(±)-erythro-γ,δ-Dihydroxycarboxylic Acid Lactones from a β-Lithiopropionate Equivalent and α -Chloroaldehydes¹

Michael Plewe, Richard R. Schmidt*

Fakultät Chemie, Universität Konstanz, Postfach 5560, D-7750 Konstanz, Federal Republic of Germany

Reaction of β -ethylthio- β -lithioacrylate 1A with α -chloroaldehydes furnished predominantly the *erythro* products 3, which were solated as γ -lactones 4. At room temperature intermediates 3 are transformed into the (\pm) -erythro- γ , δ -dihydroxycarboxylic acid γ -lactones 8. Raney nickel treatment provided interesting natural γ -lactone derivatives; thus, from *erythro*-8c the socalled L-factor *erythro*-9c was obtained. Similarly, from β -methoxy β -lithioacrylate 10A the (\pm) -erythro- γ , δ -dihydroxycarboxylic acid δ -lactone *erythro*-11 was gained.

 γ , δ -Dihydroxycarboxylic acid lactones are ubiquitous in nature, exhibiting often interesting physiological properties. ^{2,3} For instance, the (-)-isomer of compound *erythro*-9a (Scheme B) is a constituent of *Osmunda japonica THUN*. providing a derivative with antifeedant properties. ³ The (+)-isomer of compound *erythro*-9c was isolated from *Streptomyces griseus*² and named L-factor because it was claimed to be responsible for the formation of the antibiotic leukaemomycin. ⁴ Various synthetic methodologies have been developed for this type of compounds. ⁵⁻¹⁰ In addition, they have been used as intermediates in natural product syntheses ¹¹ including carbohydrates. ^{1,12}

We have demonstrated that the readily accessible β -C-lithiated acrylates **A** (Scheme **A**) serve as versatile β -lithioacrylate **B** and β -lithiopropionate equivalents **C** providing, for instance, γ - and δ -lactones in short routes by reaction with carbonyl compounds, epoxides, and oxetanes, respectively, as electrophilic-nucleophilic species. Thus, γ, δ -dihydroxy substituted derivatives are also readily obtained with derivatives of α -hydroxy aldehydes and α -hydroxy epoxides; the usefulness of α -chloroaldehydes in this reaction is demonstrated here.

Scheme A

The dilithiated species 1A, generated from the readily available β -ethylthioacrylic acid 1 with *tert*-butyllithium, ¹³ afforded with α -chloroaldehydes 2a-c (racemates) at low temperature diastereoselectively the addition products 3, which on acidic

aqueous workup (path a) provided the *erythro-* γ -lactones (\pm)-*erythro-***4a-c**, respectively, in good yields (Table 2). The ¹H-NMR of the crude demonstrated the presence of minor amounts of the corresponding *threo*-isomers (Table 1), which could not be isolated in pure form. The relative configurations were assigned by comparison of the ¹H-NMR data with previous results^{1,12} where H-4 of the *erythro*-isomer exhibits a downfield shift (Table 2) compared with the corresponding *threo*-isomers [δ (H-4): **4a** = 4.97; **4b** = 5.04; **4c** = 5.05]. The

Table 1. erythro/threo-Selectivities Obtained for the Reactions of 1A and 10A with (±)-2a-c

Starting materials	Products and Ratios (Path a) ^a	Products and Ratios (Path b) ^a
$1A + (\pm) - 2a$ $1A + (\pm) - 2b$ $1A + (\pm) - 2c$ $10A + (\pm) - 2a$	(\pm) -erythro- 4a : (\pm) -threo- 4a (9:1) (\pm) -erythro- 4b : (\pm) -threo- 4b (9:1) (\pm) -erythro- 4c : (\pm) -threo- 4c (7:1)	(±)-erythro-8a:(±)-threo-8a (6:1) (±)-erythro-8b:(±)-threo-8b (9:1) (±)-erythro-8c:(±)-threo-8c (7:1) (±)-erythro-11:(±)-threo-11 (>19:1)

a See experimental.

preferred formation of the *erythro*-isomers is in accordance with previous findings^{1,12} and with the Cram-Felkin-Anh model predictions (see **D**).¹⁵

