>1</sup>H and <sup>13</sup>C NMR signals aided by 2D NMR data, the aglycone was found to be sarcostin and the sugars the same as those present in 4 (Tables 1 and 3). Hence, 10 was determined as sarcostin 3-0- $\beta$ -D-glucopyranosyl- $(1 \rightarrow 4)$ - $\beta$ -(6-deoxy-3-O-methyl)-D-allopyranosyl- $(1 \rightarrow 4)$ - $\beta$ -D-oleandropyranosyl- $(1 \rightarrow 4)$ - $\beta$ -D-cymaropyranosyl- $(1 \rightarrow 4)$ - $\beta$ -D-cymaropyranose respectively.

Verticillosides K (**11**) and L (**12**) displayed very similar  $[M+Na]^+$ ions at m/z 1119.5337 and 1119.5364, respectively, thus sharing the same calculated molecular formula of  $C_{55}H_{84}NaO_{22}$  (calcd 1119.5352). Unlike previously described compounds, <sup>1</sup>H NMR spectrum of **11** showed aromatic signals corresponding to a benzoyl group ( $\delta$  8.59, 7.50, and 7.41) and further confirmed by <sup>13</sup>C NMR resonances ( $\delta$  167.0, 133.6, 132.1, 130.8, and 129.2). The benzoyl group was found to be attached to position 12 by means of the observed HMBC correlation between H-12 ( $\delta$  5.40) and the benzoyl carbonyl signal ( $\delta$  167.0). The aglycone was established as 12-*O*benzoylsarcostin based on the HMBC correlations between the proton signal  $\delta$  2.24 (H-18) with carbon resonances of  $\delta$  57.8

(C-13), 75.7 (C-12), 89.0 (C-14), and 89.2 (C-17); and between proton signal  $\delta$  1.37 (Me-19) and carbon resonances of  $\delta$  39.2 (C-1). 139.5 (C-5), 44.5 (C-9), and 37.7 (C-10). The experimental NMR spectroscopic data (Tables 1 and 4) of the aglycone were in good agreement with previously reported values (Gan et al., 2008). The <sup>1</sup>H NMR and <sup>13</sup>C NMR values of the aglycone in compound 12 were almost identical to those just described for 11, indicating that the two compounds shared the same aglycone (Tables 1 and 4). Furthermore, following full assignment of <sup>1</sup>H and <sup>13</sup>C NMR data using 2D NMR spectra, close comparison of their spectra revealed that the sugars present in **11** and **12** were identical to those present in 1 and 2, respectively. Consequently, the structure of 11 was established as 12-O-benzoylsarcostin 3-O-B-D-glucopyranosyl- $(1 \rightarrow 4)$ - $\beta$ -D-thevetopyranosyl- $(1 \rightarrow 4)$ - $\beta$ -D-oleandropyranosyl- $(1 \rightarrow 4)$ - $\beta$ -D-cymaropyranose, and structure of **12** as sarcostin 3-O- $\beta$ -D-glucopyranosyl- $(1 \rightarrow 4)$ - $\beta$ -(6-deoxy-3-O-methyl)-D-allopyranosyl- $(1 \rightarrow 4)$ - $\beta$ -D-oleandropyranosyl- $(1 \rightarrow 4)$ - $\beta$ -D-cymaropyranose.

Finally, verticilloside M (**13**) had a HRMS  $[M+Na]^+$  ion at m/z 1263.6037 (calcd 1263.6138) suggesting a molecular formula of  $C_{62}H_{96}NaO_{25}$ . By closed comparison of the 1D and 2D NMR spectra, the aglycone of **13** was identified to be 12-*O*-benzoylsarcostin, as in compound **11** (Tables 1 and 4). The sugar moiety, however, contained the same sequence of five units as those described for compound **4**. Hence, compound **13** was identified as 12-*O*-benzoylsarcostin 3-*O*- $\beta$ -D-glucopyranosyl- $(1 \rightarrow 4)$ - $\beta$ -(6-deoxy-3-*O*-methyl)-D-allopyranosyl- $(1 \rightarrow 4)$ - $\beta$ -D-cymaropyranosyl- $(1 \rightarrow 4)$ - $\beta$ -

Cytotoxicity of the isolates (1–13) was tested against the paired breast cell lines Hs578T (cancer) and Hs578Bst (normal); however, no toxicity was observed in the experimental concentration range of 0.2–50  $\mu$ M (see Supplementary Data).

