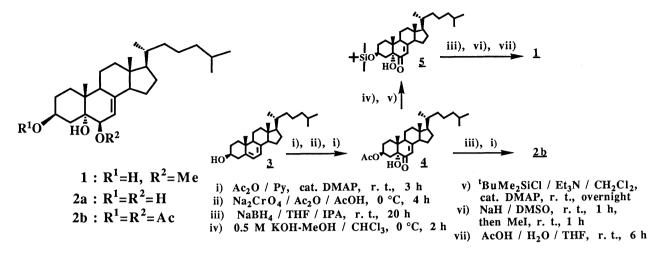
Structure Elucidation of Oxygenated Sterols from Eggs of Sea Hare, Aplysia juliana

Yoshihiro YAMAGUCHI,* Yukio NAKANISHI, Teruyuki SHIMOKAWA, Shigeru HASHIGUCHI, and Akira HAYASHI


Department of Chemistry, Faculty of Science and Technology, Kinki University, Higashiosaka, Osaka 577

Cholest-7-en-6R-methoxy-3S,5R-diol, a new sterol, and cholest-7-en-3S,5R,6R-triol were isolated from eggs of sea hare, *Aplysia juliana*, and their structures and absolute configurations deduced by spectroscopic studies and chemical synthesis.

Polyhydroxylated sterols are common metabolites in marine invertebrates¹⁾ and sponges.²⁾ Recently, Komori *et al*. isolated a cholesterol peroxide derivative³⁾ from the albumen gland of sea hare (*Aplysia juliana*), and we also isolated the same compound from eggs of *A. juliana* and reported on its X-ray crystal analysis.⁴⁾ Further investigation of the lipidic extract of the same organism yielded two oxygenated sterols, cholest-7-en-6R-methoxy-3S,5R-diol (1) and cholest-7-en-3S,5R,6R-triol (2a), described in this paper.

Oxygenated sterols (1 and 2a) were obtained by SiO₂ column chromatography of an acetone extract of eggs of A. *juliana*.⁵⁾ The electron impact mass spectra (EI/MS) of $\underline{1}^{5)}$ showed a weak molecular ion peak (m/z 432, 2%) and fragment ion peaks at m/z 414, 399, 381, 365, 364, and 251. The fragment pattern indicated the presence of one methoxy group, two hydroxyl groups and one double bond, all of them located in rings A and B. The 13 C-NMR spectra of $\underline{1}^{5)}$ indicated the presence of three sp³ carbons attached to oxygen atoms and two olefinic carbons. The 1 H-NMR spectra $^{5)}$ of $\underline{1}$ showed one-proton signals at δ 4.07 and 3.17, consistent with the presence of two secondary carbinol methines. The complex methine signal at δ 4.07 showed the characteristic pattern for 3α -carbinol proton of an A/B trans-steroid. This unusually downshifted signal is typical of 3β -hydroxysterols bearing a 5α -hydroxyl group. The 1 H-NMR spectra of $\underline{1}$ showed, in addition, an olefinic proton at δ 5.41 coupled with the secondary carbinol methine at δ 3.17. Moreover, the singlet at δ 3.40 revealed the presence of one methoxy group. These data and the agreement of the C-18 methyl resonance at δ 0.59 with the value expected for a Δ 7-sterol suggested a 7-en-6-methoxy-3 β ,5 α -diol. The cholesterol-type side chain of $\underline{1}$ was deduced from 13 C-NMR and 1 H-NMR. 2) Thus, the structure of this sterol was formulated as cholest-7-en-6-methoxy-3 β ,5 α -diol.

The ¹H-NMR and ¹³C-NMR spectra of $\underline{2a}$ were very similar to those of $\underline{1}$, except for the absence of the methoxy group. The structure of $\underline{2a}$ was determined by the following synthesis. Diacetate $\underline{2b}$ derived from $\underline{2a}$ was synthesized by acetylation of 7-dehydrocholesterol $\underline{3}$, Na₂CrO₄ oxidation, NaBH₄ reduction and reacetylation. Reduction of $\underline{4}$ with NaBH₄ yielded a 6 β -hydroxy compound as a major product,⁶ whose physical data were identical with those of diacetate $\underline{2b}$. The structure and absolute configuration of $\underline{2a}$ were determined to be cholest-7-en-3S,5R,6R-triol. The structure and absolute configuration of $\underline{1}$ were determined to be cholest-7-en-6R-methoxy-3S,5R-diol as follows. Compound $\underline{4}$ was converted into $\underline{5}$ by hydrolysis and silylation. Subsequently, reduction, methylation, and desilylation of $\underline{5}$ gave the diol methylether derivative, of which ¹H-NMR, ¹³C-NMR, IR, EI/MS and $[\alpha]_D$ were identical with those of $\underline{1}$.