Base treatment, for instance of the product (±)-erythro-4a gave varying results: Treatment with 1,8-diazabicyclo[5.4.0] undec-7-ene (DBU) afforded cleanly the Z-isomer Z-6a; this is ascribed to a E1cb mechanism favoring the formation of the thermodynamically more stable isomer. However, with potassium acetate due to a prevailing E2 mechanism the major isomer was the E-isomer E-6a (E/Z = 3:1). The structural assignments are based on the ¹H-NMR chemical shifts of H-5. ¹⁶ Sodium methoxide in methanol furnished via elimination and reversed methanol addition butenolide (+)-7a. Chlorine substitution was directly obtained from the reaction mixture containing intermediates 3 by warming up to room temperature (path b). The γ , δ -dihydroxycarboxylic acid lactones (\pm)-8a-c were found in almost the same erythro/threo ratios in the crude (Table 1); the erythro-isomers (\pm) -erythro-8a-c were isolated in pure form (Table 2). The stereochemical result is due to double inversion of configuration with formation of epoxides 5 and subsequent invertive opening. Raney nickel treatment of compounds (\pm) -erythro-8a and (\pm) -erythro-9c led to the lactones (\pm) -erythro-9a and (\pm) -erythro-9c, respectively, which had ¹H-NMR data identical to those published previously, ^{8,17} thus independently proving the structural assignments.

Table 2. Compounds 4, 6, 8, 9 and 11 Prepared

Product	Viola	9	Malassias Essent b	THE NEW COSCILITY CODGLETTINGS
Product	Yield (%)	mp ^a (°C)	Molecular Formulab or Lit. Data	¹ H-NMR (250 MHz, CDCl ₃ /TMS)° δ , J (Hz)
(±)-erythro-4a	66	oil ^d	C ₈ H ₁₁ ClO ₂ S (206.7)	1.43 (t, 3H, $J = 7.3$, SCH ₂ CH ₃); 1.48 (d, 3H, $J = 6.7$, CHCH ₃); 2.98 (q, 2H, $J = 7.3$, SCH ₂ CH ₃); 4.23 (dq, 1H, $J = 3.3$, 6.7, H-5); 5.10 (dd 1H, $J = 1.2$, 3.3, H-4); 5.77 (d, 1H, $J = 1.2$, H-2)
(±)-erythro- 4b	70	oil ^d	C ₉ H ₁₃ ClO ₂ S (220.7)	1.09 (t, 3H, $J = 7.3$, CH_2CH_3); 1.42 (t, 3H, $J = 7.3$, SCH_2CH_3); 1.75-1.97 (m, 2H, $CH - CH_2CH_3$); 2.99 (q, 2H, $J = 7.3$, SCH_2CH_3); 3.98-4.05 (m, 1H, H-5); 5.13 (dd, 1H, $J = 1.2$, 3.6, H-4); 5.76 (d, 1H, $J = 1.2$ H-2)
(±)-erythro- 4c	38	oil ^e	C ₁₂ H ₁₉ ClO ₂ S (262.8)	0.90 (t, 3H, $J = 6.7$, CH ₃); 1.42 (t, 3H, $J = 7.3$, SCH ₂ CH ₃); 1.26–1.82 [m, 8H, (CH ₂) ₄]; 2.98 (q, 2H, $J = 7.3$, SCH ₂ CH ₃); 4.09 (dt, 1H, $J = 3.3$, 10.3, H-5); 5.13 (dd, 1H, $J = 1.2$, 3.3, H-4); 5.77 (d, 1H, $J = 1.2$, H-2)
(Z)-6a	70 ^f	77–78	C ₈ H ₁₀ O ₂ S (170.2)	1.41 (t, 3H, $J = 7.3$, SCH ₂ CH ₃); 1.92 (d, 3H, $J = 7.3$, =CCH ₃); 2.97 (q, 2H, $J = 7.3$, SCH ₂ CH ₃); 5.40 (q, 1H, $J = 7.3$, H-5); 5.77 (s, 1H, H-2)
(E)-6a	77 ⁸	52	$C_8H_{10}O_2S$ (170.2)	1.45 (t, 3H, $J = 7.3$, SCH ₂ CH ₃); 2.04 (d, 3H, $J = 7.9$, =CCH ₃); 2.98 (q, 2H, $J = 7.3$, SCH ₂ CH ₃); 5.82 (d, 1H, $J = 1.5$, H-2); 5.87 (dq, 1H, $J = 1.5$, 7.9, H-5)
(±)-7a	75	oil	C ₉ H ₁₄ O ₃ S (202.3)	0.89 (t, 3H, $J = 7.3$, CH ₂ CH ₃); 1.43 (t, 3H, $J = 7.3$, SCH ₂ CH ₃); 1.81 (dq, 1H, $J = 7.3$, 14.6, CH ₂ CH ₃); 2.06 (dq, 1H, $J = 7.3$, 14.6, CH ₂ CH ₃); 2.96 (q, 2H, $J = 7.3$, SCH ₂ CH ₃); 3.21 (s, 3H, OCH ₃); 5.78 (s, 1H, H-2)
(±)-erythro-8a	56	85°	$C_8H_{12}O_3S$ (188.3)	1.21 (d, 3H, $J = 6.4$, CHCH ₃); 1.41 (t, 3H, $J = 7.4$, SCH ₂ CH ₃); 2.74 (d, 1H, $J = 7.0$, OH); 2.97 (q, 2H, $J = 7.4$, SCH ₂ CH ₃); 4.02 (m, 1H, H-
(±)-erythro- 8b	41	74 ^d	C ₉ H ₁₄ O ₃ S (202.3)	5); 4.98 (dd, 1H, $J = 1.2$, 3.9, H-4); 5.73 (d, 1H, $J = 1.2$, H-2) 1.03 (t, 3H, $J = 7.3$, CH ₂ CH ₃); 1.42 (t, 3H, $J = 7.3$, SCH ₂ CH ₃); 1.50– 1.65 (m, 2H, CH ₂ CH ₃); 2.01 (d, 1H, $J = 7.3$, OH); 2.96 (q, 2H, $J = 7.3$, SCH ₂ CH ₃); 3.67–3.77 (m, 1H, H-5); 4.97 (dd, 1H, $J = 1.2$, 5.5, H-4); 5.71 (d, 1H, $J = 1.2$, H-2)
(±)-erythro- 8c	22	92°	C ₁₂ H ₂₀ O ₃ S (244.4)	0.88 (t, 3H, $J = 4.9$, CH ₃); 1.21–1.63 [m, 8H, (CH ₂) ₄]; 1.41 (t, 3H, $J = 7.3$, SCH ₂ CH ₃); 2.95 (br s, 1H, OH); 2.97 (q, 2H, $J = 7.3$, SCH ₂ CH ₃); 3.78–3.84 (m, 1H, H-5); 4.97 (dd, 1H, $J = 1.2$, 4.2, H-4);
(±)-erythro-9a	58	oil	oil ¹⁷	5.73 (d, 1H, J = 1.2, H-2)
(\pm) -erythro- 9b	53	oil	oil ⁸	_ h
(±)-erythro-11	46	111–112	C ₇ H ₁₀ O ₄ (158.2)	1.47 (d, 3H, $J = 6.4$, CHCH ₃); 3.73 (br s, 1H, OH); 3.81 (s, 3H, OCH ₃); 4.17 (dd, 1H, $J = 2.4$, 7.6, H-4); 4.39 (dq, 1H, $J = 6.4$, 7.6, H-5); 5.14 (s, 1H, H-2)