#### 3. Conclusions

The present work reports the isolation and chemical characterization of 13 new polyoxygenated glycosides from *A. verticillata*. The structures of these compounds were established on the basis of spectroscopic data, including 800 MHz 2D NMR experiments. Furthermore, relative stereochemistry for two compounds (1 and 5) was confirmed by means of X-ray crystallography. Our investigation shows the diversity of secondary metabolites present within *Asclepias*, a genus widely distributed in the US Midwest flora. Although the isolates did not show significant cytotoxicity against the tested cell lines, evaluation against other biological targets is underway and will be reported in due course.

#### 4. Experimental section

### 4.1. General experimental procedures

Melting points were recorded with an OptiMelt automatic apparatus. IR spectra were obtained with a Thermo Nicolet Avatar 380 FT-IR. UV–Vis spectra were acquired in a Varian Cary 50 Scan; <sup>1</sup>H NMR, <sup>13</sup>C NMR and two dimensional spectra were acquired with a Bruker Avance AV-III 500 with a dual carbon/proton cryoprobe. Some NMR experiments were conducted in a Bruker Unity 800 MHz NMR with direct detection probe. HRMS were conducted with a LCT Premier Waters corp. (Milford, MA). Semi-preparative HPLC was conducted using an Agilent 1200 HPLC system with a Phenomenex Luna C18 column (5  $\mu$ m, 250 × 10 mm), flow rate of 4.5 mL/min (approx. 160 bar), injection volume of 50  $\mu$ L (ca. 10 mg sample), and UV detection using diode array. Preparative HPLC separations were done using an Agilent 1100 HPLC system with a Phenomenex Luna C18 column (5  $\mu$ m, 250 × 21 mm), flow rate of 35 mL/min (aprox. 35 bar), injection volume of 800  $\mu$ L (ca. 100 mg sample), and UV detection using multi-wavelength detector.

## 4.2. Plant Material

Above-ground biomass of *A. verticillata* was collected in July 10th of 2009 by Loring and Long at the Dog Leg Prairie of the Nelson Environmental Study Area, Lawrence, Kansas (latitude: 39.0550°; longitude: 95.1967°). Botanical identification was performed by Kelly Kindscher and a voucher specimen was deposited in the R.L. McGregor Herbarium (Collection number H. Loring 3559).

#### 4.3. Plant extraction and isolation

A. verticillata fresh biomass (5.5 kg) was left to dry at room temperature. The dry material (1.2 kg) was then ground to a fine powder and extracted four times with a mixture of MeOH and CH<sub>2</sub>Cl<sub>2</sub> (1:1, v/v) at room temperature. The organic solvents (c.a. 20 L) were removed under reduced pressure to afford the crude extract (138 g) (11.5% w/w of dry weight). The organic extract was suspended in MeOH:H<sub>2</sub>O 9:1 (1 L) and extracted with hexanes (500 mL  $\times$  3) to give a hexanes fraction. Then, MeOH was removed from the aqueous layer under reduced pressure, with the volume adjusted to 500 mL with distilled H<sub>2</sub>O. This was then successively extracted with  $CH_2Cl_2$  (500 mL  $\times$  3) and n-BuOH (500 mL  $\times$  3) to give CHCl<sub>2</sub> and n-BuOH fractions respectively. The n-BuOH extract (41 g) was suspended in H<sub>2</sub>O (500 mL) and adsorbed in a MCI gel (500 g) column, washed with H<sub>2</sub>O (2 L), and then eluted with mixtures of H<sub>2</sub>O-MeOH (9:1  $\rightarrow$  0:100, v/v) starting with 10% step increments (2 L each fraction) to afford a total of 10 fractions (1-10). Fractions 6-9 were purified as follows: first Sephadex LH-20 (500 g) CC using MeOH as eluent, followed by silica gel CC using CHCl<sub>3</sub>:MeOH 95:5 (v/v) or CHCl<sub>3</sub>:MeOH 90:10 (v/v) as mobile phase, and finally semi-preparative or preparative HPLC chromatography using mixtures of CH<sub>3</sub>CN-H<sub>2</sub>O for elution. A total of 13 pregnane glycosides were isolated and chemically elucidated using <sup>1</sup>H NMR, <sup>13</sup>C NMR, 2D NMR, IR, UV, and HRMS.

