Dichlorotetrakis(isocyanide)dipalladium(I) Containing a Metal-Metal Bond¹⁾ Yasuhiro Yamamoto* and Hiroshi Yamazaki The Institute of Physical and Chemical Research, Wako, Saitama 351-01 (Received November 21, 1984) **Synopsis.** The structure of [{PdCl(*t*-BuNC)₂}₂] has been determined by X-ray diffraction. A metal-metal bond joins two Pd atoms, each of which possesses an essentially square-planar coordinate site. The photochemical reaction of [{PdCl(RNC)₂}₂] in CH₂Cl₂ led to a cleavage of the metal-metal bond to give *trans*-[PdCl₂(*t*-BuNC)₂]. Metal clusters attract considerable attention as plausible models of surfaces in heterogeneous catalysts.²⁾ Binuclear complexes are the simplest units which can provide information on the metal-metal interactions. Previously we reported that the electrochemical reductions of *cis*-[PtCl₂(RNC)₂] gave [{PtCl(RNC)₂}₂] 1 containing a metal-metal bond.³⁾ This finding prompted us to reexamine the structure of [{PdCl(*t*-BuNC)₂}₂], assigned to chloride bridged structure.⁴⁾ When we were preparing the paper on the X-ray crystallographic analysis of [{PdCl(t-BuNC)₂}₂] **2a**, we knew of the study on crystal structure of [{PdI-(MeNC)₂}₂] **3** described by Balch and his co-workers.⁵⁾ We report here the X-ray analysis of **2a** and the characterization of related complexes having aromatic isocyanides as ligands. ## Experimental The isocyanides,⁶⁾ $PdCl_2(RNC)_2$,⁷⁾ and $[\{PdCl(RNC)_2\}_2]^7$ were prepared according to the literature. PdCl₂(2,6-Me₂C₆H₃NC̄)₂: IR (Nujol): 2205, 2172 cm⁻¹ (N≡ C). Found: C, 49.15; H, 4.18; N, 6.37%. Calcd for $C_{18}H_{18}N_{2}$ -Cl₂Pd: C, 49.17; H, 4.13, N, 6.37%. PdCl₂(2,6-Me₂-4-BrC₆H₂NC)₂. IR (Nujol): 2224, 2205 cm⁻¹ (N≡C). Found: C, 36.17; H, 2.73; N, 4.59%. Calcd for $C_{18}H_{16}$ -N₂Cl₂Br₂Pd: C, 36.19; H, 2.70; N, 4.69%. [{PdCl(2,6-Me₂C₆H₃NC)₂}₂] **2b.** IR (Nujol): 2155 cm⁻¹. (N=C). ¹H NMR(CDCl₃): δ =2.53 (s, CH₃), 7.2 (aromatic protons). Found: C, 53.50; H, 4.46; N, 6.84%. Calcd for C₃₆H₃₆-N₄Cl₂Pd₂: C, 53.49; H, 4.49; N, 6.93%. [{PdCl(2,6-Me₂-4-BrC₆H₂NC)₂}₂] **2c.** IR (Nujol): 2154 cm⁻¹ (N=C). ¹H NMR (CDCl₃): δ =2.50 (s, CH₃), 7.31 (aromatic protons). Found: C, 38.19; H, 2.95; N, 4.92%. Calcd for C₃₆H₃₂-N₄Br₄Cl₂Pd₂: C, 38.47; H, 2.87; N, 4.98%. [Pd₂(2,6-Me₂C₆H₃NC)₆](PF₆)₂(2C₆H₆) **4b.** IR (Nujol): 2194, 2173 cm⁻¹. UV (CH₂Cl₂): λ 264 (49230), 325 sh nm. Found: C, 54.78; H, 4.40; N, 5.74%. Calcd for C₆₆H₆₆N₆P₂F₁₂Pd₂: C, 54.82; H, 4.60; N, 5.81%. $\begin{array}{lll} [Pd_2(2,6\text{-}Me_2\text{-}4\text{-}BrC_6H_2NC)_6](PF_6)_2 & \textbf{4c}. & IR & (Nujol): \\ 2170\ cm^{-1} & (N\equiv C). & UV(CH_2Cl_2): \lambda & 275(58640), \ \textit{ca}. & 335\ \text{ sh} \\ \text{nm. Found: } C,\ 36.75;\ H,\ 2.75;\ N,\ 4.82\%. & Calcd\ for\ C_{54}H_{48}\text{-}N_6Br_6P_2F_{12}Pd_2:\ C,\ 36.79;\ H,\ 2.74;\ N,\ 4.77\%. \end{array}$ X-Ray Data and Structure Determination. Crystal data: space group C_c . a=12.665(2), b=14.449(2), c=18.402(3)Å, $\beta=102.94(1)^\circ$, V=3282(9)ų. Z=4. R=0.060 for 2588 reflections. The choice of the space group C_c was justified on the basis of the successful refinement of the