^a Uncorrected.

^c Recorded on a Bruker WM 250 spectrometer.

From 4a and KOAc, E-6a/Z-6a=3:1.

^h ¹H-NMR data are in accordance with the reported values.^{8,17}

b Satisfactory microanalyses obtained: $C \pm 0.3$, $H \pm 0.3$.

Chromatographed on silica gel (eluent: petroleum ether (bp 35-65°C)/EtOAc, 1:1).

Chromatographed on silica gel (eluent: petroleum ether (bp 35–65°C)/EtOAc, 7:3).

From 4a and DBU.

536 Communications synthesis

The same reaction course was observed for the dilithiated species 10A generated from β -methoxy acrylic acid 10^{18} with sec-butyllithium. With (\pm) -2a, for instance, exclusively the erythro-isomer (\pm) -erythro-11 was obtained via the intermediates in Scheme C (erythro: threo > 19:1; the threo-isomer was not detected). This compound was isolated as the more stable δ -lactone; the structure was assigned by comparing the ¹H-NMR data of (\pm) -erythro-11 (Table 2) with literature data of similar compounds. ¹⁹

Preparation of Lactones (±)-erythro-4a-c; General Procedure (Path a): t-BuLi (3.6 mL of a 1.4 M solution in pentane, 5 mmol) is added dropwise with stirring to a solution of (E)- β -ethylthioacrylic acid 1^{13} (300 mg, 2.27 mmol) in dry THF (50 mL) at $-100\,^{\circ}$ C under N_2 . The mixture is stirred for 1 h at the same temperature, then heated to $-80\,^{\circ}$ C. Then freshly distilled appropriate α-chloroaldehyde 2^{20} (1.1 equiv) is introduced dropwise into the reaction flask with a syringe. Stirring is continued for 1 h at $-80\,^{\circ}$ C and 1 h at $-40\,^{\circ}$ C. The mixture is poured into ice water (30 mL), acidified to pH 1 with 3 N HCl, and extracted with ether (3 × 50 mL). The combined ether extract is dried (MgSO₄), and concentrated. Evaporation is continued for 10 min at 40 °C. The remaining liquid is poured into a sat. NaHCO₃ (30 mL), extracted with ether (3 × 30 mL), and the combined ether extract is dried (MgSO₄). After concentration, the residue is purified by column chromatography (silica gel; eluents: see Table 2).