Compound $\underline{1}$ was isolated from a natural source for the first time. Compound $\underline{2a}$ was reported by F. Cafieri⁷⁾ and D. Sica,²⁾ but this is the first report of its isolation from the eggs of A. juliana.

Compounds $\underline{1}$ and $\underline{2a}$ instead of Vitamin D₃ may be biosynthesized from 7-dehydrocholesterol $\underline{3}^{(8)}$ as defense substances, since the biological significance of Vitamin D₃ playing important roles in the shell formation may be lower in Opisthobranchia such as *Aplysia sp*. which lacks the shell. The 7, 8-dihydro derivative of $\underline{2a}$ has several bioactivities.⁹⁾ Study on biological activities of compound $\underline{1}$ and $\underline{2a}$ is now in progress.

References

- 1) B. M. Jagodzinska, J. S. Trimmer, W. Fenical, and C. Djerassi, J. Org. Chem., 50, 2988 (1985).
- 2) V. Piccialli and D. Sica, J. Nat. Prod., 5, 915 (1987).
- 3) T. Miyamoto, M. Honda, S. Sugiyama, R. Higuchi, and T. Komori, Liebigs Ann. Chem., 6, 589 (1988).
- 4) K. Takahashi, Y. Yamaguchi, and A. Hayashi, Acta Crystallogr., Sect. C, 47, 2581 (1991).
- 5) Seven and seventeen miligrams of $\underline{1}$ and $\underline{2a}$ were obtained from eggs of A. juliana (3.5 kg, wet wt.), respectively. $\underline{1}$: $[\alpha]_D$ -55.6° (c 0.19, CHCl3); IR (CHCl3), v 3300-3500; EI/MS, m/z (rel. int.) 432(M+, 2), 414(M+-H2O, 100), 399(M+-H2O-Me, 24), 381(M+-2H2O-Me, 46), 365(M+-2H2O-OMe, 40), 364(M+-2H2O-MeOH, 25), 251(M+-2H2O-MeOH-side chain, 19); 1 H-NMR (500MHz, CDCl3), δ 5.41(1H, ddd, J=5.2, 2.6, 2.6, 7-H), 4.07(1H, dddd, J=11.5, 11.5, 4.8, 4.8, 3-H), 3.39(3H, s, 6-OMe), 3.17(1H, ddd, J=5.2, 2.0, 2.0, 6-H), 2.13(1H, dd, J=13.3, 11.5, 4-Hax), 2.08(1H, dt, J=12.5, 3.5), 1.86-1.92(2H, m), 1.84(1H, bd, J=12.5), 1.75(1H, ddd, J=13.3, 4.8, 2.0, 4-Heq), 1.41-1.62(9H, m), 1.20-1.40(8H, m), 1.08-1.18(2H, m), 1.00(3H, s, 19-Me), 0.93(3H, d, J=6.7, 21-Me), 0.87(3H, d, J=6.7, 26-Me), 0.86(3H, d, J=6.7, 27-Me), 0.59(3H, s, 18-Me); 13 C-NMR (125MHz, CDCl3), δ 143.7(s), 115.0(d), 82.5(d), 76.3(s), 67.8(d), 58.2(d), 56.2(q), 54.9(d), 44.0(s), 43.9(d), 39.6(t), 39.5(t), 39.5(t), 37.3(s), 36.2(d), 36.1(t), 32.8(t), 30.9(t), 28.0(d), 27.8(t), 23.9(t), 22.9(t), 22.8(q), 22.6(q), 22.2(t), 18.8(q), 18.4(q), 12.1(q).
- 6) C. Rufer, H. Hoffmeister, H. Schairer, and M. Traut, Chem. Ber., 98, 2383 (1965).
- 7) F. Cafieri, E. Fattorusso, M. Gavagnin, and C. Santacroce, J. Nat. Prod., 48, 944 (1985).
- 8) There was little 7-dehydrocholesterol in eggs of *A. juliana* though mollusks usually contain $\Delta^{5,7}$ -sterols in their bodies; D. R. Idler and P. Wiseman, *J. Fish. Res. Board Can.*, **29**, 385 (1972).
- 9) For example, N. A. Higley and S. L. Taylor, Food Chem. Toxicol., 22, 983 (1984).

(Received May 11, 1992)