struture. Intensity data were collected with the crystals mounted in a nitrogen filled capillary. The positions of the palladium atoms were determined from Patterson maps. Subsequent difference Fourier maps and cycles of block-diagonal least-squares refinement revealed the positions of the remaining non-hydrogen atoms. The scattering factors were taken from "International Table for X-Ray Crystallography" (1974). The two t-butyl groups displayed disorder. The Pd and Cl, and C-N-C groups were refined anisotropically and other nonhydrogen atoms isotropically. The final difference synthesis showed no peaks higher than $0.4 \, \mathrm{e}\, \mathrm{A}^{-3}$. ## **Results and Discussion** The dimeric complexes [{PdCl(RNC)₂}₂] (**2a**: R=t-Bu; **2b**: R=2,6-Me₂C₆H₃; **2c**: R=2,6-Me₂-4-BrC₆H₂) were prepared by the reaction of Pd₂(dba)₃(CHCl₃), isocyanide and dichlorobis(isocyanide)palladium(II) in a 1:4:2 ratio. They are yellow and stable. The IR spectra showed a peak near 2155 cm⁻¹ due to terminal isocyanide groups. The reaction of **2b** with 2,6-xylyl isocyanide in the presence of NH₄PF₆ took place readily to give [Pd₂(2,6-Me₂C₆H₃NC)₆](PF₆)₂ **4b** quantitatively. The photochemical reaction of 2a in CH_2Cl_2 was monitored by the electronic spectra. The band at 307 nm in 2a decreased with the photolysis time and finally the spectrum was in good agreement with that of trans-[PdCl₂(t-BuNC)₂], indicating a cleavage of a metalmetal bond. The band at 307 nm was assigned as a σ - σ * transition. $$[\{PdCl(t-BuNC)_2\}_2] \xrightarrow[CH_1Cl_1]{h\nu} trans-[PdCl_2(t-BuNC)_2]$$ Similar σ - σ * transitions connected with metal-metal bonds have also been observed in the same range with [{PtCl(2,4-t-Bu₂-6-MeC₆H₂NC)₂}₂] $1d^3$ [324 nm(CH₂Cl₂)] and [Pd₂(MeNC)₆](PF₆]₂ **5** [302 nm(CH₂Cl₂)].8) Crystal Structure of **2a.**⁹ The crystal structure is shown in Fig. 2. Typical bond lengths and angles are given in Table 1. A metal-metal bond joins the two Pd atoms, each of which possesses essentially a square-planar coordinate geometry with the Pd-Pd bond occupying one of the coordination sites. The overall geometry is nearly D_{2d} symmetry. The Pd(1)-Pd(2) bond length of 2.532(2)Å is similar to those [2.533(1) and 2.531(9)Å] found in **3** and **5**, and somewhat shorter than those [2.563(2) and 2.561(2)Å] found in **1d**. The dihedral angle between the two PdClC₂ coordination planes is 82.7°, compared with those (85.3 and 86.4°) in **3** and **5**. The Cl-Pd-Pd-Cl unit is nearly linear. The Pd-Pd-Cl angles are 176.7 Fig. 1. Electronic spectrum of [PdCl(t-BuNC)₂]₂ in CH₂Cl₂ as a faction of photolysis time. Fig. 2. A perspective drawing of [PdCl(t-BuNC)₂]₂ with the numbering scheme. (2) and 177.4(2)°. The Pd-Cl bond lengths of 2.403 (9) and 2.416(9)Å, are longer than those [2.300(2) and 2.302(2)Å] of cis-[PdCl₂(c-C₆H₁₁NC)₂].