(Z)-3-Ethylthio-2,4-hexadien-4-olide (Z-6a):

A solution of (\pm)-erythro-4a (250 mg, 1.21 mmol) and DBU (230 mg, 1.51 mmol) in dry CHCl₃ (30 mL) is refluxed for 7 h. After cooling, the mixture is diluted with water (30 mL), acidified to pH 1 with 3 N HCl, and extracted with CH₂Cl₂ (3×50 mL). The combined organic extract is washed with sat. NaHCO₃, and dried (MgSO₄). After concentration, the residue is purified by column chromatography [silica gel; eluent: petroleum ether (bp 35-65°C)/EtOAc, 8:2].

(E)-3-Ethylthio-2,4-hexadien-4-olide (E-6a):

A solution of (\pm) -erythro-4a (300 mg, 1.45 mmol) and KOAc (200 mg, 2.03 mmol) in DMF (25 mL) is stirred at room temperature for 6 h. The mixture is diluted with water (25 mL), and extracted with ether $(4 \times 50 \text{ mL})$. The organic extracts are washed with water $(4 \times 50 \text{ mL})$, dried (MgSO₄), and concentrated. The residue is chromatographed on a silica gel column using petroleum ether (bp 35-65°C)/EtOAc, 8:2 as eluent.

(\pm) -3-Ethylthio-4-methoxy-2-hexen-4-olide $[(\pm)$ -7 a]:

To a solution of (\pm) -erythro-4a (70 mg, 0.33 mmol) in dry MeOH (30 mL) is added NaOMe (0.18 mL) of a 2 M solution in MeOH. The mixture is stirred at room temperature for 2 h, neutralized with ion exchange resin Amberlite IR 120 (H⁺), filtered, and concentrated. The remaining colorless oil is purified by column chromatography (silica gel; eluent: petroleum ether (bp 35-65 °C)/EtOAc, 8:2).

Preparation of Lactones (±)-erythro-8a-c; General Procedure (Path b): t-BuLi (3.6 mL of a 1.4 M solution in pentane, 5 mmol) is added dropwise with stirring to a solution of (E)- β -ethylthioacrylic acid 1^{13} (300 mg, 2.27 mmol) in dry THF (50 mL) at $-100\,^{\circ}$ C under N_2 . The mixture is stirred for 1 h at the same temperature, then heated to $-80\,^{\circ}$ C. Then freshly distilled appropriate α-chloroaldehyde 2^{20} (1.1 equiv) is introduced dropwise into the reaction flask with a syringe. After 1 h at $-80\,^{\circ}$ C and 1 h at $-40\,^{\circ}$ C, the mixture is allowed to reach room temperature, and the stirring is continued for an additional time t [(±)-8a: $t=12\,h$; (±)-8b: $t=16\,h$; (±)-8c: $t=5.5\,h$]. The mixture is then poured into ice water (30 mL), acidified to pH 1 with 3 N HCl, and extracted with ether (3 × 50 mL). The combined ether extract is washed with a sat. NaHCO₃ (2×50 mL), and dried (MgSO₄). After concentration, the residue is purified by column chromatography (silica gel; eluents: see Table 2).

Desulfurization of (±)-erythro-8a and 8c; General Procedure:

To a solution of (\pm) -erythro-8a or (\pm) -erythro-8c (300 mg; 1.59 mmol and 1.22 mmol, respectively) in dry EtOH (30 mL) is added Raney nickel W2 (1 g). The mixture is stirred for 3 h, the catalyst is filtered and carefully washed with EtOH. After concentration of the combined ethanol solution, the residue is treated with brine (30 mL), extracted with CH₂Cl₂ (3×30 mL), and dried (MgSO₄). After concentration, the residue is purified by column chromatography [silica gel; eluents: petroleum ether (bp 35-65°C)/EtOAc; (\pm) -erythro-9a: 1:5; (\pm) -erythro-9c: 6:4].

