J. CHEM. SOC., CHEM. COMMUN., 1992

Enantioselective Halolactonisation of Bis- γ , δ -unsaturated Carboxylic Acid Derivatives: Use of a Sultam and Oxazolidine-2-ones as Chiral Auxiliary

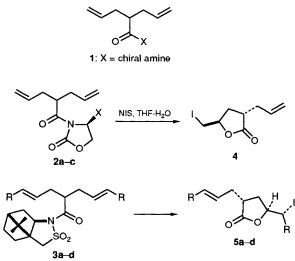
Tsutomu Yokomatsu, Haruo Iwasawa and Shiroshi Shibuya*

Tokyo College of Pharmacy, 1432-1 Horinouchi, Hachioji, Tokyo 192-03, Japan

lodolactonisation of heptadienoic acid derivatives 2 and 3 having oxazolidin-2-ones or a sultam as chiral auxiliary gave the chiral iodolactones 4 and 5 in moderate to excellent enantioselectivity.

Discrimination of diastereotopic alkene groups with concomitant face differentiation in halolactonisation of symmetrical diene-carboxylic acids has recently proved to be a useful strategy for efficient construction of chiral synthons with diastereoisomeric purity.1 Enantioselective halolactonisation of bis- γ , δ -unsaturated amides 1, derived from chiral amines, was also pursued in order to obtain asymmetric synthons with high optical purity.^{2,3} However, the enantioselectivities are generally low, owing, in part, to the existence of C(O)-Nrotamers arising from restricted rotation about the amide bond, when unsymmetrical chiral amines were used as chiral auxiliary.² Fuji used C_2 symmetric pyrrolidines as chiral auxiliary to avoid the need for C(O)-N rotamer control and succeeded in obtaining high enantioselectivity.2 If an oxazolidin-2-one or a sultam⁴ were used as chiral auxiliary, restricted rotation about the amide bond would be minimized by the effects of the electron-deficient carbonyl or sulfone functions, and control of the population of the C(O)-N rotamers would be feasible. We now describe enantioselective iodolactonisation of the imides 2 and 3, derived from easily available oxazolidine-2-ones and a sultam,⁴ which provided a high degree of diastereo- and enantio-selectivity (Scheme 1).

First we explored the enantioselective iodolactonisation of heptadienoic acid derivatives 2. The substituent on the oxazolidin-2-one ring was varied in order to examine the effects of its bulk on enantioselectivity. Iodine and *N*-iodosuccinimide (NIS) were used as iodolactonisation promoter. Iodine was totally ineffective for the iodolactonisation.


Table 1 Iodolactonisation	of 2 with	N-iodosuccinimide	in THF-H ₂ O
---------------------------	------------------	-------------------	-------------------------

	x	4		
2		Yield (%)	E.e.(%)	
2a	PhCH ₂	30	20	
2b	Pr ⁱ	35	54	
2c	But	16	56	

Table 2 Enantioselective iodolactonisation of 3a-d

Entry	3	Reagent (temp./°C)	Product ^d	Yield (%)	E.e. (%) ^e	$[\alpha]_{\mathrm{D}}(c)^{f}$
1	3a(R = H)	$I(collidine)_2 ClO_4 (-40)^a$	5a	87	>98	-22.9 (1.4)
2	3a	$I(collidine)_2 ClO_4 (25)^b$	5a	38	58	
3	3a	$KI-I_2 (0 \rightarrow 25)^c$	5a	39	>98	
4	$3b(R = CH_2Ph)$	$I(collidine)_2 ClO_4 (-40)^a$	5b	54	86	-4.4(1.8)
5	$3c(R = Pr^i)$	$I(collidine)_2 ClO_4 (-40)^a$	5c ^g	77	56	-21.0(0.8)
6	3d(R = Me)	I(collidine) ₂ ClO ₄ $(-40)^a$	5 d ^{<i>h</i>}	70	57	-29.2 (1.6)

^{*a*} Carried out in CH₂Cl₂–MeOH containing 1.2 equiv. of H₂O for 48 h. ^{*b*} Carried out in MeOH–H₂O for 0.5 h. ^{*c*} Carried out in CH₂Cl₂ in the presence of aq. NaHCO₃ for 48 h. ^{*d*} 3,5-*cis*-isomers were not detected by NMR, unless stated otherwise. ^{*e*} Determined by ¹H NMR (300 MHz) with Eu(hfc)₃. ^{*f*} Measured in CHCl₃ at 20 °C. ^{*s*} 3,5-*trans/cis* = 10. ^{*h*} 3,5-*trans/cis* = 13.