## 4.4. Verticilloside A (1)

Amorphous white powder; mp 164.9–166.9 °C;  $[\alpha]_D^{25} = -14.3$  (c. 0.412, MeOH); IR  $v_{max}$  (film) cm<sup>-1</sup>: 3366.6 (OH), 1706.0 (C=O), 1635.8 (C=O), 1158.4 (C-O), 1059.8 (C-O); UV<sub>max</sub> 206.9, 277.5; HRMS m/z: 1055.5276 [M+Na]<sup>+</sup> (1055.5039 calcd for C<sub>50</sub>H<sub>80</sub>NaO<sub>22</sub>) for <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic data see Tables 1 and 2.

## 4.5. Verticilloside B (2)

Amorphous white powder; mp 169.8–172.7 °C;  $[\alpha]_D^{25} = -5.0$  (c. 0.735, MeOH); IR  $\nu_{max}$  (film) cm<sup>-1</sup>: 3394.8 (OH), 1708.6 (C=O), 1635.0 (C=O), 1058.7 (C-O), 1035.2 (C-O); UV<sub>max</sub> (nm, MeOH): 208.3, 267.9; HRMS *m/z*: 1052.5271 [M+Na]<sup>+</sup> (1055.5039 calcd

for  $C_{50}H_{80}NaO_{22}$ ) for <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic data see Tables 1 and 2.

#### 4.6. Verticilloside C (3)

Amorphous white powder; mp 169.0–170.5 °C;  $[\alpha]_D^{25} = +6.6$  (c. 0.378, MeOH); IR  $\nu_{max}$  (film) cm<sup>-1</sup>: 3389.7 (OH), 1708.7 (C=O), 1644.8 (C=O), 1156.2 (C–O), 1059.8 (C-O); UV<sub>max</sub> (nm, MeOH): 206.9, 274.1; HRMS *m*/*z*: 1199.5857 [M+Na]<sup>+</sup> (1199.5825 calcd for C<sub>57</sub>H<sub>92</sub>NaO<sub>25</sub>); for <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic data, see Tables 1 and 2.

## 4.7. Verticilloside D (4)

Amorphous white powder; mp 171.1–175.2 °C;  $[\alpha]_D^{25} = +31.8$  (c. 1.63, MeOH); IR  $\nu_{max}$  (film) cm<sup>-1</sup>: 3388.7 (OH), 1703.8.0 (C=O), 1642.2 (C=O), 1148.3, 1054.7; UV<sub>max</sub> (nm, MeOH): 207.0, 282.0; HRMS *m*/*z*: 1199.5845 [M+Na]<sup>+</sup> (1199.5825 calcd for C<sub>57</sub>H<sub>92</sub>NaO<sub>25</sub>) for <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic data, see Tables 1 and 2.

#### 4.8. Verticilloside E (5)

Amorphous white powder; mp 160.1–162.6 °C;  $[\alpha]_D^{25} = +17.5$  (c. 0.479, MeOH); IR  $\nu_{max}$  (film) cm<sup>-1</sup>: 3378.3 (OH), 1150.1 (C–O), 992.8 (C–O); UV<sub>max</sub> (nm, MeOH): 207.0, 267.0; HRMS *m/z*: 1015.5098 [M+Na]<sup>+</sup> (1015.5090 calcd for C<sub>48</sub>H<sub>80</sub>NaO<sub>21</sub>); <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic data, see Tables 1 and 2.

#### 4.9. Verticilloside F (6)

Amorphous white powder; mp 165.8–167.6 °C;  $[\alpha]_D^{25}$  = +21.7 (c. 0.974, MeOH); IR  $\nu_{max}$  (film) cm<sup>-1</sup>: 3385.3 (OH), 1152.8 (C–O), 996.3 (C–O); UV<sub>max</sub> (nm, MeOH): 207.2, 272.5; HRMS *m/z*: 1015.5153 [M+Na]<sup>+</sup> (1015.5090 calcd for C<sub>48</sub>H<sub>80</sub>NaO<sub>21</sub>); for <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic data, see Tables 1 and 3.

### 4.10. Verticilloside G (7)

Amorphous white powder; mp 157.6–159.8 °C;  $[\alpha]_D^{25}$  = +13.6 (c. 0.366, MeOH); IR  $v_{max}$  (film) cm<sup>-1</sup>: 3385.3 (OH), 1685.8 (C=O), 1152.8 (C–O), 996.3 (C-O); UV<sub>max</sub> (nm, MeOH): 207.1, 282.0; HRMS *m/z*: 1013.4913 [M+Na]<sup>+</sup> (1013.4933 calcd for C<sub>48</sub>H<sub>78</sub>NaO<sub>21</sub>) for <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic data, see Tables 1 and 3.