(±)-erythro-4-Hydroxy-3-methoxy-2-hexen-5-olide [(±)-erythro-11]: s-BuLi (6.0 mL of a 1.1 M solution in cyclohexane/isopentane 92: 8, 6.6 mmol) is added dropwise with stirring to a solution of (E)-β-methoxyacrylic acid¹⁸ (300 mg, 2.94 mmol) in dry THF (50 mL) at -100° C under N_2 . The mixture is stirred for 1 h at the same temperature, then α-chloropropionaldehyde²⁰ (302 mg, 3.26 mmol) is introduced dropwise into the reaction flask with a syringe. Stirring is continued for 1 h at -80° C, 2 h at -40° C, and 2 h at 0° C. The mixture is poured into ice water (30 mL), acidified to pH 1 with 3 N HCl and extracted with ether (4×50 mL). The combined ether extract is washed with a sat. NaHCO₃, dried (MgSO₄) and concentrated. The residue is purified by column chromatography [silica gel; eluent: petroleum ether (bp 35-65°C)/EtOAc, 1:5].

The authors are indebted to the Deutsche Forschungsgemeinschaft and to the Fonds der Chemischen Industrie for financial support.

Received: 19 December 1988; revised: 22 March 1989

- (1) This is part 37 on Vinyl Carbanions, for Part 36, see: Eßwein, A., Betz, R., Schmidt, R.R. Helv. Chim. Acta 1989, 72, 213.
- (2) Gräfe, U., Reinhardt, G., Schade, W., Krebs, D., Eritt, I., Fleck, W.F., Heinrich, E., Radics, L J. Antibiot. 1982, 35, 609.
- (3) Numata, A., Hokimoto, K., Takemura, T., Katsumo, T., Yamamoto, K. Chem. Pharm. Bull. 1984, 32, 2815, and references cited therein.
- (4) Gräfe, U., Eritt, I. J. Antibiot. 1983, 36, 1592.
- Pougny, J.-R. Tetrahedron Lett. 1984, 25, 2363.
 Stamatatos, L., Sinaÿ, P., Pougny, J.-R. Tetrahedron 1984, 40, 1713.
- (6) Larchevêque, M., Lalande, J. J. Chem. Soc. Chem. Commun. 1985, 83.
- (7) Mori, K., Otsuka, T. Tetrahedron 1985, 41, 3253.
- (8) Cooper, R.D., Jigajinni, V.B., Wightman, R.H. Tetrahedron Lett. 1984, 25, 5215.
- (9) Jefford, C. W., Wang, Y. J. Chem. Soc. Chem. Commun. 1987, 1513. Jefford, C. W., Sledeski, A. W., Boukouvalas, J. Tetrahedron Lett. 1987, 28, 949.
- (10) Barua, N.C., Schmidt, R.R. Synthesis 1986, 1067.
- (11) Szarek, W.A., Vays, D.M., Chen., L. Carbohydr. Res. 1977, 53,

Ravid, U., Silverstein, R.M., Smith, L.R. Tetrahedron 1978, 34, 1449

Tomioka, K., Ishiguro, T., Koga, K. Tetrahedron Lett. 1980, 21,

Berti, G., Caroti, P., Gatelani, G., Monti, L. *Carbohydr. Res.* 1983, 124, 35.

Herdeis, C. Synthesis 1986, 232, and references cited therein.

- (12) Schmidt, R.R., Betz, R. Angew. Chem. 1984, 96, 420; Angew. Chem. Int. Ed. Engl. 1984, 23, 430.
 Enhsen, A., Schmidt, R.R. Liebigs Ann. Chem. 1989, 69.
- Barua, N.C., Schmidt, R.R. Synthesis 1986, 891.
 Barua, N.C., Schmidt, R.R. Chem. Ber., 1986, 119, 2066.
 Barua, N.C., Schmidt, R.R. Tetrahedron 1986, 42, 4471, and references cited therein.
- (14) Taken from Plewe, M. Diplomarbeit, Universität Konstanz, 1987.
- (15) Mulzer, J. Nachr. Chem. Techn. Lab. 1984, 32, 16.
- Anh, N.T. Top. Curr. Chem. 1980, 88, 145. (16) See, for instance, Nakano, T., Nagai, Y. J. Chem. Soc. Chem.
- Commun. 1981, 815. (17) Dyong, I., Jersch, N. Chem. Ber. 1976, 109, 896.
- (18) Schmidt, R.R., Hirsenkorn, R. Tetrahedron Lett. 1984, 25, 4357.
- (19) Achenbach, H., Wittmann, G. Tetrahedron Lett. 1970, 3259. Achenbach, H., Huth, H. ibid. 1974, 119. Hänsel, R., Schulz, J. Chem. Ber. 1973, 106, 570.
- (20) Dick, C.R. J. Org. Chem. 1962, 27, 272.
 Brown, H.C., Ash, A.B. J. Am. Chem. Soc. 1955, 77, 4019.
 Stevens, C.L., Farkas, E., Gillis, B. J. Am. Chem. Soc. 1954, 76 2695.