Scheme 1 Iodolactonisations

However, upon treatment of **2a** with NIS (1.5 equiv.) in tetrahydrofuran (THF)– H_2O (1:1) at 0 to 25 °C for 36 h, the *trans*-iodolactone **4** was obtained in 30% yield. The enantiomeric excess (e.e.) of **4** was determined to be 20% by ¹H NMR (300 MHz) analysis with tris[(heptafluoro-propylhydroxymethylene)-(+)-comphorato]europium(III)

[Eu(hfc)₃]. When isopropyloxazolidin-2-one **2b** and *tert*-butyloxazolidin-2-one **2c** were used as substates, the e.e. of **4** increased to 54 and 56%, respectively, but in the case of **2c**, the chemical yield was quite low (Table 1). The absolute configuration of **4**[†] was assigned as 3S,5R by comparison of the sign of its specific rotation with that reported in the literature.^{2,3} The cyclisation probably proceeds *via* transition state **A** which is favoured over transition state **B** because of steric repulsion between the allyl substituent α to carbonyl and the alkyl substituent on the oxazolidin-2-one (Fig. 1). This route for cyclisation is consistent with the assigned stereochemistry of **4**.

In an effort to achieve higher enantioselectivity, we next employed a sultam,⁴ derived from D-camphorsulfonic acid, as chiral auxiliary (Table 2). Treatment of **3a** with iodonium di-sym-collidine perchlorate⁵ (2.3 equiv.) in CH₂Cl₂–MeOH containing 1.2 equiv. of H₂O at -40 °C for 48 h gave **5a**, $[\alpha]_D^{20}$ -22.9 (*c* 1.4, CHCl₃), enantiomeric to **4**, in excellent enantioselectivity (>98% e.e.) and good yield (87%) (entry 1, Table 2). In this reaction the sultam was recovered in 90% yield without loss of optical purity. Under similar conditions, iodolactonisation of heptadienoic acid derivatives **3b**–d‡

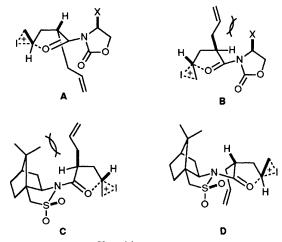


Fig. 1 Transition state structures

having alkyl substituents at the δ - and δ' -positions afforded the corresponding lactones **5b–d** diastereo- and enantio-selectively. The optical purity of the product decreased slightly (86% e.e.) in the case of **3b**, and significantly decreased to around 56% e.e. for **3c** and **3d** (entries 4–6, Table 2).

The reaction temperature strongly affected the enantioselectivity and yield. Upon treatment of **3a** with iodonium di-sym-collidine perchlorate at 25 °C, **5a** was obtained in low yield and modest enantioselectivity (entry 2, Table 2). Reaction of **3a** with KI–I₂ in the present of aqueous NaHCO₃ in CH₂Cl₂ also gave **5a** with high enantioselectivity but in low chemical yield (entry 3, Table 2). Of two transition states **C** and **D** leading to 3,5-*trans*-lactones, we assume that transition state **D** providing the 3*R*,5*S* enantiomer is favoured over **C**, because of steric repulsion between the allyl substituent and the camphor moiety (Fig. 1). The observed enantioselection in halolactonisation of **3** can be also rationalized by this cyclisation process.

In conclusion our studies have shown that a sultam is a good chiral auxiliary to differentiate diastereotopic alkene groups of symmetrical diene-carboxylic acids in halolactonisation with a high degree of diastereo- and enantio-selectivity. Chiral synthons obtained in these studies should be useful for the synthesis of biologically important compounds.

Received, 21st February 1992; Com. 2/00937D

References

- 1 M. J. Kurth and E. G. Brown, J. Am. Chem. Soc., 1987, 109, 6844.
- 2 K. Fuji, M. Node, Y. Naniwa and T. Kawabata, *Tetrahedron Lett.*, 1990, **31**, 3175.
- 3 S. Takano, C. Murataka, Y. Imamura, N. Tamura and K. Ogasawara, *Heterocycles*, 1981, 16, 1291.
- 4 W. Oppolzer, C. Chapuis and G. Bernardielli, *Helv. Chim. Acta*, 1984, 67, 1397.
- 5 R. W. Lemieux and A. R. Morgan, *Can. J. Chem.*, 1965, 43, 2190.
 6 R. E. Ireland, R. H. Mueller and A. K. Willard, *J. Am. Chem. Soc.*, 1976, 98, 2868.

729

^{\dagger} Specific rotation (in CHCl₃) of **4** obtained by this method ranged from +7.6 to +17.2.

[‡] The heptadienoic acids corresponding to **3b–d** were prepared stereoselectively from (*E*)-5-alkylpent-4-enoic acids and 1-alkylpent-2-enols *via* an Ireland–Claisen rearrangement⁶ using lithium bis-(trimethylsilyl)amide and *tert*-butyldimethylchlorosilane as base and silylating agent, respectively.