#### 4.11. Verticilloside H (8)

Amorphous white powder; mp 163.1–164.3 °C;  $[\alpha]_D^{25}$  = +12.3 (c. 0.674, MeOH); IR  $\nu_{max}$  (film) cm<sup>-1</sup>: 3425.2 (OH), 1696.5 (C=O), 1152.1 (C–O), 997.4 (C–O); UV<sub>max</sub> (nm, MeOH): 206.1, 280.7; HRMS *m/z*: 1013.4921 [M+Na]<sup>+</sup> (1013.4933 calcd for C<sub>48</sub>H<sub>78</sub>NaO<sub>21</sub>) for <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic data, see Tables 1 and 3.

## 4.12. Verticilloside I (9)

Amorphous white powder; mp 172.2–174.0 °C;  $[\alpha]_D^{25}$  = +25.2 (c. 0.447, MeOH); IR  $\nu_{max}$  (film) cm<sup>-1</sup>: 3391.3 (OH), 1149.6 (C–O), 999.4 (C–O); UV<sub>max</sub> (nm, MeOH): 206.1, 269.2; HRMS *m*/*z*: 1159.5904 [M+Na]<sup>+</sup> (1159.5876 calcd for C<sub>55</sub>H<sub>92</sub>NaO<sub>24</sub>); for <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic data, see Tables 1 and 3.

## 4.13. Verticilloside J (10)

Amorphous white powder; mp 170.9–172.1 °C;  $[\alpha]_D^{25}$  = +13.1 (c. 0.288, MeOH); IR  $\nu_{max}$  (film) cm<sup>-1</sup>: 3455.0 (OH), 1154.8 (C–O), 1051.3 (C–O); UV<sub>max</sub> (nm, MeOH): 206.0, 268.9; HRMS *m*/*z*:

1057.5734 [M+Na]<sup>+</sup> (1157.5720 calcd for  $C_{55}H_{90}NaO_{24}$ ); for <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic data, see Tables 1 and 3.

### 4.14. Verticilloside K (11)

Amorphous white powder; mp 173.1–174.8 °C;  $[\alpha]_D^{25}$  = +53.6 (c. 0.467, MeOH); IR  $\nu_{max}$  (film) cm<sup>-1</sup>: 3389.0 (OH), 3032.3 (Ar-H), 1732.5 (C=O), 1635.8 (C=O), 1155.5 (C-O), 977.7 (C-O); UV<sub>max</sub> (nm, MeOH): 204.1, 226.1, 274.1; HRMS *m*/*z*: 1119.5337 [M+Na]<sup>+</sup> (1119.5352 calcd for C<sub>55</sub>H<sub>84</sub>NaO<sub>22</sub>) for <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic data, see Tables 1 and 4.

## 4.15. Verticilloside L (12)

Amorphous white powder; mp 176.8–178.2 °C;  $[\alpha]_D^{25}$  = +25.2 (c. 0.254, MeOH); IR  $v_{max}$  (film) cm<sup>-1</sup>: 3340.5 (OH), 3031.8 (Ar–H), 1698.8 (C=O), 1635.8 (C=O), 1153.4 (C–O), 978.5 (C–O); UV<sub>max</sub> (nm, MeOH): 204.0, 226.0, 274.1; HRMS *m/z*: 1119.5364 [M+Na]<sup>+</sup> (1119.5352 calcd for C<sub>55</sub>H<sub>84</sub>NaO<sub>22</sub>) for <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic data, see Tables 1 and 4.

#### 4.16. *Verticilloside M* (**13**)

Amorphous white powder; mp 176.8–178.2 °C;  $[\alpha]_D^{25}$  = +25.2 (c. 0.254, MeOH); IR  $\nu_{max}$  (film) cm<sup>-1</sup>: 3340.5 (OH), 3031.8 (Ar–H), 1698.8 (C=O), 1635.8 (C=O), 1153.4 (C–O), 978.5 (C–O); UV<sub>max</sub> (nm, MeOH): 204.0, 226.0, 274.1; HRMS *m/z*: 1263.6037 [M+Na]<sup>+</sup> (1263.6138 calcd for C<sub>62</sub>H<sub>96</sub>NaO<sub>25</sub>); for <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic data, see Tables 1 and 4.