¹⁰ This arises from the high trans effect of Pd-Pd bond. Similar behavior of terminal halide-metal bonds trans to metalmetal bonds has been noted in 3.5 The equatrial isocyanide ligands bend away from the axial Cl ligand giving rise to values of 97.2° for the mean C-Pd-Cl angle and 83.0° for the mean C-Pd-Pd angle. A similar distortion has been observed in 1d, 3, and 5, where the averages of C-M-Cl (or equatrial C) angles are 93.8, 95.2, and 95.0°, the averages of C-M-M angles are 85.5, 84.7, and 85.0°, respectively. Thus, the type of the complexes [{PdCl(RNC)₂}₂] was revised to the structure 2a involving terminal halogens and a metal-metal A list of the final F_0 — F_c table, bond lengths and angles (Table 1), and temperature factors are deposited as Document No. 8523 at the office of Bull. Chem. Soc. Jpn. ## References 1) Studies on interactions of isocyanides with transi- Table 2. Positional parameters for [{PdCl(t-BuNC)₂}₂]^{a)} | $[\{PdCl(t-BuNC)_2\}_2]^{a'}$ | | | | |-------------------------------|-----------|----------|----------| | ATOM | X | Y | Z | | PDl | 0(0) | 1126(1) | 2500(0) | | PD2 | 1659(2) | 1119(1) | 3564(1) | | CLl | -1538(6) | 1052(6) | 1464(3) | | CL2 | 3281(6) | 1063(6) | 4548(4) | | N10 | -794(16) | -102(13) | 3649(11) | | C10 | -515(16) | 321(13) | 3194(10) | | C11 | -1052(21) | -580(18) | 4293(14) | | N20 | 1117(14) | 2586(12) | 1695(9) | | C20 | 730(16) | 2029(13) | 1986(11) | | C21 | 1811(23) | 3264(20) | 1435(17) | | N30 | 372(19) | 2572(16) | 4261(13) | | C30 | 831(24) | 2082(21) | 4010(16) | | C31 | -30(21) | 3385(18) | 4622(15) | | N40 | 2382(17) | -209(15) | 2433(11) | | C40 | 2104(25) | 189(21) | 2849(16) | | C41 | 2484(24) | -514(20) | 1697(15) | | C12 | 0(3) | -107(3) | 473(2) | | C13 | -177(2) | -133(2) | 413(2) | | Cl4 | -151(2) | 22(2) | 472(2) | | C22 | 300(6) | 307(5) | 167(4) | | C23 | 128(7) | 330(6) | 57(5) | | C24 | 158(6) | 430(5) | 192(4) | | C22A | 262(5) | 274(4) | 108(3) | | C23A | 99(5) | 382(4) | 83(3) | | C24A | 240(5) | 384(4) | 210(3) | | C32 | -112(8) | 355(7) | 405(5) | | C33 | 6l(7) | 417(6) | 475(5) | | C34 | -16(5) | 307(4) | 540(4) | | C32A | 43(5) | 428(4) | 442(3) | | C33A | -130(5) | 336(4) | 435(3) | | C34A | 33(5) | 329(4) | 546(3) | | C42 | 271(3) | 28(2) | 121(2) | | C43 | 141(3) | -85(3) | 130(2) | | C44 | 349(5) | -134(4) | 198(3) | a) Positional parameters from Pdl to C41 atoms are multiplied by 10⁴ and those from C12 to C44 atoms, by 10³. tion metal complexes 28. For the preceding paper, see Y. Yamamoto and H. Yamazaki, J. Organomet. Chem., 282, 191 (1985). - 2) a) R. Ugo, Catal. Rev., 11, 225 (1975); b) E. L. Muetterties, Bull. Chem. Soc. Chim. Berg., 84, 959 (1975); c) E. L. Muetterties, ibid., 85, 451 (1976). - 3) Y. Yamamoto, K. Takahashi, and H. Yamazaki, Chem. Lett., 1985, 201. - 4) S. Otsuka, Y.Tatsuno, and K. Ataka, J. Am. Chem. Soc., 93, 6705 (1971). - 5) N. M. Rutherford, M. M. Olmstead, and A. L. Balch, *Inorg. Chem.*, 23, 2833 (1984). - 6) H. M. Walborsky and G. E. Niznik, J. Org. Chem., 37, 187 (1972). - 7) M. F. Rettig, E. A. Kirk, and P. M. Maitlis, J. Organomet. Chem., 111, 113 (1976). - 8) T. D. Miller, M. A. St. Clair, M. K. Relnking, and C. P. Kubiak, Organometallics, 2, 767 (1983). - 9) The following programs were used: T. Sakurai and K. Kobayashi, UNICS III(1978). - 10) Y. Kitano and T. Hori, Acta Crystallogr., Sect. B., 37, 1919 (1981).