#### 4.17. Acid hydrolysis of glycosides

Hydrolysis of glycosides was conducted as described elsewhere (Warashina and Noro, 2010). Acid hydrolysis of a mixture of **1–4** (50 mg) afforded the aglycone metaplexigenin (**1a**); mixtures of **5**, **6** and **10** (50 mg) produced sarcostin (**5a**); a mixture of **7–9** (50 mg) gave 12-O-deacylmetaplexigenin; and a mixture of **11–13** (50 mg) afforded 12-O-benzoylsarcostin (**11a**). Structure of the aglycones were established by spectroscopic methods and compared with previously reported data. From the combined aqueous layers the following sugars were purified and identified by comparison of spectroscopic and optical rotation (after 24 h equilibration time) data reported in literature:

D-Cymarose  $[\alpha]_D^{25}$  = +50.1 (c. 0.1 H<sub>2</sub>O); lit. + 51.6 (Tsukamoto et al., 1986).

D-Thevetoside  $[\alpha]_D^{25} = +38.0$  (c. 0.1 H<sub>2</sub>O); lit. + 42.3 (Hamed et al., 2004).

D-Oleandrose  $[\alpha]_D^{25} = -9.8$  (c. 0.1 H<sub>2</sub>O); lit. + 10.3 (Nakagawa et al., 1983).

(6-Deoxy-3-O-methyl)-D-allose  $[\alpha]_D^{25}$  = +3.9 (c. 0.1 H<sub>2</sub>O); lit. + 5 (Allgeier, 1968).

Glucose  $[\alpha]_D^{25}$  = +50 (c. 0.1 H<sub>2</sub>O); lit. + 56 (Jacobs and Craig, 1944).

#### 4.18. X-ray structure determination

Crystallization of the aglycones metaplexigenin (**1a**) and sarcostin (**5a**) was carried out using mixtures of  $CH_2Cl_2$ , MeOH, and  $CH_3CN$  using slow evaporation technique. Then, the obtained crystals were submitted for X-ray diffraction determination (Figs. 4 and 5). The crystal structures have been deposited at the Cambridge Crystallographic Data Center and allocated the deposition number CCDC 840311 and CCDC 840314, respectively. These data can be obtained free of charge via supplementary crystallographic data via http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1 EZ, UK; fax: +44 1223 336033; email: deposit@ccdc.cam.ac.uk). See also Supplementary Information for crystal data and structure refinement.

#### 4.19. Cytotoxicity assay

Breast cancer cell line Hs578T and one normal breast Hs578Bst cell lines were seeded in separated 384-well plates (seeding density of 3000 cells per well, in a volume of 30  $\mu$ L per well) and allowed to attach and grow overnight in a cell incubator. Then, compounds were added using a Lybcyte ECHO acoustic liquid handling instrument (eight concentrations in the range 0.2–50  $\mu$ M) and plates were incubated for 72 h. Next, cell viability was determined adding 10  $\mu$ L of CellTiter-Glo (CTG) reagent, shaking plates for 2 min followed by reading of luminescence after 15 min stabilizing period. Each dose-response curve was determined by triplicate. The data were normalized dividing by the median and IC<sub>50</sub> calculation was done using GraphPad Prism software.

## Acknowledgment

This study was supported by grant IND0061464 (awarded to B.N.T and K.K.) from the Kansas Bioscience Authority (KBA) and Center for Heartland Plant Innovations (HPI). The authors thank Q. Long and H. Loring, botanists at the University of Kansas or at the Kansas Biological Survey at the University of Kansas for assistance in plant collections and identifications; Dr. Justin Douglas (KU, Lawrence) for assistance in running the NMR experiments, Dr. Victor Day for conducting the X-ray crystallographic analyses (NSF grant CHE-0923449, to V. Day), and Dr. Huaping Zhang for his critical reading of this manuscript. J.A. thanks LASPAU-Fulbright program and the University of Costa Rica for financial support.

#### Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.phytochem.2012.02.019.

#### References

- Allgeier, H., 1968. Structure of pachybiose and asclepobiose. Dexoy sugars 44. Helv. Chim. Acta 51, 311–318.
- Campbell, T.N., Roberts, J.R., Frank, H.H., 1951. Medicinal plants used by the Choctaw, Chickasaw, and Creek Indians in the early nineteenth century. J. Wash. Acad. Sci. 41, 285–290.
- Cao, X.J., Tal, Y.P., Li, X.Y., Ye, Y.P., Pan, Y.J., 2006. Screening for pregnane glycosides with immunological activities from the stems of *Stephanotis mucronata* by highperformance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 20, 403–411.
- Chen, G., Xu, N., Li, Z.F., Zhang, Q.H., Wu, H.H., Pei, Y.H., 2010. Steroidal glycosides with anti-tumor activity from the roots of *Cynanchum wallichii* Wight. J. Asian Nat. Prod. Res. 12, 453–457.
- Fewkes, J.W., 1896. A contribution to ethnobotany. Am. Anthropol. A9, 14–21.
- Gan, H., Xiang, W.J., Ma, L., Hu, L.H., 2008. Six new C-21 steroidal glycosides from *Cynanchum bungei* Decne. Helv. Chim. Acta 91, 2222–2234.
- Hamed, A.I., Sheded, M.G., Shaheen, A.E.M., Hamada, F.A., Pizza, C., Piacente, S., 2004. Polyhydroxypregnane glycosides from *Oxystelma esculentum* var. Alpini. Phytochemistry 65, 975–980.
- Jacobs, W.A., Craig, L.C., 1944. The veratrine alkaloids xxii. On pseudojervine and veratrosine, a companion glycoside in *Veratrum viride*. J. Biol. Chem. 155, 565–572.
- Kim, M.S., Baek, J.H., Park, J.A., Hwang, B.Y., Kim, S.E., Lee, J.J., Kim, K.W., 2005. Wilfoside K1N isolated from *Cynanchum wilfordii* inhibits angiogenesis and tumor cell invasion. Int. J. Oncol. 26, 1533–1539.
- Kindscher, K., 1992. Medicinal Wild Plants of the Prairie, an Ethnobotanical Guide. University Press of Kansas, Lawrence, KS.
- Kuroda, M., Kubo, S., Uchida, S., Sakagami, H., Mimaki, Y., 2010. Amurensiosides A-K, 11 new pregnane glycosides from the roots of *Adonis amurensis*. Steroids 75, 83– 94.
- Li, J.Z., Liu, H.Y., Lin, Y.J., Hao, X.J., Ni, W., Chen, C.X., 2008. Six new C-21 steroidal glycosides from Asclepias curassavica L. Steroids 73, 594–600.
- Li, X.Y., Sun, H.X., Ye, Y.P., Chen, F.Y., Pan, Y.J., 2006. C-21 steroidal glycosides from the roots of *Cynanchum chekiangense* and their immunosuppressive activities. Steroids 71, 61–66.

- Nakagawa, T., Hayashi, K., Wada, K., Mitsuhashi, H., 1983. Studies on the constituents of asclepiadaceae plants. 52. The structures of 5 glycosides glaucoside-a, glaucoside-b, glaucoside-c, glaucoside-d, and glaucoside e from the chinese drug pai-chien *Cynanchum glaucescens* Hand-Mazz. Tetrahedron 39, 607–612.
- Panda, N., Banerjee, S., Mandal, N.B., Sahu, N.P., 2006. Pregnane glycosides. Nat. Prod. Comm. 1, 665–695.
- Peng, Y.R., Li, Y.B., Liu, X.D., Zhang, J.F., Duan, J.A., 2008. Antitumor activity of C-21 steroidal glycosides from *Cynanchum auriculatum* Royle ex Wight. Phytomedicine 15, 1016–1020.
- Rodgers, D.J., 1980. Lakota names and traditional uses of native plants by Sicangu (Brule) people in the Rosebud area, South Dakota. The Rosebund Educational Society, Inc., St. Francis, SD.
- Tsukamoto, S., Hayashi, K., Kaneko, K., Mitsuhashi, H., 1986. Studies on the constituents of Asclepiadaceae plants. 65. The optical resolution of D-cymaroses and L-cymaroses. Chem. Pharm. Bull. (Tokyo) 34, 3130–3134.
- Warashina, T., Noro, T., 2000. Steroidal glycosides from the aerial part of Asclepias incarnata. Phytochemistry 53, 485–498.
- Warashina, T., Noro, T., 2010. 8,12;8,20-Diepoxy-8,14-secopregnane glycosides from the aerial parts of Asclepias tuberosa. Chem. Pharm. Bull. (Tokyo) 58, 172–179.
- Ye, Y.P., Li, X.Y., Sun, H.X., Chen, F.Y., Pan, Y.J., 2004. Immunomodulating steroidal glycosides from the roots of *Stephanotis mucronata*. Helv. Chim. Acta 87, 2378–2384.
- Ye, Y.P., Sun, H.X., Li, X.Y., Chen, F.Y., Qin, F., Pan, Y.J., 2005. Four new C-21 steroidal glycosides from the roots of *Stephanotis mucronata* and their immunological activities. Steroids 70, 791–797.